未验证 提交 9d2e0923 编写于 作者: H huangjun12 提交者: GitHub

cherrypick for eigvalsh (#36680)

上级 3fc24e09
...@@ -185,6 +185,7 @@ function(op_library TARGET) ...@@ -185,6 +185,7 @@ function(op_library TARGET)
list(REMOVE_ITEM hip_srcs "cholesky_op.cu") list(REMOVE_ITEM hip_srcs "cholesky_op.cu")
list(REMOVE_ITEM hip_srcs "matrix_rank_op.cu") list(REMOVE_ITEM hip_srcs "matrix_rank_op.cu")
list(REMOVE_ITEM hip_srcs "svd_op.cu") list(REMOVE_ITEM hip_srcs "svd_op.cu")
list(REMOVE_ITEM hip_srcs "eigvalsh_op.cu")
list(REMOVE_ITEM hip_srcs "qr_op.cu") list(REMOVE_ITEM hip_srcs "qr_op.cu")
list(REMOVE_ITEM hip_srcs "eigh_op.cu") list(REMOVE_ITEM hip_srcs "eigh_op.cu")
list(REMOVE_ITEM hip_srcs "multinomial_op.cu") list(REMOVE_ITEM hip_srcs "multinomial_op.cu")
......
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/eigvalsh_op.h"
namespace paddle {
namespace operators {
using framework::Tensor;
class EigvalshOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
void InferShape(framework::InferShapeContext* ctx) const override {
OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "Eigvalsh");
OP_INOUT_CHECK(ctx->HasOutput("Eigenvalues"), "Output", "Eigenvalues",
"Eigvalsh");
auto input_dim = ctx->GetInputDim("X");
auto rank = input_dim.size();
PADDLE_ENFORCE_GE(rank, 2,
platform::errors::InvalidArgument(
"The Input(X) should have at least 2 dimensions."
"But received a %d dimension tensor.",
rank));
PADDLE_ENFORCE_EQ(
input_dim[rank - 2], input_dim[rank - 1],
platform::errors::InvalidArgument(
"Eigvalsh op is designed for square matrix, consequently"
"inner-most 2 dimensions of Input(X) should be symmetric."
"But received X's shape[-2] = %d and shape[-1] = %d.",
input_dim[rank - 2], input_dim[rank - 1]));
std::vector<int64_t> values_dim;
for (auto i = 0; i < rank - 1; i++) {
values_dim.emplace_back(input_dim[i]);
}
ctx->SetOutputDim("Eigenvalues", framework::make_ddim(values_dim));
if (ctx->HasOutput("Eigenvectors")) {
ctx->SetOutputDim("Eigenvectors", input_dim);
}
}
};
class EigvalshOpMaker : public framework::OpProtoAndCheckerMaker {
public:
void Make() override {
AddInput("X",
"(Tensor), Hermitian or real symmetric matrices."
"Its shape should be [*, N, N] where * is zero or"
"more batch dimensions. The data type is float32 ,"
"float64, complex64, complex128.");
AddOutput("Eigenvalues",
"(Tensor), The eigenvalues in ascending order."
"The data type is float32 or float64.");
AddOutput(
"Eigenvectors",
"(Tensor), The column is the normalized eigenvector "
"corresponding to the eigenvalue. The data type is the same as ``X``."
"Eigenvectors are required to calculate gradient when backward.");
AddAttr<std::string>(
"UPLO",
"(string, default 'L'), 'L' represents the lower triangular matrix,"
"'U' represents the upper triangular matrix.")
.SetDefault("L");
AddAttr<bool>("is_test",
"(bool, default false) Set to true for inference only, false "
"for training.")
.SetDefault(false);
AddComment(R"DOC(
Eigvalsh Operator.
Computes the eigenvalues of a complex Hermitian
(conjugate symmetric) or a real symmetric matrix.
