diff --git a/python/paddle/nn/layer/loss.py b/python/paddle/nn/layer/loss.py index c91a04f8d175c26050a525f927e4163baeeb5ecc..b2cec383eb90bcecc794af51a2a436979dde4f80 100644 --- a/python/paddle/nn/layer/loss.py +++ b/python/paddle/nn/layer/loss.py @@ -525,16 +525,24 @@ class MSELoss(Layer): r""" **Mean Square Error Loss** Computes the mean square error (squared L2 norm) of given input and label. + If :attr:`reduction` is set to ``'none'``, loss is calculated as: + .. math:: Out = (input - label)^2 + If :attr:`reduction` is set to ``'mean'``, loss is calculated as: + .. math:: Out = \operatorname{mean}((input - label)^2) + If :attr:`reduction` is set to ``'sum'``, loss is calculated as: + .. math:: Out = \operatorname{sum}((input - label)^2) + where `input` and `label` are `float32` tensors of same shape. + Parameters: reduction (str, optional): The reduction method for the output, could be 'none' | 'mean' | 'sum'. @@ -542,12 +550,16 @@ class MSELoss(Layer): If :attr:`size_average` is ``'sum'``, the reduced sum loss is returned. If :attr:`reduction` is ``'none'``, the unreduced loss is returned. Default is ``'mean'``. + Shape: input (Tensor): Input tensor, the data type is float32 or float64 label (Tensor): Label tensor, the data type is float32 or float64 output (Tensor): output tensor storing the MSE loss of input and label, the data type is same as input. + Examples: + .. code-block:: python + import paddle mse_loss = paddle.nn.loss.MSELoss() input = paddle.to_tensor([1.5]) @@ -555,6 +567,7 @@ class MSELoss(Layer): output = mse_loss(input, label) print(output) # [0.04000002] + """ def __init__(self, reduction='mean'):