diff --git a/paddle/fluid/pybind/imperative.cc b/paddle/fluid/pybind/imperative.cc index defb1edad9fcf33366027e9a6db65fcb79c1ce52..83978c5a97c84ad223832e9a71679b65ddacd234 100644 --- a/paddle/fluid/pybind/imperative.cc +++ b/paddle/fluid/pybind/imperative.cc @@ -101,6 +101,7 @@ static void InitTensorForVarBase(imperative::VarBase *self, static void InitVarBaseFromNumpyWithKwargs(imperative::VarBase *self, const py::kwargs &kwargs) { + VLOG(4) << "Init VarBase"; PADDLE_ENFORCE_EQ( kwargs.contains("value"), true, platform::errors::NotFound( @@ -126,6 +127,7 @@ static void InitVarBaseFromNumpyWithArg(imperative::VarBase *self, bool persistable = false, bool zero_copy = false, std::string name = "") { + VLOG(4) << "Init VarBase"; // 0: self, 1: value, 2: place, 3: persistable, 4: zero_copy, 5: name if (name == "") { name = imperative::GetCurrentTracer()->GenerateUniqueName("generated_var"); @@ -140,10 +142,31 @@ static void InitVarBaseFromNumpyWithArg(imperative::VarBase *self, static void InitVarBaseFromNumpyWithArgDefault(imperative::VarBase *self, const py::array &array) { + VLOG(4) << "Init VarBase"; auto place = imperative::GetCurrentTracer()->ExpectedPlace(); InitTensorForVarBase(self, array, place); } +static void InitVarBaseFromTensorWithArgDefault( + imperative::VarBase *self, const framework::LoDTensor &tensor) { + VLOG(4) << "Init VarBase"; + auto place = imperative::GetCurrentTracer()->ExpectedPlace(); + new (self) imperative::VarBase( + imperative::GetCurrentTracer()->GenerateUniqueName("generated_var")); + self->SetPersistable(false); + self->SetType(framework::proto::VarType::LOD_TENSOR); + self->SetDataType(tensor.type()); + auto *new_tensor = self->MutableVar()->GetMutable(); + // Same place,share data directly + if (place == tensor.place()) { + new_tensor->ShareDataWith(tensor); + VLOG(4) << "Same place, do ShareDataWith"; + } else { + framework::TensorCopy(tensor, place, new_tensor); + VLOG(4) << "Different place, do TensorCopy"; + } +} + static std::string GetTypeName(const imperative::VarBase &var) { if (var.Type() == framework::proto::VarType::RAW) { return "RAW"; @@ -520,6 +543,7 @@ void BindImperative(py::module *m_ptr) { [](imperative::VarBase &self, framework::proto::VarType::Type dtype, const std::vector &dims, const py::handle &name, framework::proto::VarType::Type type, bool persistable) { + VLOG(4) << "Init VarBase"; std::string act_name = ""; if (!name.ptr() || name.ptr() == Py_None) { act_name = imperative::GetCurrentTracer()->GenerateUniqueName( @@ -547,6 +571,7 @@ void BindImperative(py::module *m_ptr) { py::arg("value"), py::arg("place"), py::arg("persistable") = false, py::arg("zero_copy") = false, py::arg("name") = "") .def("__init__", &InitVarBaseFromNumpyWithArgDefault, py::arg("value")) + .def("__init__", &InitVarBaseFromTensorWithArgDefault, py::arg("tensor")) .def("__init__", &InitVarBaseFromNumpyWithKwargs) .def("__getitem__", [](std::shared_ptr &self, py::handle _index) { diff --git a/python/paddle/fluid/dygraph/base.py b/python/paddle/fluid/dygraph/base.py index cc6e097b9ebe3a18c367b8e91019ff29f0bcee08..c04f4b7b59e340320449746a7f3a58fb27df1747 100644 --- a/python/paddle/fluid/dygraph/base.py +++ b/python/paddle/fluid/dygraph/base.py @@ -538,8 +538,8 @@ def to_variable(value, name=None, zero_copy=None): numpy\.ndarray, Variable or ComplexVariable object. Parameters: - value(ndarray|Variable|ComplexVariable): The numpy\.ndarray, Variable - or ComplexVariable object that needs to be converted, it can be + value(ndarray|Variable|Tensor|ComplexVariable): The numpy\.ndarray, Variable + Tensor or ComplexVariable object that needs to be converted, it can be multi-dimension, and the data type is one of numpy\.{float16, float32, float64, int16, int32, int64, uint8, uint16, complex64, complex128}. @@ -611,6 +611,8 @@ def to_variable(value, name=None, zero_copy=None): elif isinstance(value, (core.VarBase, framework.Variable, framework.ComplexVariable)): return value + elif isinstance(value, (core.Tensor, core.LoDTensor)): + return core.VarBase(value) else: raise TypeError( "The type of input value is invalid, expected type is 'ndarray', " diff --git a/python/paddle/fluid/tests/unittests/test_imperative_basic.py b/python/paddle/fluid/tests/unittests/test_imperative_basic.py index d52860396a278e93c075025853063bf29f75d17c..9dead7dc745a4dd64d54a0d010ffbaa5967aab7d 100644 --- a/python/paddle/fluid/tests/unittests/test_imperative_basic.py +++ b/python/paddle/fluid/tests/unittests/test_imperative_basic.py @@ -240,18 +240,22 @@ class TestImperative(unittest.TestCase): def test_create_VarBase(self): x = np.ones([2, 2], np.float32) y = np.zeros([3, 3], np.float32) + t = fluid.Tensor() + t.set(x, fluid.CPUPlace()) with fluid.dygraph.guard(): tmp = fluid.core.VarBase(value=x, place=fluid.core.CPUPlace()) tmp2 = fluid.core.VarBase(y, fluid.core.CPUPlace()) tmp3 = fluid.dygraph.base.to_variable(x) tmp4 = fluid.core.VarBase(y) tmp5 = fluid.core.VarBase(value=x) + tmp6 = fluid.core.VarBase(t) self.assertTrue(np.array_equal(x, tmp.numpy())) self.assertTrue(np.array_equal(y, tmp2.numpy())) self.assertTrue(np.array_equal(x, tmp3.numpy())) self.assertTrue(np.array_equal(y, tmp4.numpy())) self.assertTrue(np.array_equal(x, tmp5.numpy())) + self.assertTrue(np.array_equal(x, tmp6.numpy())) def test_no_grad_guard(self): data = np.array([[2, 3], [4, 5]]).astype('float32') @@ -384,7 +388,6 @@ class TestImperative(unittest.TestCase): var_inp = fluid.dygraph.base.to_variable(np_inp) var_inp.stop_gradient = False l = MyLayer() - print(var_inp) x = l(var_inp)[0] self.assertIsNotNone(x) dy_out = x.numpy() diff --git a/python/paddle/fluid/tests/unittests/test_var_base.py b/python/paddle/fluid/tests/unittests/test_var_base.py index 617970182ae7a0f5efa077c286b96b47ac6de9b3..1c648ee1908fa74de11ddfc0340f04ec9a5a3ccb 100644 --- a/python/paddle/fluid/tests/unittests/test_var_base.py +++ b/python/paddle/fluid/tests/unittests/test_var_base.py @@ -47,6 +47,13 @@ class TestVarBase(unittest.TestCase): linear = fluid.dygraph.Linear(32, 64) var = linear._helper.to_variable("test", name="abc") + def test_tensor_to_variable(self): + with fluid.dygraph.guard(): + t = fluid.Tensor() + t.set(np.ndarray([5, 30]), fluid.CPUPlace()) + var = fluid.dygraph.to_variable(t) + self.assertTrue(np.array_equal(t, var.numpy())) + def test_write_property(self): with fluid.dygraph.guard(): var = fluid.dygraph.to_variable(self.array)