Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
9b560740
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
体验新版 GitCode,发现更多精彩内容 >>
未验证
提交
9b560740
编写于
11月 17, 2017
作者:
T
Tao Luo
提交者:
GitHub
11月 17, 2017
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #5705 from tensor-tang/mkldnn_concat
enable mkldnn_concat layer
上级
ba868854
88feb517
变更
6
显示空白变更内容
内联
并排
Showing
6 changed file
with
393 addition
and
4 deletion
+393
-4
paddle/gserver/layers/MKLDNNConcatLayer.cpp
paddle/gserver/layers/MKLDNNConcatLayer.cpp
+202
-0
paddle/gserver/layers/MKLDNNConcatLayer.h
paddle/gserver/layers/MKLDNNConcatLayer.h
+129
-0
paddle/gserver/layers/MKLDNNLayer.cpp
paddle/gserver/layers/MKLDNNLayer.cpp
+5
-2
paddle/gserver/layers/MKLDNNLayer.h
paddle/gserver/layers/MKLDNNLayer.h
+4
-1
paddle/gserver/tests/test_MKLDNN.cpp
paddle/gserver/tests/test_MKLDNN.cpp
+41
-0
python/paddle/trainer/config_parser.py
python/paddle/trainer/config_parser.py
+12
-1
未找到文件。
paddle/gserver/layers/MKLDNNConcatLayer.cpp
0 → 100644
浏览文件 @
9b560740
/* Copyright (c) 2017 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "MKLDNNConcatLayer.h"
using
namespace
mkldnn
;
// NOLINT
typedef
memory
::
format
format
;
namespace
paddle
{
REGISTER_LAYER
(
mkldnn_concat
,
MKLDNNConcatLayer
);
bool
MKLDNNConcatLayer
::
init
(
const
LayerMap
&
layerMap
,
const
ParameterMap
&
parameterMap
)
{
if
(
!
MKLDNNLayer
::
init
(
layerMap
,
parameterMap
))
{
return
false
;
}
CHECK_GT
(
inputLayers_
.
size
(),
1UL
);
CHECK
(
!
biasParameter_
);
return
true
;
}
void
MKLDNNConcatLayer
::
reshape
(
int
&
bs
,
int
&
ic
,
int
&
ih
,
int
&
iw
,
int
oc
,
int
&
oh
,
int
&
ow
)
{
reshapeInput
(
bs
,
ih
,
iw
);
ic
=
inputLayers_
[
0
]
->
getSize
()
/
ih
/
iw
;
CHECK_EQ
((
size_t
)
ic
*
ih
*
iw
,
inputLayers_
[
0
]
->
getSize
());
CHECK_EQ
(
inputElemenCnt_
,
(
size_t
)
bs
*
ic
*
ih
*
iw
);
CHECK_GT
(
inputLayers_
.
size
(),
1UL
);
channels_
.
resize
(
inputLayers_
.
size
());
channels_
[
0
]
=
ic
;
// need change the output channel, so use oc_ instead
// TODO(TJ): change API, use &oc
oc_
=
ic
;
for
(
size_t
i
=
1
;
i
<
inputLayers_
.
