未验证 提交 9cbba97b 编写于 作者: L lzzyzlbb 提交者: GitHub

[NPU]add rmsprop op (#34864)

* [npu]add rmsprop op
上级 755c8a19
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/optimizers/rmsprop_op.h"
#include "paddle/fluid/operators/npu_op_runner.h"
namespace paddle {
namespace operators {
using Tensor = framework::Tensor;
using LoDTensor = framework::LoDTensor;
template <typename DeviceContext, typename T>
class RMSPROPNPUKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext &ctx) const override {
auto *grad_var = ctx.InputVar("Grad");
auto *param_out = ctx.Output<LoDTensor>("ParamOut");
auto *moment_out = ctx.Output<LoDTensor>("MomentOut");
auto *mean_square_out = ctx.Output<LoDTensor>("MeanSquareOut");
param_out->mutable_data<T>(ctx.GetPlace());
moment_out->mutable_data<T>(ctx.GetPlace());
mean_square_out->mutable_data<T>(ctx.GetPlace());
auto epsilon = static_cast<T>(ctx.Attr<float>("epsilon"));
auto rho = static_cast<T>(ctx.Attr<float>("decay"));
auto momentum = static_cast<T>(ctx.Attr<float>("momentum"));
auto *p_tensor = ctx.Input<LoDTensor>("Param");
auto *ms_tensor = ctx.Input<LoDTensor>("MeanSquare");
auto *lr_tensor = ctx.Input<LoDTensor>("LearningRate");
auto *mom_tensor = ctx.Input<LoDTensor>("Moment");
bool centered = ctx.Attr<bool>("centered");
auto stream =
ctx.template device_context<paddle::platform::NPUDeviceContext>()
.stream();
if (grad_var->IsType<LoDTensor>()) {
auto *grad_tensor = ctx.Input<LoDTensor>("Grad");
if (centered) {
framework::NPUAttributeMap attr_input = {{"use_locking", false}};
const Tensor *rho_tensor = nullptr;
const Tensor *momentum_tensor = nullptr;
const Tensor *epsilon_tensor = nullptr;
Tensor rho_tmp(framework::proto::VarType::FP32);
rho_tmp.mutable_data<T>({1}, ctx.GetPlace());
FillNpuTensorWithConstant<T>(&rho_tmp, rho);
rho_tensor = &rho_tmp;
Tensor momentum_tmp(framework::proto::VarType::FP32);
momentum_tmp.mutable_data<T>({1}, ctx.GetPlace());
FillNpuTensorWithConstant<T>(&momentum_tmp, momentum);
momentum_tensor = &momentum_tmp;
Tensor epsilon_tmp(framework::proto::VarType::FP32);
epsilon_tmp.mutable_data<T>({1}, ctx.GetPlace());
FillNpuTensorWithConstant<T>(&epsilon_tmp, epsilon);
epsilon_tensor = &epsilon_tmp;
auto *mg_tensor = ctx.Input<Tensor>("MeanGrad");
auto *mean_grad_out = ctx.Output<Tensor>("MeanGradOut");
mean_grad_out->mutable_data<T>(ctx.GetPlace());
const auto &runner_applycenterrmsprop = NpuOpRunner(
std::string("ApplyCenteredRMSPropD"),
{*p_tensor, *mg_tensor, *ms_tensor, *mom_tensor, *lr_tensor,
*rho_tensor, *momentum_tensor, *epsilon_tensor, *grad_tensor},
{*param_out, *mean_grad_out, *mean_square_out, *moment_out},
{attr_input});
runner_applycenterrmsprop.Run(stream);
} else {
framework::NPUAttributeMap attr_input = {
{"rho", rho}, {"momentum", momentum}, {"epsilon", epsilon}};
const auto &runner_applyrmsprop = NpuOpRunner(
std::string("ApplyRMSPropD"),
{*p_tensor, *ms_tensor, *mom_tensor, *lr_tensor, *grad_tensor},
{*param_out, *mean_square_out, *moment_out}, {attr_input});
runner_applyrmsprop.Run(stream);
}
} else {
PADDLE_ENFORCE_EQ(false, true,
platform::errors::PermissionDenied(
"Unsupported Variable Type of Grad "
"in RmspropOp. Excepted LodTensor, "
"But received [%s]",
paddle::framework::ToTypeName(grad_var->Type())));
}
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OP_NPU_KERNEL(
rmsprop, ops::RMSPROPNPUKernel<paddle::platform::NPUDeviceContext, float>)
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import unittest
import sys
sys.path.append("..")