)DOC");
}
};
class EigvalshGradOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
void InferShape(framework::InferShapeContext* ctx) const override {
OP_INOUT_CHECK(ctx->HasInput("Eigenvectors"), "Input", "Eigenvectors",
"EigvalshGrad");
OP_INOUT_CHECK(ctx->HasInput(framework::GradVarName("Eigenvalues")),
"Input", "Eigenvalues@GRAD", "EigvalshGrad");
auto dims = ctx->GetInputDim("Eigenvectors");
auto x_grad_name = framework::GradVarName("X");
if (ctx->HasOutput(x_grad_name)) {
ctx->SetOutputDim(x_grad_name, dims);
}
}
protected:
framework::OpKernelType GetExpectedKernelType(
const framework::ExecutionContext& ctx) const override {
return framework::OpKernelType(
OperatorWithKernel::IndicateVarDataType(ctx, "Eigenvectors"),
ctx.device_context());
}
};
template <typename T>
class EigvalshGradOpMaker : public framework::SingleGradOpMaker<T> {
public:
using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
protected:
void Apply(GradOpPtr<T> op) const override {
op->SetType(this->ForwardOpType() + "_grad");
op->SetInput("Eigenvectors", this->Output("Eigenvectors"));
op->SetInput(framework::GradVarName("Eigenvalues"),
this->OutputGrad("Eigenvalues"));
op->SetAttrMap(this->Attrs());
op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OPERATOR(eigvalsh, ops::EigvalshOp, ops::EigvalshOpMaker,
ops::EigvalshGradOpMaker<paddle::framework::OpDesc>,
ops::EigvalshGradOpMaker<paddle::imperative::OpBase>);
REGISTER_OPERATOR(eigvalsh_grad, ops::EigvalshGradOp);
REGISTER_OP_CPU_KERNEL(
eigvalsh,
ops::EigvalshKernel<paddle::platform::CPUDeviceContext, float, float>,
ops::EigvalshKernel<paddle::platform::CPUDeviceContext, double, double>,
ops::EigvalshKernel<paddle::platform::CPUDeviceContext, float,
paddle::platform::complex<float>>,
ops::EigvalshKernel<paddle::platform::CPUDeviceContext, double,
paddle::platform::complex<double>>);
REGISTER_OP_CPU_KERNEL(
eigvalsh_grad,
ops::EigvalshGradKernel<paddle::platform::CPUDeviceContext, float, float>,
ops::EigvalshGradKernel<paddle::platform::CPUDeviceContext, double, double>,
ops::EigvalshGradKernel<paddle::platform::CPUDeviceContext, float,
paddle::platform::complex<float>>,
ops::EigvalshGradKernel<paddle::platform::CPUDeviceContext, double,
paddle::platform::complex<double>>);
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/eigvalsh_op.h"
namespace ops = paddle::operators;
REGISTER_OP_CUDA_KERNEL(
eigvalsh,
ops::EigvalshKernel<paddle::platform::CUDADeviceContext, float, float>,
ops::EigvalshKernel<paddle::platform::CUDADeviceContext, double, double>,
ops::EigvalshKernel<paddle::platform::CUDADeviceContext, float,
paddle::platform::complex<float>>,
ops::EigvalshKernel<paddle::platform::CUDADeviceContext, double,
paddle::platform::complex<double>>);
REGISTER_OP_CUDA_KERNEL(
eigvalsh_grad,
ops::EigvalshGradKernel<paddle::platform::CUDADeviceContext, float, float>,
ops::EigvalshGradKernel<paddle::platform::CUDADeviceContext, double,
double>,
ops::EigvalshGradKernel<paddle::platform::CUDADeviceContext, float,
paddle::platform::complex<float>>,
ops::EigvalshGradKernel<paddle::platform::CUDADeviceContext, double,
paddle::platform::complex<double>>);
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/math/eigen_values_vectors.h"
namespace paddle {
namespace operators {
using Tensor = framework::Tensor;
template <typename T, int MajorType = Eigen::RowMajor,
typename IndexType = Eigen::DenseIndex>
using EigenVector = framework::EigenVector<T, MajorType, IndexType>;
template <typename DeviceContext, typename ValueType, typename T>
class EigvalshKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
auto input = ctx.Input<Tensor>("X");
auto output_w = ctx.Output<Tensor>("Eigenvalues");
std::string lower = ctx.Attr<std::string>("UPLO");
bool is_lower = (lower == "L");
bool is_test = ctx.Attr<bool>("is_test");
math::MatrixEighFunctor<DeviceContext, T> functor;
