Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
9bbb9542
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2299
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
9bbb9542
编写于
6月 03, 2020
作者:
A
Aurelius84
提交者:
GitHub
6月 03, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[Dy2stat]Add BMN model for unittest (#24839)
* add test_bmn_model test=develop * remove random test=develop
上级
40a5f3fd
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
739 addition
and
0 deletion
+739
-0
python/paddle/fluid/tests/unittests/dygraph_to_static/test_bmn.py
...addle/fluid/tests/unittests/dygraph_to_static/test_bmn.py
+739
-0
未找到文件。
python/paddle/fluid/tests/unittests/dygraph_to_static/test_bmn.py
0 → 100644
浏览文件 @
9bbb9542
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
math
import
numpy
as
np
import
unittest
import
paddle.fluid
as
fluid
from
paddle.fluid
import
ParamAttr
from
paddle.fluid.dygraph
import
to_variable
from
paddle.fluid.dygraph
import
declarative
,
ProgramTranslator
SEED
=
2020
DATATYPE
=
'float32'
program_translator
=
ProgramTranslator
()
# Note: Set True to eliminate randomness.
# 1. For one operation, cuDNN has several algorithms,
# some algorithm results are non-deterministic, like convolution algorithms.
if
fluid
.
is_compiled_with_cuda
():
fluid
.
set_flags
({
'FLAGS_cudnn_deterministic'
:
True
})
def
get_interp1d_mask
(
tscale
,
dscale
,
prop_boundary_ratio
,
num_sample
,
num_sample_perbin
):
""" generate sample mask for each point in Boundary-Matching Map """
mask_mat
=
[]
for
start_index
in
range
(
tscale
):
mask_mat_vector
=
[]
for
duration_index
in
range
(
dscale
):
if
start_index
+
duration_index
<
tscale
:
p_xmin
=
start_index
p_xmax
=
start_index
+
duration_index
center_len
=
float
(
p_xmax
-
p_xmin
)
+
1
sample_xmin
=
p_xmin
-
center_len
*
prop_boundary_ratio
sample_xmax
=
p_xmax
+
center_len
*
prop_boundary_ratio
p_mask
=
_get_interp1d_bin_mask
(
sample_xmin
,
sample_xmax
,
tscale
,
num_sample
,
num_sample_perbin
)
else
:
p_mask
=
np
.
zeros
([
tscale
,
num_sample
])
mask_mat_vector
.
append
(
p_mask
)
mask_mat_vector
=
np
.
stack
(
mask_mat_vector
,
axis
=
2
)
mask_mat
.
append
(
mask_mat_vector
)
mask_mat
=
np
.
stack
(
mask_mat
,
axis
=
3
)
mask_mat
=
mask_mat
.
astype
(
np
.
float32
)
sample_mask
=
np
.
reshape
(
mask_mat
,
[
tscale
,
-
1
])
return
sample_mask
def
_get_interp1d_bin_mask
(
seg_xmin
,
seg_xmax
,
tscale
,
num_sample
,
num_sample_perbin
):
""" generate sample mask for a boundary-matching pair """
plen
=
float
(
seg_xmax
-
seg_xmin
)
plen_sample
=
plen
/
(
num_sample
*
num_sample_perbin
-
1.0
)
total_samples
=
[
seg_xmin
+
plen_sample
*
ii
for
ii
in
range
(
num_sample
*
num_sample_perbin
)
]
p_mask
=
[]
for
idx
in
range
(
num_sample
):
bin_samples
=
total_samples
[
idx
*
num_sample_perbin
:(
idx
+
1
)
*
num_sample_perbin
]
bin_vector
=
np
.
zeros
([
tscale
])
for
sample
in
bin_samples
:
sample_upper
=
math
.
ceil
(
sample
)
sample_decimal
,
sample_down
=
math
.
modf
(
sample
)
if
int
(
sample_down
)
<=
(
tscale
-
1
)
and
int
(
sample_down
)
>=
0
:
bin_vector
[
int
(
sample_down
)]
+=
1
-
sample_decimal
if
int
(
sample_upper
)
<=
(
tscale
-
1
)
and
int
(
sample_upper
)
>=
0
:
bin_vector
[
int
(
sample_upper
)]
+=
sample_decimal
bin_vector
=
1.0
/
num_sample_perbin
*
bin_vector
p_mask
.
append
(
bin_vector
)
p_mask
=
np
.
stack
(
p_mask
,
axis
=
1
)
return
p_mask
class
Conv1D
(
fluid
.
dygraph
.
Layer
):
def
__init__
(
self
,
prefix
,
num_channels
=
256
,
num_filters
=
256
,
size_k
=
3
,
padding
=
1
,
groups
=
1
,
act
=
"relu"
):
super
(
Conv1D
,
self
).