from op_test import OpTest
import numpy as np
import paddle.fluid.core as core
from paddle.fluid.op import Operator
import paddle.fluid as fluid
import paddle
paddle.enable_static()
SEED = 2021
class TestNet(unittest.TestCase):
def _test(self, run_npu=True):
main_prog = paddle.static.Program()
startup_prog = paddle.static.Program()
main_prog.random_seed = SEED
startup_prog.random_seed = SEED
np.random.seed(SEED)
a_np = np.random.random(size=(32, 32)).astype('float32')
b_np = np.random.random(size=(32, 32)).astype('float32')
label_np = np.random.randint(2, size=(32, 1)).astype('int64')
with paddle.static.program_guard(main_prog, startup_prog):
a = paddle.static.data(name="a", shape=[32, 32], dtype='float32')
b = paddle.static.data(name="b", shape=[32, 32], dtype='float32')
label = paddle.static.data(
name="label", shape=[32, 1], dtype='int64')
sum = paddle.add(a, b)
z = paddle.pow(sum, 2.0)
fc_1 = fluid.layers.fc(input=z, size=128)
prediction = fluid.layers.fc(input=fc_1, size=2, act='softmax')
cost = fluid.layers.cross_entropy(input=prediction, label=label)
loss = fluid.layers.reduce_mean(cost)
rmsprop = fluid.optimizer.RMSProp(learning_rate=0.01)
rmsprop.minimize(loss)
if run_npu:
place = paddle.NPUPlace(0)
else:
place = paddle.CPUPlace()
exe = paddle.static.Executor(place)
exe.run(startup_prog)
print("Start run on {}".format(place))
for epoch in range(100):
pred_res, loss_res = exe.run(
main_prog,
feed={"a": a_np,
"b": b_np,
"label": label_np},
fetch_list=[prediction, loss])
if epoch % 10 == 0:
print("Epoch {} | Prediction[0]: {}, Loss: {}".format(
epoch, pred_res[0], loss_res))
return pred_res, loss_res
def test_npu(self):
cpu_pred, cpu_loss = self._test(False)
npu_pred, npu_loss = self._test(True)
self.assertTrue(np.allclose(npu_pred, cpu_pred, rtol=1e-3))
self.assertTrue(np.allclose(npu_loss, cpu_loss, rtol=1e-3))
class TestCenteredNet(unittest.TestCase):
def _test(self, run_npu=True):
main_prog = paddle.static.Program()
startup_prog = paddle.static.Program()
main_prog.random_seed = SEED
startup_prog.random_seed = SEED
np.random.seed(SEED)
a_np = np.random.random(size=(32, 32)).astype('float32')
b_np = np.random.random(size=(32, 32)).astype('float32')
label_np = np.random.randint(2, size=(32, 1)).astype('int64')
with paddle.static.program_guard(main_prog, startup_prog):
a = paddle.static.data(name="a", shape=[32, 32], dtype='float32')
b = paddle.static.data(name="b", shape=[32, 32], dtype='float32')
label = paddle.static.data(
name="label", shape=[32, 1], dtype='int64')
sum = paddle.add(a, b)
z = paddle.pow(sum, 2.0)
fc_1 = fluid.layers.fc(input=z, size=128)
prediction = fluid.layers.fc(input=fc_1, size=2, act='softmax')
cost = fluid.layers.cross_entropy(input=prediction, label=label)
loss = fluid.layers.reduce_mean(cost)
rmsprop = fluid.optimizer.RMSProp(learning_rate=0.01, centered=True)
rmsprop.minimize(loss)
if run_npu:
place = paddle.NPUPlace(0)
else:
place = paddle.CPUPlace()
exe = paddle.static.Executor(place)
exe.run(startup_prog)
print("Start run on {}".format(place))
for epoch in range(100):
pred_res, loss_res = exe.run(
main_prog,
feed={"a": a_np,
"b": b_np,
"label": label_np},
fetch_list=[prediction, loss])
if epoch % 10 == 0:
print("Epoch {} | Prediction[0]: {}, Loss: {}".format(
epoch, pred_res[0], loss_res))
return pred_res, loss_res
def test_npu(self):
cpu_pred, cpu_loss = self._test(False)
npu_pred, npu_loss = self._test(True)
self.assertTrue(np.allclose(npu_pred, cpu_pred, rtol=1e-3))
self.assertTrue(np.allclose(npu_loss, cpu_loss, rtol=1e-3))
if __name__ == "__main__":
unittest.main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册