size
();
i
++
)
{
int
batchsize
,
height
,
witdh
;
reshapeInput
(
batchsize
,
height
,
witdh
,
i
);
CHECK_EQ
(
bs
,
batchsize
);
CHECK_EQ
(
ih
,
height
);
CHECK_EQ
(
iw
,
witdh
);
channels_
[
i
]
=
inputLayers_
[
i
]
->
getSize
()
/
height
/
witdh
;
CHECK_EQ
((
size_t
)
channels_
[
i
]
*
height
*
witdh
,
inputLayers_
[
i
]
->
getSize
());
oc_
+=
channels_
[
i
];
}
oh
=
ih
;
ow
=
iw
;
reshapeOutput
(
oh
,
ow
);
resizeOutput
(
bs
,
oc_
*
oh
*
ow
);
}
void
MKLDNNConcatLayer
::
resetFwd
(
std
::
vector
<
primitive
>&
pipeline
,
MKLDNNMatrixPtr
&
in
,
MKLDNNMatrixPtr
&
wgt
,
MKLDNNMatrixPtr
&
bias
,
MKLDNNMatrixPtr
&
out
)
{
resetFwdBuffers
(
inVals_
,
out
);
in
=
inVals_
[
0
];
std
::
shared_ptr
<
concat
::
primitive_desc
>
fwdPD
;
resetFwdPD
(
fwdPD
,
inVals_
,
out
);
resetFwdPipeline
(
pipeline
,
fwdPD
,
inVals_
,
out
);
}
void
MKLDNNConcatLayer
::
resetBwd
(
std
::
vector
<
primitive
>&
pipeline
,
MKLDNNMatrixPtr
&
in
,
MKLDNNMatrixPtr
&
wgt
,
MKLDNNMatrixPtr
&
bias
,
MKLDNNMatrixPtr
&
out
)
{
resetBwdBuffers
(
inGrads_
,
out
);
in
=
inGrads_
[
0
];
resetBwdPipeline
(
pipeline
,
bwds_
,
inGrads_
,
out
);
}
void
MKLDNNConcatLayer
::
resetFwdBuffers
(
std
::
vector
<
MKLDNNMatrixPtr
>&
inputs
,
MKLDNNMatrixPtr
&
out
)
{
inputs
.
resize
(
inputLayers_
.
size
());
bool
has8c
=
false
,
has16c
=
false
,
hasnc
=
false
;
for
(
size_t
i
=
0
;
i
<
inputs
.
size
();
i
++
)
{
// resetInValue will use ic_ so temporary change as current input's channel
// TODO(TJ): change ic_ as vector then can remove channels_
ic_
=
channels_
[
i
];
resetInValue
(
inputs
[
i
],
nullptr
,
i
);
CHECK
(
inputs
[
i
]);
auto
dm
=
inputs
[
i
]
->
getDims
();
// inputs format can be different, but ndims must equal
CHECK
(
i
==
0
||
dm
.
size
()
==
inputs
[
0
]
->
getDims
().
size
());
CHECK_EQ
(
bs_
,
dm
[
0
]);
CHECK_EQ
(
channels_
[
i
],
dm
[
1
]);
if
(
dm
.
size
()
>
2
)
{
CHECK_EQ
(
ih_
,
dm
[
2
]);
CHECK_EQ
(
iw_
,
dm
[
3
]);
}
if
(
inputs
[
i
]
->
getFormat
()
==
format
::
nc
)
{
hasnc
=
true
;
}
if
(
inputs
[
i
]
->
getFormat
()
==
format
::
nChw8c
)
{
has8c
=
true
;
}
if
(
inputs
[
i
]
->
getFormat
()
==
format
::
nChw16c
)
{
has16c
=
true
;
}
}
// change back, ic_ always save the input 0 size
ic_
=
channels_
[
0
];
format
outFmt
;
if
(
has16c
&&
oc_
%
16
==
0
)
{
outFmt
=
format
::
nChw16c
;
}
else
if
(
has8c
&&
oc_
%
8
==
0
)
{
outFmt
=
format
::
nChw8c
;
}
else
if
(
hasnc
)
{
CHECK
(
oh_
==
1
&&
ow_
==
1
);
outFmt
=
format
::
nc
;
}
else
{
outFmt
=
format
::
nchw
;
}
memory
::
dims
outDims
=
hasnc
?
memory
::
dims
{
bs_
,
oc_
}
:
memory
::
dims
{
bs_
,
oc_
,
oh_
,
ow_
};
auto
outPD
=
MKLDNNMatrix
::
createPrimitiveDesc
(
outDims
,
outFmt
,
engine_
);
resetOutValue
(
out
,
outPD
);
}
void
MKLDNNConcatLayer
::
resetFwdPD
(
std
::
shared_ptr
<
concat
::
primitive_desc
>&
pd
,
std
::
vector
<
MKLDNNMatrixPtr
>&
inputs
,
MKLDNNMatrixPtr
out
)
{
std
::
vector
<
memory
::
primitive_desc
>
srcPDs
;
for
(
size_t
i
=
0
;
i
<
inputs
.