__init__
()
fan_in
=
num_channels
*
size_k
*
1
k
=
1.
/
math
.
sqrt
(
fan_in
)
param_attr
=
ParamAttr
(
name
=
prefix
+
"_w"
,
initializer
=
fluid
.
initializer
.
Uniform
(
low
=-
k
,
high
=
k
))
bias_attr
=
ParamAttr
(
name
=
prefix
+
"_b"
,
initializer
=
fluid
.
initializer
.
Uniform
(
low
=-
k
,
high
=
k
))
self
.
_conv2d
=
fluid
.
dygraph
.
Conv2D
(
num_channels
=
num_channels
,
num_filters
=
num_filters
,
filter_size
=
(
1
,
size_k
),
stride
=
1
,
padding
=
(
0
,
padding
),
groups
=
groups
,
act
=
act
,
param_attr
=
param_attr
,
bias_attr
=
bias_attr
)
def
forward
(
self
,
x
):
x
=
fluid
.
layers
.
unsqueeze
(
input
=
x
,
axes
=
[
2
])
x
=
self
.
_conv2d
(
x
)
x
=
fluid
.
layers
.
squeeze
(
input
=
x
,
axes
=
[
2
])
return
x
class
BMN
(
fluid
.
dygraph
.
Layer
):
def
__init__
(
self
,
cfg
):
super
(
BMN
,
self
).
__init__
()
self
.
tscale
=
cfg
.
tscale
self
.
dscale
=
cfg
.
dscale
self
.
prop_boundary_ratio
=
cfg
.
prop_boundary_ratio
self
.
num_sample
=
cfg
.
num_sample
self
.
num_sample_perbin
=
cfg
.
num_sample_perbin
self
.
hidden_dim_1d
=
256
self
.
hidden_dim_2d
=
128
self
.
hidden_dim_3d
=
512
# Base Module
self
.
b_conv1
=
Conv1D
(
prefix
=
"Base_1"
,
num_channels
=
cfg
.
feat_dim
,
num_filters
=
self
.
hidden_dim_1d
,
size_k
=
3
,
padding
=
1
,
groups
=
4
,
act
=
"relu"
)
self
.
b_conv2
=
Conv1D
(
prefix
=
"Base_2"
,
num_filters
=
self
.
hidden_dim_1d
,
size_k
=
3
,
padding
=
1
,
groups
=
4
,
act
=
"relu"
)
# Temporal Evaluation Module
self
.
ts_conv1
=
Conv1D
(
prefix
=
"TEM_s1"
,
num_filters
=
self
.
hidden_dim_1d
,
size_k
=
3
,
padding
=
1
,
groups
=
4
,
act
=
"relu"
)
self
.
ts_conv2
=
Conv1D
(
prefix
=
"TEM_s2"
,
num_filters
=
1
,
size_k
=
1
,
padding
=
0
,
act
=
"sigmoid"
)
self
.
te_conv1
=
Conv1D
(
prefix
=
"TEM_e1"
,
num_filters
=
self
.
hidden_dim_1d
,
size_k
=
3
,
padding
=
1
,
groups
=
4
,
act
=
"relu"
)
self
.
te_conv2
=
Conv1D
(
prefix
=
"TEM_e2"
,
num_filters
=
1
,
size_k
=
1
,
padding
=
0
,
act
=
"sigmoid"
)
#Proposal Evaluation Module
self
.
p_conv1
=
Conv1D
(
prefix
=
"PEM_1d"
,
num_filters
=
self
.
hidden_dim_2d
,
size_k
=
3
,
padding
=
1
,
act
=
"relu"
)
# init to speed up
self
.
sample_mask
=
get_interp1d_mask
(
self
.
tscale
,
self
.
dscale
,
self
.
prop_boundary_ratio
,
self
.
num_sample
,
self
.
num_sample_perbin
)
# self.sample_mask = fluid.dygraph.base.to_variable(sample_mask)
# self.sample_mask.stop_gradient = True
self
.
p_conv3d1
=
fluid
.
dygraph
.
Conv3D
(
num_channels
=
128
,
num_filters
=
self
.
hidden_dim_3d
,
filter_size
=
(
self
.
num_sample
,
1
,
1
),
stride
=
(
self
.
num_sample
,
1
,
1
),
padding
=
0
,
act
=
"relu"
,
param_attr
=
ParamAttr
(
name
=
"PEM_3d1_w"
),
bias_attr
=
ParamAttr
(
name
=
"PEM_3d1_b"
))
self
.
p_conv2d1
=
fluid
.
dygraph
.
Conv2D
(
num_channels
=
512
,
num_filters
=
self
.
hidden_dim_2d
,
filter_size
=
1
,
stride
=
1
,
padding
=
0
,
act
=
"relu"
,
param_attr
=
ParamAttr
(
name
=
"PEM_2d1_w"
),
bias_attr
=
ParamAttr
(
name
=
"PEM_2d1_b"
))
self
.
p_conv2d2
=
fluid
.
dygraph
.