if (is_test) {
functor(ctx, *input, output_w, nullptr, is_lower, false);
} else {
auto output_v = ctx.Output<Tensor>("Eigenvectors");
functor(ctx, *input, output_w, output_v, is_lower, true);
}
}
};
template <typename DeviceContext, typename ValueType, typename T>
class EigvalshGradKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
auto& x_grad = *ctx.Output<framework::Tensor>(framework::GradVarName("X"));
auto& output_v = *ctx.Input<Tensor>("Eigenvectors");
auto& output_w_grad =
*ctx.Input<Tensor>(framework::GradVarName("Eigenvalues"));
auto dito =
math::DeviceIndependenceTensorOperations<DeviceContext, T, ValueType>(
ctx);
auto tV = dito.Transpose(dito.Conj(output_v));
// compute elementwise multiply of output_v and output_w_grad
x_grad.mutable_data<T>(output_v.dims(), ctx.GetPlace());
auto output_v_vector = EigenVector<T>::Flatten(output_v);
auto output_w_grad_vector = EigenVector<ValueType>::Flatten(output_w_grad);
auto result_vector = EigenVector<T>::Flatten(x_grad);
auto& place = *ctx.template device_context<DeviceContext>().eigen_device();
std::vector<int> broadcast_factor;
broadcast_factor.push_back(output_v.dims().at(output_v.dims().size() - 1));
result_vector.device(place) =
output_v_vector * output_w_grad_vector.broadcast(broadcast_factor);
x_grad = dito.Matmul(x_grad, tV);
}
};
} // namespace operators
} // namespace paddle
...@@ -102,6 +102,7 @@ from .tensor.linalg import histogram # noqa: F401 ...@@ -102,6 +102,7 @@ from .tensor.linalg import histogram # noqa: F401
from .tensor.linalg import bincount # noqa: F401 from .tensor.linalg import bincount # noqa: F401
from .tensor.linalg import mv # noqa: F401 from .tensor.linalg import mv # noqa: F401
from .tensor.logic import equal # noqa: F401 from .tensor.logic import equal # noqa: F401
from .tensor.linalg import eigvalsh # noqa: F401
from .tensor.logic import greater_equal # noqa: F401 from .tensor.logic import greater_equal # noqa: F401
from .tensor.logic import greater_than # noqa: F401 from .tensor.logic import greater_than # noqa: F401
from .tensor.logic import is_empty # noqa: F401 from .tensor.logic import is_empty # noqa: F401
......
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import unittest
import numpy as np
import paddle
from op_test import OpTest
from gradient_checker import grad_check
class TestEigvalshOp(OpTest):
def setUp(self):
paddle.enable_static()
self.op_type = "eigvalsh"
self.init_input()
self.init_config()
np.random.seed(123)
out_w, out_v = np.linalg.eigh(self.x_np, self.UPLO)
self.inputs = {"X": self.x_np}
self.attrs = {"UPLO": self.UPLO, "is_test": False}
self.outputs = {'Eigenvalues': out_w, 'Eigenvectors': out_v}
def init_config(self):
self.UPLO = 'L'
def init_input(self):
self.x_shape = (10, 10)
self.x_type = np.float64
self.x_np = np.random.random(self.x_shape).astype(self.x_type)
def test_check_output(self):
# Vectors in posetive or negative is equivalent
self.check_output(no_check_set=['Eigenvectors'])
def test_grad(self):
self.check_grad(["X"], ["Eigenvalues"])
class TestEigvalshUPLOCase(TestEigvalshOp):
def init_config(self):
self.UPLO = 'U'
class TestEigvalshGPUCase(unittest.TestCase):
def setUp(self):
self.x_shape = [32, 32]
self.dtype = "float32"
np.random.seed(123)
self.x_np = np.random.random(self.x_shape).astype(self.dtype)
self.rtol = 1e-5
self.atol = 1e-5
def test_check_output_gpu(self):
if paddle.is_compiled_with_cuda():
paddle.disable_static(place=paddle.CUDAPlace(0))
input_real_data = paddle.to_tensor(self.x_np)
expected_w = np.linalg.eigvalsh(self.x_np)
actual_w = paddle.linalg.eigvalsh(input_real_data)
np.testing.assert_allclose(
actual_w, expected_w, rtol=self.rtol, atol=self.atol)
class TestEigvalshAPI(unittest.TestCase):
def setUp(self):
self.init_input_shape()
self.dtype = "float32"
self.UPLO = 'L'
self.rtol = 1e-6
self.atol = 1e-6