size
();
i
++
)
{
srcPDs
.
push_back
(
inputs
[
i
]
->
getPrimitiveDesc
());
}
CHECK
(
out
);
pd
.
reset
(
new
concat
::
primitive_desc
(
out
->
getMemoryDesc
(),
axis_
,
srcPDs
));
CHECK_PRIMITIVE_DESC_EQ
(
out
,
pd
->
dst_primitive_desc
());
}
void
MKLDNNConcatLayer
::
resetFwdPipeline
(
std
::
vector
<
primitive
>&
pipeline
,
std
::
shared_ptr
<
concat
::
primitive_desc
>&
pd
,
std
::
vector
<
MKLDNNMatrixPtr
>&
inputs
,
MKLDNNMatrixPtr
&
out
)
{
std
::
vector
<
primitive
::
at
>
srcs
;
for
(
size_t
i
=
0
;
i
<
inputs
.
size
();
i
++
)
{
srcs
.
push_back
(
*
(
inputs
[
i
]));
}
fwd_
.
reset
(
new
concat
(
*
pd
,
srcs
,
*
out
));
pipeline
.
push_back
(
*
fwd_
);
}
void
MKLDNNConcatLayer
::
resetBwdBuffers
(
std
::
vector
<
MKLDNNMatrixPtr
>&
inputs
,
MKLDNNMatrixPtr
&
out
)
{
CHECK
(
outVal_
);
resetOutGrad
(
out
,
outVal_
->
getPrimitiveDesc
());
CHECK
(
out
);
inputs
.
resize
(
inputLayers_
.
size
());
for
(
size_t
i
=
0
;
i
<
inputs
.
size
();
i
++
)
{
CHECK
(
inVals_
[
i
]);
// resetInGrad will use inVal_
// TODO(TJ): change move inVals_ to MKLDNNLayer ans remove inVal_
inVal_
=
inVals_
[
i
];
resetInGrad
(
inputs
[
i
],
inVals_
[
i
]
->
getPrimitiveDesc
(),
i
);
CHECK_PRIMITIVE_DESC_EQ
(
inputs
[
i
],
inVals_
[
i
]
->
getPrimitiveDesc
());
}
// change back, inVal_ always save the input 0
inVal_
=
inVals_
[
0
];
}
void
MKLDNNConcatLayer
::
resetBwdPipeline
(
std
::
vector
<
mkldnn
::
primitive
>&
pipeline
,
std
::
vector
<
std
::
shared_ptr
<
mkldnn
::
primitive
>>&
prims
,
std
::
vector
<
MKLDNNMatrixPtr
>&
inputs
,
MKLDNNMatrixPtr
&
out
)
{
// reset the backward primitives
memory
::
dims
offsets
=
{
0
,
0
,
0
,
0
};
prims
.
resize
(
inputs
.
size
());
CHECK_EQ
(
inputs
.
size
(),
channels_
.
size
());
for
(
size_t
i
=
0
;
i
<
inputs
.
size
();
i
++
)
{
auto
viewPD
=
view
::
primitive_desc
(
out
->
getPrimitiveDesc
(),
inputs
[
i
]
->
getDims
(),
offsets
);
auto
bwdPD
=
reorder
::
primitive_desc
(
viewPD
.
dst_primitive_desc
(),
inputs
[
i
]
->
getPrimitiveDesc
());
prims
[
i
].
reset
(
new
reorder
(
bwdPD
,
*
out
,
*
(
inputs
[
i
])));
offsets
[
axis_
]
+=
channels_
[
i
];
// push to pipeline
pipeline
.
push_back
(
*
prims
[
i
]);
}
}
}
// namespace paddle
paddle/gserver/layers/MKLDNNConcatLayer.h
0 → 100644
浏览文件 @
9b560740
/* Copyright (c) 2017 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "MKLDNNLayer.h"
#include "mkldnn.hpp"
namespace
paddle
{
/**
* @brief A subclass of MKLDNNLayer Concatenate layer.