Conv2D
(
num_channels
=
128
,
num_filters
=
self
.
hidden_dim_2d
,
filter_size
=
3
,
stride
=
1
,
padding
=
1
,
act
=
"relu"
,
param_attr
=
ParamAttr
(
name
=
"PEM_2d2_w"
),
bias_attr
=
ParamAttr
(
name
=
"PEM_2d2_b"
))
self
.
p_conv2d3
=
fluid
.
dygraph
.
Conv2D
(
num_channels
=
128
,
num_filters
=
self
.
hidden_dim_2d
,
filter_size
=
3
,
stride
=
1
,
padding
=
1
,
act
=
"relu"
,
param_attr
=
ParamAttr
(
name
=
"PEM_2d3_w"
),
bias_attr
=
ParamAttr
(
name
=
"PEM_2d3_b"
))
self
.
p_conv2d4
=
fluid
.
dygraph
.
Conv2D
(
num_channels
=
128
,
num_filters
=
2
,
filter_size
=
1
,
stride
=
1
,
padding
=
0
,
act
=
"sigmoid"
,
param_attr
=
ParamAttr
(
name
=
"PEM_2d4_w"
),
bias_attr
=
ParamAttr
(
name
=
"PEM_2d4_b"
))
@
declarative
def
forward
(
self
,
x
):
# TODO(Aurelius84): sample_mask is created in `__init__`,
# but currently we don't support that. The two lines code
# will be removed when support creating var outside of forward.
sample_mask
=
to_variable
(
self
.
sample_mask
)
sample_mask
.
stop_gradient
=
True
# Base Module
x
=
self
.
b_conv1
(
x
)
x
=
self
.
b_conv2
(
x
)
# TEM
xs
=
self
.
ts_conv1
(
x
)
xs
=
self
.
ts_conv2
(
xs
)
xs
=
fluid
.
layers
.
squeeze
(
xs
,
axes
=
[
1
])
xe
=
self
.
te_conv1
(
x
)
xe
=
self
.
te_conv2
(
xe
)
xe
=
fluid
.
layers
.
squeeze
(
xe
,
axes
=
[
1
])
# PEM
xp
=
self
.
p_conv1
(
x
)
# BM layer
xp
=
fluid
.
layers
.
matmul
(
xp
,
sample_mask
)
xp
=
fluid
.
layers
.
reshape
(
xp
,
shape
=
[
0
,
0
,
-
1
,
self
.
dscale
,
self
.
tscale
])
xp
=
self
.
p_conv3d1
(
xp
)
xp
=
fluid
.
layers
.
squeeze
(
xp
,
axes
=
[
2
])
xp
=
self
.
p_conv2d1
(
xp
)
xp
=
self
.
p_conv2d2
(
xp
)
xp
=
self
.
p_conv2d3
(
xp
)
xp
=
self
.
p_conv2d4
(
xp
)
return
xp
,
xs
,
xe
def
bmn_loss_func
(
pred_bm
,
pred_start
,
pred_end
,
gt_iou_map
,
gt_start
,
gt_end
,
cfg
):
def
_get_mask
(
cfg
):
dscale
=
cfg
.
dscale
tscale
=
cfg
.
tscale
bm_mask
=
[]
for
idx
in
range
(
dscale
):
mask_vector
=
[
1
for
i
in
range
(
tscale
-
idx
)
]
+
[
0
for
i
in
range
(
idx
)]
bm_mask
.
append
(
mask_vector
)
bm_mask
=
np
.
array
(
bm_mask
,
dtype
=
np
.
float32
)
self_bm_mask
=
fluid
.
layers
.
create_global_var
(
shape
=
[
dscale
,
tscale
],
value
=
0
,
dtype
=
DATATYPE
,
persistable
=
True
)
fluid
.
layers
.
assign
(
bm_mask
,
self_bm_mask
)
self_bm_mask
.
stop_gradient
=
True
return
self_bm_mask
def
tem_loss_func
(
pred_start
,
pred_end
,
gt_start
,
gt_end
):
def
bi_loss
(
pred_score
,
gt_label
):
pred_score
=
fluid
.
layers
.
reshape
(
x
=
pred_score
,
shape
=
[
-
1
],
inplace
=
False
)
gt_label
=
fluid
.
layers
.
reshape
(
x
=
gt_label
,
shape
=
[
-
1
],
inplace
=
False
)
gt_label
.
stop_gradient
=
True
pmask
=
fluid
.
layers
.
cast
(
x
=
(
gt_label
>
0.5
),
dtype
=
DATATYPE
)
num_entries
=
fluid
.