self.place = paddle.CUDAPlace(0) if paddle.is_compiled_with_cuda() \
else paddle.CPUPlace()
np.random.seed(123)
self.real_data = np.random.random(self.x_shape).astype(self.dtype)
self.complex_data = np.random.random(self.x_shape).astype(
self.dtype) + 1J * np.random.random(self.x_shape).astype(self.dtype)
self.trans_dims = list(range(len(self.x_shape) - 2)) + [
len(self.x_shape) - 1, len(self.x_shape) - 2
]
def init_input_shape(self):
self.x_shape = [5, 5]
def compare_result(self, actual_w, expected_w):
np.testing.assert_allclose(
actual_w, expected_w, rtol=self.rtol, atol=self.atol)
def check_static_float_result(self):
main_prog = paddle.static.Program()
startup_prog = paddle.static.Program()
with paddle.static.program_guard(main_prog, startup_prog):
input_x = paddle.static.data(
'input_x', shape=self.x_shape, dtype=self.dtype)
output_w = paddle.linalg.eigvalsh(input_x)
exe = paddle.static.Executor(self.place)
expected_w = exe.run(main_prog,
feed={"input_x": self.real_data},
fetch_list=[output_w])
actual_w = np.linalg.eigvalsh(self.real_data)
self.compare_result(actual_w, expected_w[0])
def check_static_complex_result(self):
main_prog = paddle.static.Program()
startup_prog = paddle.static.Program()
with paddle.static.program_guard(main_prog, startup_prog):
x_dtype = np.complex64 if self.dtype == "float32" else np.complex128
input_x = paddle.static.data(
'input_x', shape=self.x_shape, dtype=x_dtype)
output_w = paddle.linalg.eigvalsh(input_x)
exe = paddle.static.Executor(self.place)
expected_w = exe.run(main_prog,
feed={"input_x": self.complex_data},
fetch_list=[output_w])
actual_w = np.linalg.eigvalsh(self.complex_data)
self.compare_result(actual_w, expected_w[0])
def test_in_static_mode(self):
paddle.enable_static()
self.check_static_float_result()
self.check_static_complex_result()
def test_in_dynamic_mode(self):
paddle.disable_static(self.place)
input_real_data = paddle.to_tensor(self.real_data)
expected_w = np.linalg.eigvalsh(self.real_data)
actual_w = paddle.linalg.eigvalsh(input_real_data)
self.compare_result(actual_w, expected_w)
input_complex_data = paddle.to_tensor(self.complex_data)
expected_w = np.linalg.eigvalsh(self.complex_data)
actual_w = paddle.linalg.eigvalsh(input_complex_data)
self.compare_result(actual_w, expected_w)
def test_eigvalsh_grad(self):
paddle.disable_static(self.place)
x = paddle.to_tensor(self.complex_data, stop_gradient=False)
w = paddle.linalg.eigvalsh(x)
(w.sum()).backward()
np.testing.assert_allclose(
abs(x.grad.numpy()),
abs(x.grad.numpy().conj().transpose(self.trans_dims)),
rtol=self.rtol,
atol=self.atol)
class TestEigvalshBatchAPI(TestEigvalshAPI):
def init_input_shape(self):
self.x_shape = [2, 5, 5]
class TestEigvalshAPIError(unittest.TestCase):
def test_error(self):
main_prog = paddle.static.Program()
startup_prog = paddle.static.Program()
with paddle.static.program_guard(main_prog, startup_prog):
#input maxtrix must greater than 2 dimensions
input_x = paddle.static.data(
name='x_1', shape=[12], dtype='float32')
self.assertRaises(ValueError, paddle.linalg.eigvalsh, input_x)
#input matrix must be square matrix
input_x = paddle.static.data(
name='x_2', shape=[12, 32], dtype='float32')
self.assertRaises(ValueError, paddle.linalg.eigvalsh, input_x)
#uplo must be in 'L' or 'U'
input_x = paddle.static.data(
name='x_3', shape=[4, 4], dtype="float32")
uplo = 'R'
self.assertRaises(ValueError, paddle.linalg.eigvalsh, input_x, uplo)
#x_data cannot be integer
input_x = paddle.static.data(
name='x_4', shape=[4, 4], dtype="int32")
self.assertRaises(TypeError, paddle.linalg.eigvalsh, input_x)
if __name__ == "__main__":
unittest.main()
...@@ -33,5 +33,6 @@ no_check_set_white_list = [ ...@@ -33,5 +33,6 @@ no_check_set_white_list = [
'softmax_with_cross_entropy', 'softmax_with_cross_entropy',
'svd', 'svd',
'eigh', 'eigh',
'eigvalsh',
'class_center_sample', 'class_center_sample',