*
* The config file api is mkldnn_concat
*/
class
MKLDNNConcatLayer
:
public
MKLDNNLayer
{
protected:
std
::
vector
<
MKLDNNMatrixPtr
>
inVals_
;
std
::
vector
<
MKLDNNMatrixPtr
>
inGrads_
;
std
::
vector
<
std
::
shared_ptr
<
mkldnn
::
primitive
>>
bwds_
;
// input channel numbers
std
::
vector
<
int
>
channels_
;
// concat_dimension in MKLDNN
// if axis_ == 0, concat batchsize
// if axis_ == 1, concat channel (default)
int
axis_
;
public:
explicit
MKLDNNConcatLayer
(
const
LayerConfig
&
config
)
:
MKLDNNLayer
(
config
),
axis_
(
1
)
{}
~
MKLDNNConcatLayer
()
{}
bool
init
(
const
LayerMap
&
layerMap
,
const
ParameterMap
&
parameterMap
)
override
;
void
reshape
(
int
&
bs
,
int
&
ic
,
int
&
ih
,
int
&
iw
,
int
oc
,
int
&
oh
,
int
&
ow
)
override
;
void
resetFwd
(
std
::
vector
<
mkldnn
::
primitive
>&
pipeline
,
MKLDNNMatrixPtr
&
in
,
MKLDNNMatrixPtr
&
wgt
,
MKLDNNMatrixPtr
&
bias
,
MKLDNNMatrixPtr
&
out
)
override
;
void
resetBwd
(
std
::
vector
<
mkldnn
::
primitive
>&
pipeline
,
MKLDNNMatrixPtr
&
in
,
MKLDNNMatrixPtr
&
wgt
,
MKLDNNMatrixPtr
&
bias
,
MKLDNNMatrixPtr
&
out
)
override
;
void
printSizeInfo
()
override
{
CHECK_EQ
(
channels_
.
size
(),
inputLayers_
.
size
());
for
(
size_t
i
=
0
;
i
<
channels_
.
size
();
++
i
)
{
VLOG
(
MKLDNN_SIZES
)
<<
"Input "
<<
i
<<
", "
<<
inputLayers_
[
i
]
->
getName
()
<<
": "
<<
bs_
<<
", "
<<
channels_
[
i
]
<<
", "
<<
ih_
<<
", "
<<
iw_
;
}
VLOG
(
MKLDNN_SIZES
)
<<
"Output: "
<<
bs_
<<
", "
<<
oc_
<<
", "
<<
oh_
<<
", "
<<
ow_
;
}
void
printValueFormat
()
override
{
for
(
size_t
i
=
0
;
i
<
inVals_
.
size
();
++
i
)
{
VLOG
(
MKLDNN_FMTS
)
<<
"Input "
<<
i
<<
", "
<<
inputLayers_
[
i
]
->
getName
()
<<
": "
<<
inVals_
[
i
]
->
getFormat
()
<<
" >>>"
;
}
if
(
outVal_
)
{
VLOG
(
MKLDNN_FMTS
)
<<
outVal_
->
getFormat
()
<<
" >>> "
;
}
if
(
extOutVal_
)
{
VLOG
(
MKLDNN_FMTS
)
<<
extOutVal_
->
getFormat
();
}
}
void
printGradFormat
()
override
{
if
(
extOutGrad_
)
{
VLOG
(
MKLDNN_FMTS
)
<<
extOutGrad_
->
getFormat
();
}
if
(
outGrad_
)
{
VLOG
(
MKLDNN_FMTS
)
<<
outGrad_
->
getFormat
()
<<
" <<< "
;
}
for
(
size_t
i
=
0
;
i
<
inGrads_
.
size
();
++
i
)
{
VLOG
(
MKLDNN_FMTS
)
<<
"Input "
<<
i
<<
", "
<<
inputLayers_
[
i
]
->
getName
()
<<
": "
<<
inGrads_
[
i
]
->
getFormat
()
<<
"<<<"
;
}
}
protected:
/**
* Forward functions: reset buffers(inputs, output, bias),
* reset primitive descriptor,
* reset pipeline.