layers
.
cast
(
fluid
.
layers
.
shape
(
pmask
),
dtype
=
DATATYPE
)
num_positive
=
fluid
.
layers
.
cast
(
fluid
.
layers
.
reduce_sum
(
pmask
),
dtype
=
DATATYPE
)
ratio
=
num_entries
/
num_positive
coef_0
=
0.5
*
ratio
/
(
ratio
-
1
)
coef_1
=
0.5
*
ratio
epsilon
=
0.000001
# temp = fluid.layers.log(pred_score + epsilon)
loss_pos
=
fluid
.
layers
.
elementwise_mul
(
fluid
.
layers
.
log
(
pred_score
+
epsilon
),
pmask
)
loss_pos
=
coef_1
*
fluid
.
layers
.
reduce_mean
(
loss_pos
)
loss_neg
=
fluid
.
layers
.
elementwise_mul
(
fluid
.
layers
.
log
(
1.0
-
pred_score
+
epsilon
),
(
1.0
-
pmask
))
loss_neg
=
coef_0
*
fluid
.
layers
.
reduce_mean
(
loss_neg
)
loss
=
-
1
*
(
loss_pos
+
loss_neg
)
return
loss
loss_start
=
bi_loss
(
pred_start
,
gt_start
)
loss_end
=
bi_loss
(
pred_end
,
gt_end
)
loss
=
loss_start
+
loss_end
return
loss
def
pem_reg_loss_func
(
pred_score
,
gt_iou_map
,
mask
):
gt_iou_map
=
fluid
.
layers
.
elementwise_mul
(
gt_iou_map
,
mask
)
u_hmask
=
fluid
.
layers
.
cast
(
x
=
gt_iou_map
>
0.7
,
dtype
=
DATATYPE
)
u_mmask
=
fluid
.
layers
.
logical_and
(
gt_iou_map
<=
0.7
,
gt_iou_map
>
0.3
)
u_mmask
=
fluid
.
layers
.
cast
(
x
=
u_mmask
,
dtype
=
DATATYPE
)
u_lmask
=
fluid
.
layers
.
logical_and
(
gt_iou_map
<=
0.3
,
gt_iou_map
>=
0.
)
u_lmask
=
fluid
.
layers
.
cast
(
x
=
u_lmask
,
dtype
=
DATATYPE
)
u_lmask
=
fluid
.
layers
.
elementwise_mul
(
u_lmask
,
mask
)
num_h
=
fluid
.
layers
.
cast
(
fluid
.
layers
.
reduce_sum
(
u_hmask
),
dtype
=
DATATYPE
)
num_m
=
fluid
.
layers
.
cast
(
fluid
.
layers
.
reduce_sum
(
u_mmask
),
dtype
=
DATATYPE
)
num_l
=
fluid
.
layers
.
cast
(
fluid
.
layers
.
reduce_sum
(
u_lmask
),
dtype
=
DATATYPE
)
r_m
=
num_h
/
num_m
u_smmask
=
fluid
.
layers
.
assign
(
local_random
.
uniform
(
0.
,
1.
,
[
gt_iou_map
.
shape
[
1
],
gt_iou_map
.
shape
[
2
]
]).
astype
(
DATATYPE
))
u_smmask
=
fluid
.
layers
.
elementwise_mul
(
u_mmask
,
u_smmask
)
u_smmask
=
fluid
.
layers
.
cast
(
x
=
(
u_smmask
>
(
1.
-
r_m
)),
dtype
=
DATATYPE
)
r_l
=
num_h
/
num_l
u_slmask
=
fluid
.
layers
.
assign
(
local_random
.
uniform
(
0.
,
1.
,
[
gt_iou_map
.
shape
[
1
],
gt_iou_map
.
shape
[
2
]
]).
astype
(
DATATYPE
))
u_slmask
=
fluid
.
layers
.
elementwise_mul
(
u_lmask
,
u_slmask
)
u_slmask
=
fluid
.
layers
.
cast
(
x
=
(
u_slmask
>
(
1.
-
r_l
)),
dtype
=
DATATYPE
)
weights
=
u_hmask
+
u_smmask
+
u_slmask
weights
.
stop_gradient
=
True
loss
=
fluid
.
layers
.
square_error_cost
(
pred_score
,
gt_iou_map
)
loss
=
fluid
.
layers
.
elementwise_mul
(
loss
,
weights
)
loss
=
0.5
*
fluid
.
layers
.
reduce_sum
(
loss
)
/
fluid
.
layers
.
reduce_sum
(
weights
)
return
loss
def
pem_cls_loss_func
(
pred_score
,
gt_iou_map
,
mask
):
gt_iou_map
=
fluid
.
layers
.
elementwise_mul
(
gt_iou_map
,
mask
)
gt_iou_map
.