] ]
...@@ -25,6 +25,7 @@ from .tensor.linalg import matrix_rank ...@@ -25,6 +25,7 @@ from .tensor.linalg import matrix_rank
from .tensor.linalg import svd from .tensor.linalg import svd
from .tensor.linalg import qr from .tensor.linalg import qr
from .tensor.linalg import eigh # noqa: F401 from .tensor.linalg import eigh # noqa: F401
from .tensor.linalg import eigvalsh
from .tensor.linalg import det from .tensor.linalg import det
from .tensor.linalg import slogdet from .tensor.linalg import slogdet
from .tensor.linalg import pinv from .tensor.linalg import pinv
...@@ -44,6 +45,7 @@ __all__ = [ ...@@ -44,6 +45,7 @@ __all__ = [
'det', 'det',
'slogdet', 'slogdet',
'eigh', 'eigh',
'eigvalsh',
'pinv', 'pinv',
'solve' 'solve'
] ]
...@@ -53,6 +53,7 @@ from .linalg import eigvals # noqa: F401 ...@@ -53,6 +53,7 @@ from .linalg import eigvals # noqa: F401
from .linalg import multi_dot # noqa: F401 from .linalg import multi_dot # noqa: F401
from .linalg import svd # noqa: F401 from .linalg import svd # noqa: F401
from .linalg import eigh # noqa: F401 from .linalg import eigh # noqa: F401
from .linalg import eigvalsh # noqa: F401
from .linalg import pinv # noqa: F401 from .linalg import pinv # noqa: F401
from .linalg import solve # noqa: F401 from .linalg import solve # noqa: F401
from .logic import equal # noqa: F401 from .logic import equal # noqa: F401
...@@ -242,6 +243,7 @@ tensor_method_func = [ #noqa ...@@ -242,6 +243,7 @@ tensor_method_func = [ #noqa
'matrix_power', 'matrix_power',
'qr', 'qr',
'eigvals', 'eigvals',
'eigvalsh',
'abs', 'abs',
'acos', 'acos',
'all', 'all',
......
...@@ -2313,3 +2313,70 @@ def solve(x, y, name=None): ...@@ -2313,3 +2313,70 @@ def solve(x, y, name=None):
type="solve", inputs={"X": x, type="solve", inputs={"X": x,
"Y": y}, outputs={"Out": out}) "Y": y}, outputs={"Out": out})
return out return out
def eigvalsh(x, UPLO='L', name=None):
"""
Computes the eigenvalues of a
complex Hermitian (conjugate symmetric) or a real symmetric matrix.
Args:
x (Tensor): A tensor with shape :math:`[_, M, M]` , The data type of the input Tensor x
should be one of float32, float64, complex64, complex128.
UPLO(str, optional): Lower triangular part of a (‘L’, default) or the upper triangular part (‘U’).
name(str, optional): The default value is None. Normally there is no need for user to set this
property. For more information, please refer to :ref:`api_guide_Name`.
Returns:
Tensor: The tensor eigenvalues in ascending order.
Examples:
.. code-block:: python
import numpy as np
import paddle
x_data = np.array([[1, -2j], [2j, 5]])
x = paddle.to_tensor(x_data)
out_value = paddle.eigvalsh(x, UPLO='L')
print(out_value)
#[0.17157288, 5.82842712]
"""
if in_dygraph_mode():
is_test = x.stop_gradient
values, _ = _C_ops.eigvalsh(x, 'UPLO', UPLO, 'is_test', is_test)
return values
def __check_input(x, UPLO):
x_shape = list(x.shape)
if len(x.shape) < 2:
raise ValueError(
"Input(input) only support >=2 tensor, but received "
"length of Input(input) is %s." % len(x.shape))
if x_shape[-1] != x_shape[-2]:
raise ValueError(
"The input matrix must be batches of square matrices. But received x's dimention: {}".
format(x_shape))
if UPLO is not 'L' and UPLO is not 'U':
raise ValueError(
"UPLO must be L or U. But received UPLO is: {}".format(UPLO))
__check_input(x, UPLO)
helper = LayerHelper('eigvalsh', **locals())
check_variable_and_dtype(x, 'dtype',
['float32', 'float64', 'complex64', 'complex128'],
'eigvalsh')
out_value = helper.create_variable_for_type_inference(dtype=x.dtype)
out_vector = helper.create_variable_for_type_inference(dtype=x.dtype)
is_test = x.stop_gradient
helper.append_op(
type='eigvalsh',
inputs={'X': x},
outputs={'Eigenvalues': out_value,
'Eigenvectors': out_vector},
attrs={'UPLO': UPLO,
'is_test': is_test})
return out_value
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册