*/
void
resetFwdBuffers
(
std
::
vector
<
MKLDNNMatrixPtr
>&
inputs
,
MKLDNNMatrixPtr
&
out
);
void
resetFwdPD
(
std
::
shared_ptr
<
mkldnn
::
concat
::
primitive_desc
>&
pd
,
std
::
vector
<
MKLDNNMatrixPtr
>&
inputs
,
MKLDNNMatrixPtr
out
);
void
resetFwdPipeline
(
std
::
vector
<
mkldnn
::
primitive
>&
pipeline
,
std
::
shared_ptr
<
mkldnn
::
concat
::
primitive_desc
>&
pd
,
std
::
vector
<
MKLDNNMatrixPtr
>&
inputs
,
MKLDNNMatrixPtr
&
out
);
/**
* Backward functions: reset buffers(inputs, output, bias)
* reset primitives and pipeline
*/
void
resetBwdBuffers
(
std
::
vector
<
MKLDNNMatrixPtr
>&
inputs
,
MKLDNNMatrixPtr
&
out
);
void
resetBwdPipeline
(
std
::
vector
<
mkldnn
::
primitive
>&
pipeline
,
std
::
vector
<
std
::
shared_ptr
<
mkldnn
::
primitive
>>&
prims
,
std
::
vector
<
MKLDNNMatrixPtr
>&
inputs
,
MKLDNNMatrixPtr
&
out
);
};
}
// namespace paddle
paddle/gserver/layers/MKLDNNLayer.cpp
浏览文件 @
9b560740
...
...
@@ -138,8 +138,11 @@ void MKLDNNLayer::backward(const UpdateCallback& callback) {
}
}
void
MKLDNNLayer
::
reshapeInput
(
int
&
batchsize
,
int
&
height
,
int
&
width
)
{
const
Argument
&
input
=
inputLayers_
[
0
]
->
getOutput
();
void
MKLDNNLayer
::
reshapeInput
(
int
&
batchsize
,
int
&
height
,
int
&
width
,
size_t
inputIdx
)
{
const
Argument
&
input
=
inputLayers_
[
inputIdx
]
->
getOutput
();
batchsize
=
input
.
getBatchSize
();
int
h
=
input
.
getFrameHeight
();
int
w
=
input
.
getFrameWidth
();
...
...
paddle/gserver/layers/MKLDNNLayer.h
浏览文件 @
9b560740
...
...
@@ -178,7 +178,10 @@ protected:
/**
* reshape the input image sizes and input batchsize
*/
void
reshapeInput
(
int
&
batchsize
,
int
&
height
,
int
&
width
);
void
reshapeInput
(
int
&
batchsize
,
int
&
height
,
int
&
width
,
size_t
inputIdx
=
0
);
/**
* reshape output image sizes
...
...
paddle/gserver/tests/test_MKLDNN.cpp
浏览文件 @
9b560740
...
...
@@ -313,6 +313,47 @@ TEST(MKLDNNLayer, AddtoLayer) {
testAddtoLayer
({
4
,
12
,
1
,
1
},
3
);
}
static
void
getMKLDNNConcatConfig
(
TestConfig
&
cfg
,
const
std
::
vector
<
testImageDesc
>&
inputs
)
{
CHECK_GE
(
inputs
.
size
(),
2
)
<<
"at least two inputs"
;
int
oc
=
inputs
[
0
].
ic
;
for
(
size_t
i
=
1
;
i
<
inputs
.
size
();
++
i
)
{
CHECK_EQ
(
inputs
[
i
].
bs
,
inputs
[
0
].
bs
);
CHECK_EQ
(
inputs
[
i
].
ih
,
inputs
[
0
].
ih
);
CHECK_EQ
(
inputs
[
i
].
iw
,
inputs
[
0
].