stop_gradient
=
True
pmask
=
fluid
.
layers
.
cast
(
x
=
(
gt_iou_map
>
0.9
),
dtype
=
DATATYPE
)
nmask
=
fluid
.
layers
.
cast
(
x
=
(
gt_iou_map
<=
0.9
),
dtype
=
DATATYPE
)
nmask
=
fluid
.
layers
.
elementwise_mul
(
nmask
,
mask
)
num_positive
=
fluid
.
layers
.
reduce_sum
(
pmask
)
num_entries
=
num_positive
+
fluid
.
layers
.
reduce_sum
(
nmask
)
ratio
=
num_entries
/
num_positive
coef_0
=
0.5
*
ratio
/
(
ratio
-
1
)
coef_1
=
0.5
*
ratio
epsilon
=
0.000001
loss_pos
=
fluid
.
layers
.
elementwise_mul
(
fluid
.
layers
.
log
(
pred_score
+
epsilon
),
pmask
)
loss_pos
=
coef_1
*
fluid
.
layers
.
reduce_sum
(
loss_pos
)
loss_neg
=
fluid
.
layers
.
elementwise_mul
(
fluid
.
layers
.
log
(
1.0
-
pred_score
+
epsilon
),
nmask
)
loss_neg
=
coef_0
*
fluid
.
layers
.
reduce_sum
(
loss_neg
)
loss
=
-
1
*
(
loss_pos
+
loss_neg
)
/
num_entries
return
loss
pred_bm_reg
=
fluid
.
layers
.
squeeze
(
fluid
.
layers
.
slice
(
pred_bm
,
axes
=
[
1
],
starts
=
[
0
],
ends
=
[
1
]),
axes
=
[
1
])
pred_bm_cls
=
fluid
.
layers
.
squeeze
(
fluid
.
layers
.
slice
(
pred_bm
,
axes
=
[
1
],
starts
=
[
1
],
ends
=
[
2
]),
axes
=
[
1
])
bm_mask
=
_get_mask
(
cfg
)
pem_reg_loss
=
pem_reg_loss_func
(
pred_bm_reg
,
gt_iou_map
,
bm_mask
)
pem_cls_loss
=
pem_cls_loss_func
(
pred_bm_cls
,
gt_iou_map
,
bm_mask
)
tem_loss
=
tem_loss_func
(
pred_start
,
pred_end
,
gt_start
,
gt_end
)
loss
=
tem_loss
+
10
*
pem_reg_loss
+
pem_cls_loss
return
loss
,
tem_loss
,
pem_reg_loss
,
pem_cls_loss
class
Args
(
object
):
epoch
=
1
batch_size
=
4
learning_rate
=
0.1
learning_rate_decay
=
0.1
lr_decay_iter
=
4200
l2_weight_decay
=
1e-4
valid_interval
=
20
log_interval
=
5
train_batch_num
=
valid_interval
valid_batch_num
=
5
tscale
=
50
dscale
=
50
feat_dim
=
100
prop_boundary_ratio
=
0.5
num_sample
=
2
num_sample_perbin
=
2
infer_dir
=
'./bmn_infer_model'
dy_param_path
=
'./bmn_dy_param'
def
optimizer
(
cfg
,
parameter_list
):
bd
=
[
cfg
.
lr_decay_iter
]
base_lr
=
cfg
.
learning_rate
lr_decay
=
cfg
.
learning_rate_decay
l2_weight_decay
=
cfg
.
l2_weight_decay
lr
=
[
base_lr
,
base_lr
*
lr_decay
]
optimizer
=
fluid
.
optimizer
.
Adam
(
fluid
.
layers
.
piecewise_decay
(
boundaries
=
bd
,
values
=
lr
),
parameter_list
=
parameter_list
,
regularization
=
fluid
.
regularizer
.
L2DecayRegularizer
(
regularization_coeff
=
l2_weight_decay
))
return
optimizer
def
fake_data_reader
(
args
,
mode
=
'train'
):
def
iou_with_anchors
(
anchors_min
,
anchors_max
,
box_min
,
box_max
):
"""Compute jaccard score between a box and the anchors.
"""
len_anchors
=
anchors_max
-
anchors_min
int_xmin
=
np
.
maximum
(
anchors_min
,
box_min
)
int_xmax
=
np
.
minimum
(
anchors_max
,
box_max
)
inter_len
=
np
.
maximum
(
int_xmax
-
int_xmin
,
0.
)
union_len
=
len_anchors
-
inter_len
+
box_max
-
box_min
jaccard
=
np
.
divide
(
inter_len
,
union_len
)
return
jaccard
def
ioa_with_anchors
(
anchors_min
,
anchors_max
,
box_min
,
box_max
):
"""Compute intersection between score a box and the anchors.
"""
len_anchors
=
anchors_max
-
anchors_min
int_xmin
=
np
.
maximum
(
anchors_min
,
box_min
)
int_xmax
=
np
.
minimum
(
anchors_max
,
box_max
)
inter_len
=
np
.
maximum
(
int_xmax
-
int_xmin
,
0.
)
scores
=
np
.
divide
(
inter_len
,
len_anchors
)
return
scores
def
get_match_map
(
tscale
):
match_map
=
[]
tgap
=
1.
/
tscale
for
idx
in
range
(
tscale
):
tmp_match_window
=
[]
xmin
=
tgap
*
idx
for
jdx
in
range
(
1
,
tscale
+
1
):
xmax
=
xmin
+
tgap
*
jdx
tmp_match_window
.
append
([
xmin
,
xmax
])
match_map
.
append
(
tmp_match_window
)
match_map
=
np
.
array
(
match_map
)
match_map
=
np
.
transpose
(
match_map
,
[
1
,
0
,
2
])
match_map
=
np
.
reshape
(
match_map
,
[
-
1
,
2
])
match_map
=
match_map
anchor_xmin
=
[
tgap
*
i
for
i
in
range
(
tscale
)]
anchor_xmax
=
[
tgap
*
i
for
i
in
range
(
1
,
tscale
+
1
)]
return
match_map
,
anchor_xmin
,
anchor_xmax
def
get_video_label
(
match_map
,
anchor_xmin
,
anchor_xmax
):
video_second
=
local_random
.
randint
(
75
,
90
)
label_num
=
local_random
.
randint
(
1
,
3
)
gt_bbox
=
[]
gt_iou_map
=
[]
for
idx
in
range
(
label_num
):
duration
=
local_random
.
uniform
(
video_second
*
0.4
,
video_second
*
0.8
)
start_t
=
local_random
.
uniform
(
0.1
*
video_second
,
video_second
-
duration
)
tmp_start
=
max
(
min
(
1
,
start_t
/
video_second
),
0
)
tmp_end
=
max
(
min
(
1
,
(
start_t
+
duration
)
/
video_second
),
0
)
gt_bbox
.
append
([
tmp_start
,
tmp_end
])
tmp_gt_iou_map
=
iou_with_anchors
(
match_map
[:,
0
],
match_map
[:,
1
],
tmp_start
,
tmp_end
)
tmp_gt_iou_map
=
np
.
reshape
(
tmp_gt_iou_map
,
[
args
.
dscale
,
args
.
tscale
])
gt_iou_map
.
append
(
tmp_gt_iou_map
)
gt_iou_map
=
np
.
array
(
gt_iou_map
)
gt_iou_map
=
np
.
max
(
gt_iou_map
,
axis
=
0
)
gt_bbox
=
np
.
array
(
gt_bbox
)
gt_xmins
=
gt_bbox
[:,
0
]
gt_xmaxs
=
gt_bbox
[:,
1
]
gt_len_small
=
3.
/
args
.
tscale
gt_start_bboxs
=
np
.
stack
(
(
gt_xmins
-
gt_len_small
/
2
,
gt_xmins
+
gt_len_small
/
2
),
axis
=
1
)
gt_end_bboxs
=
np
.
stack
(
(
gt_xmaxs
-
gt_len_small
/
2
,
gt_xmaxs
+
gt_len_small
/
2
),
axis
=
1
)
match_score_start
=
[]
for
jdx
in
range
(
len
(
anchor_xmin
)):
match_score_start
.
append
(
np
.
max
(
ioa_with_anchors
(
anchor_xmin
[
jdx
],
anchor_xmax
[
jdx
],
gt_start_bboxs
[:,
0
],
gt_start_bboxs
[:,
1
])))
match_score_end
=
[]
for
jdx
in
range
(
len
(
anchor_xmin
)):
match_score_end
.
append
(
np
.
max
(
ioa_with_anchors
(
anchor_xmin
[
jdx
],
anchor_xmax
[
jdx
],
gt_end_bboxs
[:,
0
],
gt_end_bboxs
[:,
1
])))
gt_start
=
np
.
array
(
match_score_start
)
gt_end
=
np
.
array
(
match_score_end
)
return
gt_iou_map
,
gt_start
,
gt_end
def
reader
():
batch_out
=
[]
iter_num
=
args
.
batch_size
*
100
match_map
,
anchor_xmin
,
anchor_xmax
=
get_match_map
(
args
.
tscale
)
for
video_idx
in
range
(
iter_num
):
video_feat
=
local_random
.
random_sample
(
[
args
.
feat_dim
,
args
.
tscale
]).
astype
(
'float32'
)
gt_iou_map
,
gt_start
,
gt_end
=
get_video_label
(
match_map
,
anchor_xmin
,
anchor_xmax
)
if
mode
==
'train'
or
mode
==
'valid'
:
batch_out
.