iw
);
oc
+=
inputs
[
i
].
ic
;
}
cfg
.
biasSize
=
0
;
cfg
.
layerConfig
.
set_type
(
"mkldnn_concat"
);
cfg
.
layerConfig
.
set_size
(
oc
*
inputs
[
0
].
ih
*
inputs
[
0
].
iw
);
cfg
.
layerConfig
.
set_active_type
(
"relu"
);
for
(
size_t
i
=
0
;
i
<
inputs
.
size
();
++
i
)
{
std
::
stringstream
ss
;
ss
<<
"layer_"
<<
i
;
cfg
.
inputDefs
.
push_back
(
{
INPUT_DATA
,
ss
.
str
(),
(
size_t
)(
inputs
[
i
].
ic
)
*
inputs
[
i
].
ih
*
inputs
[
i
].
iw
,
0
});
LayerInputConfig
*
input
=
cfg
.
layerConfig
.
add_inputs
();
ImageConfig
*
img_conf
=
input
->
mutable_image_conf
();
img_conf
->
set_channels
(
inputs
[
i
].
ic
);
img_conf
->
set_img_size_y
(
inputs
[
i
].
ih
);
img_conf
->
set_img_size
(
inputs
[
i
].
iw
);
}
}
void
testConcatLayer
(
const
std
::
vector
<
testImageDesc
>&
inputs
)
{
TestConfig
dnnConfig
;
getMKLDNNConcatConfig
(
dnnConfig
,
inputs
);
RUN_MKLDNN_TEST_LAYER
(
dnnConfig
,
"concat"
,
inputs
[
0
])
}
TEST
(
MKLDNNLayer
,
ConcatLayer
)
{
testConcatLayer
({{
64
,
128
,
1
,
1
},
{
64
,
32
,
1
,
1
},
{
64
,
64
,
1
,
1
}});
testConcatLayer
({{
32
,
100
,
8
,
8
},
{
32
,
10
,
8
,
8
}});
}
void
testActivation
(
std
::
string
actType
,
const
testImageDesc
&
pm
)
{
// TODO(TJ): remove me when paddle support elu activation
if
(
actType
==
"mkldnn_elu"
)
{
...
...
python/paddle/trainer/config_parser.py
浏览文件 @
9b560740
...
...
@@ -3506,11 +3506,17 @@ def ExpressionLayer(name, inputs, **xargs):
@
config_layer
(
'concat'
)
class
ConcatenateLayer
(
LayerBase
):
layer_type
=
'concat'
def
__init__
(
self
,
name
,
inputs
,
bias
=
False
,
**
xargs
):
config_assert
(
inputs
,
'inputs cannot be empty'
)
config_assert
(
not
bias
,
'ConcatenateLayer cannot support bias.'
)
use_mkldnn
=
bool
(
int
(
g_command_config_args
.
get
(
"use_mkldnn"
,
0
)))
if
self
.
layer_type
==
"mkldnn_concat"
:
config_assert
(
use_mkldnn
,
"mkldnn_concat only support MKLDNN"
)
self
.
layer_type
=
'mkldnn_concat'
if
use_mkldnn
else
'concat'
super
(
ConcatenateLayer
,
self
).
__init__
(
name
,
'concat'
,
0
,
inputs
=
inputs
,
**
xargs
)
name
,
self
.
layer_type
,
0
,
inputs
=
inputs
,
**
xargs
)
size
=
0
for
input_index
in
xrange
(
len
(
self
.
inputs
)):
assert
self
.
get_input_layer
(
0
).
height
==
self
.
get_input_layer
(
...
...
@@ -3530,6 +3536,11 @@ class ConcatenateLayer(LayerBase):
self
.
set_layer_size
(
size
)
@
config_layer
(
'mkldnn_concat'
)
class
MKLDNNConcatLayer
(
ConcatenateLayer
):
layer_type
=
'mkldnn_concat'
# like concat layer, but each input layer was processed by a Projection.
@
config_layer
(
'concat2'
)
class
ConcatenateLayer2
(
LayerBase
):
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录