append
((
video_feat
,
gt_iou_map
,
gt_start
,
gt_end
))
elif
mode
==
'test'
:
batch_out
.
append
(
(
video_feat
,
gt_iou_map
,
gt_start
,
gt_end
,
video_idx
))
else
:
raise
NotImplementedError
(
'mode {} not implemented'
.
format
(
mode
))
if
len
(
batch_out
)
==
args
.
batch_size
:
yield
batch_out
batch_out
=
[]
return
reader
def
train_bmn
(
args
,
place
,
to_static
):
program_translator
.
enable
(
to_static
)
loss_data
=
[]
with
fluid
.
dygraph
.
guard
(
place
):
fluid
.
default_main_program
().
random_seed
=
SEED
fluid
.
default_startup_program
().
random_seed
=
SEED
global
local_random
local_random
=
np
.
random
.
RandomState
(
SEED
)
bmn
=
BMN
(
args
)
adam
=
optimizer
(
args
,
parameter_list
=
bmn
.
parameters
())
train_reader
=
fake_data_reader
(
args
,
'train'
)
for
epoch
in
range
(
args
.
epoch
):
for
batch_id
,
data
in
enumerate
(
train_reader
()):
video_feat
=
np
.
array
(
[
item
[
0
]
for
item
in
data
]).
astype
(
DATATYPE
)
gt_iou_map
=
np
.
array
(
[
item
[
1
]
for
item
in
data
]).
astype
(
DATATYPE
)
gt_start
=
np
.
array
([
item
[
2
]
for
item
in
data
]).
astype
(
DATATYPE
)
gt_end
=
np
.
array
([
item
[
3
]
for
item
in
data
]).
astype
(
DATATYPE
)
x_data
=
to_variable
(
video_feat
)
gt_iou_map
=
to_variable
(
gt_iou_map
)
gt_start
=
to_variable
(
gt_start
)
gt_end
=
to_variable
(
gt_end
)
gt_iou_map
.
stop_gradient
=
True
gt_start
.
stop_gradient
=
True
gt_end
.
stop_gradient
=
True
pred_bm
,
pred_start
,
pred_end
=
bmn
(
x_data
)
loss
,
tem_loss
,
pem_reg_loss
,
pem_cls_loss
=
bmn_loss_func
(
pred_bm
,
pred_start
,
pred_end
,
gt_iou_map
,
gt_start
,
gt_end
,
args
)
avg_loss
=
fluid
.
layers
.
mean
(
loss
)
avg_loss
.
backward
()
adam
.
minimize
(
avg_loss
)
bmn
.
clear_gradients
()
# log loss data to verify correctness
loss_data
+=
[
avg_loss
.
numpy
()[
0
],
tem_loss
.
numpy
()[
0
],
pem_reg_loss
.
numpy
()[
0
],
pem_cls_loss
.
numpy
()[
0
]
]
if
args
.
log_interval
>
0
and
(
batch_id
%
args
.
log_interval
==
0
):
print
(
'[TRAIN] Epoch {}, iter {} '
.
format
(
epoch
,
batch_id
)
+
'
\t
Loss = {},
\t
tem_loss = {},
\t
pem_reg_loss = {},
\t
pem_cls_loss = {}'
.
format
(
'%f'
%
avg_loss
.
numpy
()[
0
],
'%f'
%
tem_loss
.
numpy
()[
0
],
\
'%f'
%
pem_reg_loss
.
numpy
()[
0
],
'%f'
%
pem_cls_loss
.
numpy
()[
0
]))
# validation
if
batch_id
%
args
.
valid_interval
==
0
and
batch_id
>
0
:
bmn
.
eval
()
val_loss_data
=
val_bmn
(
bmn
,
args
)
bmn
.
train
()
loss_data
+=
val_loss_data
if
batch_id
==
args
.
train_batch_num
:
if
to_static
:
program_translator
.
save_inference_model
(
args
.
infer_dir
)
else
:
fluid
.
dygraph
.
save_dygraph
(
bmn
.
state_dict
(),
args
.
dy_param_path
)
break
return
np
.
array
(
loss_data
)
# Validation
def
val_bmn
(
model
,
args
):
val_reader
=
fake_data_reader
(
args
,
'valid'
)
loss_data
=
[]
for
batch_id
,
data
in
enumerate
(
val_reader
()):
video_feat
=
np
.
array
([
item
[
0
]
for
item
in
data
]).
astype
(
DATATYPE
)
gt_iou_map
=
np
.
array
([
item
[
1
]
for
item
in
data
]).
astype
(
DATATYPE
)
gt_start
=
np
.
array
([
item
[
2
]
for
item
in
data
]).
astype
(
DATATYPE
)
gt_end
=
np
.
array
([
item
[
3
]
for
item
in
data
]).
astype
(
DATATYPE
)
x_data
=
to_variable
(
video_feat
)
gt_iou_map
=
to_variable
(
gt_iou_map
)
gt_start
=
to_variable
(
gt_start
)
gt_end
=
to_variable
(
gt_end
)
gt_iou_map
.
stop_gradient
=
True
gt_start
.
stop_gradient
=
True
gt_end
.
stop_gradient
=
True
pred_bm
,
pred_start
,
pred_end
=
model
(
x_data
)
loss
,
tem_loss
,
pem_reg_loss
,
pem_cls_loss
=
bmn_loss_func
(
pred_bm
,
pred_start
,
pred_end
,
gt_iou_map
,
gt_start
,
gt_end
,
args
)
avg_loss
=
fluid
.
layers
.
mean
(
loss
)
loss_data
+=
[
avg_loss
.
numpy
()[
0
],
tem_loss
.
numpy
()[
0
],
pem_reg_loss
.
numpy
()[
0
],
pem_cls_loss
.
numpy
()[
0
]
]
print
(
'[VALID] iter {} '
.
format
(
batch_id
)
+
'
\t
Loss = {},
\t
tem_loss = {},
\t
pem_reg_loss = {},
\t
pem_cls_loss = {}'
.
format
(
'%f'
%
avg_loss
.
numpy
()[
0
],
'%f'
%
tem_loss
.
numpy
()[
0
],
\
'%f'
%
pem_reg_loss
.
numpy
()[
0
],
'%f'
%
pem_cls_loss
.
numpy
()[
0
]))
if
batch_id
==
args
.
valid_batch_num
:
break
return
loss_data
class
TestTrain
(
unittest
.
TestCase
):
def
setUp
(
self
):
self
.
args
=
Args
()
self
.
place
=
fluid
.
CPUPlace
()
if
not
fluid
.
is_compiled_with_cuda
()
\
else
fluid
.
CUDAPlace
(
0
)
def
test_train
(
self
):
static_res
=
train_bmn
(
self
.
args
,
self
.
place
,
to_static
=
True
)
dygraph_res
=
train_bmn
(
self
.
args
,
self
.
place
,
to_static
=
False
)
self
.
assertTrue
(
np
.
allclose
(
dygraph_res
,
static_res
),
"dygraph_res: {},
\n
static_res: {}"
.
format
(
dygraph_res
[
~
np
.
isclose
(
dygraph_res
,
static_res
)],
static_res
[
~
np
.
isclose
(
dygraph_res
,
static_res
)]))
# Prediction needs trained models, so put `test_predict` at last of `test_train`
self
.
verify_predict
()
def
verify_predict
(
self
):
args
=
Args
()
args
.
batch_size
=
1
# change batch_size
test_reader
=
fake_data_reader
(
args
,
'test'
)
for
batch_id
,
data
in
enumerate
(
test_reader
()):
video_data
=
np
.
array
([
item
[
0
]
for
item
in
data
]).
astype
(
DATATYPE
)
static_pred_res
=
self
.
predict_static
(
video_data
)
dygraph_pred_res
=
self
.
predict_dygraph
(
video_data
)
for
dy_res
,
st_res
in
zip
(
dygraph_pred_res
,
static_pred_res
):
self
.
assertTrue
(
np
.
allclose
(
st_res
,
dy_res
),
"dygraph_res: {},
\n
static_res: {}"
.
format
(
dy_res
[
~
np
.
isclose
(
st_res
,
dy_res
)],
st_res
[
~
np
.
isclose
(
st_res
,
dy_res
)]))
break
def
predict_dygraph
(
self
,
data
):
program_translator
.
enable
(
False
)
with
fluid
.
dygraph
.
guard
(
self
.
place
):
bmn
=
BMN
(
self
.
args
)
# load dygraph trained parameters
model_dict
,
_
=
fluid
.
load_dygraph
(
self
.
args
.
dy_param_path
+
".pdparams"
)
bmn
.
set_dict
(
model_dict
)
bmn
.
eval
()
x
=
to_variable
(
data
)
pred_res
=
bmn
(
x
)
pred_res
=
[
var
.
numpy
()
for
var
in
pred_res
]
return
pred_res
def
predict_static
(
self
,
data
):
exe
=
fluid
.
Executor
(
self
.
place
)
# load inference model
[
inference_program
,
feed_target_names
,
fetch_targets
]
=
fluid
.
io
.
load_inference_model
(
self
.
args
.
infer_dir
,
executor
=
exe
)
pred_res
=
exe
.
run
(
inference_program
,
feed
=
{
feed_target_names
[
0
]:
data
},
fetch_list
=
fetch_targets
)
return
pred_res
if
__name__
==
"__main__"
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录