Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
9ad0e37e
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
9ad0e37e
编写于
11月 01, 2022
作者:
K
Kaipeng Deng
提交者:
GitHub
11月 01, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
fix memory copy in prepare_data of FusedMultiTransformer pass (#47306)
* fix memory copy in prepare_data. test=develop
上级
8a1124b1
变更
7
展开全部
显示空白变更内容
内联
并排
Showing
7 changed file
with
154 addition
and
580 deletion
+154
-580
paddle/fluid/framework/ir/fused_multi_transformer_decoder_pass.cc
...luid/framework/ir/fused_multi_transformer_decoder_pass.cc
+51
-227
paddle/fluid/framework/ir/fused_multi_transformer_decoder_pass.h
...fluid/framework/ir/fused_multi_transformer_decoder_pass.h
+0
-18
paddle/fluid/framework/ir/fused_multi_transformer_decoder_pass_tester.cc
...amework/ir/fused_multi_transformer_decoder_pass_tester.cc
+21
-45
paddle/fluid/framework/ir/fused_multi_transformer_encoder_pass.cc
...luid/framework/ir/fused_multi_transformer_encoder_pass.cc
+60
-227
paddle/fluid/framework/ir/fused_multi_transformer_encoder_pass.h
...fluid/framework/ir/fused_multi_transformer_encoder_pass.h
+0
-18
paddle/fluid/framework/ir/fused_multi_transformer_encoder_pass_tester.cc
...amework/ir/fused_multi_transformer_encoder_pass_tester.cc
+21
-45
paddle/fluid/framework/ir/pass.cc
paddle/fluid/framework/ir/pass.cc
+1
-0
未找到文件。
paddle/fluid/framework/ir/fused_multi_transformer_decoder_pass.cc
浏览文件 @
9ad0e37e
此差异已折叠。
点击以展开。
paddle/fluid/framework/ir/fused_multi_transformer_decoder_pass.h
浏览文件 @
9ad0e37e
...
...
@@ -88,8 +88,6 @@ struct FusedMultiTransformerDecoderPattern : public PatternBase {
PATTERN_DECL_NODE
(
eltadd_qk_out
);
PATTERN_DECL_NODE
(
softmax_qk
);
PATTERN_DECL_NODE
(
softmax_qk_out
);
PATTERN_DECL_NODE
(
dropout_qk
);
PATTERN_DECL_NODE
(
dropout_qk_out
);
// QK, V matmul
PATTERN_DECL_NODE
(
matmul_qkv
);
...
...
@@ -106,8 +104,6 @@ struct FusedMultiTransformerDecoderPattern : public PatternBase {
PATTERN_DECL_NODE
(
eltadd_linear
);
PATTERN_DECL_NODE
(
eltadd_linear_b
);
PATTERN_DECL_NODE
(
eltadd_linear_out
);
PATTERN_DECL_NODE
(
dropout_linear
);
PATTERN_DECL_NODE
(
dropout_linear_out
);
// output elementwise_add
PATTERN_DECL_NODE
(
eltadd_out
)
...
...
@@ -137,8 +133,6 @@ struct FusedMultiTransformerDecoderPattern : public PatternBase {
PATTERN_DECL_NODE
(
ffn_eltadd1
);
// ELEMENTWISE_ADD
PATTERN_DECL_NODE
(
ffn_eltadd1_b
);
// ELEMENTWISE_ADD
PATTERN_DECL_NODE
(
ffn_eltadd1_out
);
PATTERN_DECL_NODE
(
ffn_dropout
);
PATTERN_DECL_NODE
(
ffn_dropout_out
);
// output elementwise_add
PATTERN_DECL_NODE
(
ffn_eltadd_out
)
...
...
@@ -193,8 +187,6 @@ struct FusedMultiTransformerDecoderFuseQKVPattern : public PatternBase {
PATTERN_DECL_NODE
(
eltadd_qk_out
);
PATTERN_DECL_NODE
(
softmax_qk
);
PATTERN_DECL_NODE
(
softmax_qk_out
);
PATTERN_DECL_NODE
(
dropout_qk
);
PATTERN_DECL_NODE
(
dropout_qk_out
);
// QK, V matmul
PATTERN_DECL_NODE
(
matmul_qkv
);
...
...
@@ -211,8 +203,6 @@ struct FusedMultiTransformerDecoderFuseQKVPattern : public PatternBase {
PATTERN_DECL_NODE
(
eltadd_linear
);
PATTERN_DECL_NODE
(
eltadd_linear_b
);
PATTERN_DECL_NODE
(
eltadd_linear_out
);
PATTERN_DECL_NODE
(
dropout_linear
);
PATTERN_DECL_NODE
(
dropout_linear_out
);
// output elementwise_add
PATTERN_DECL_NODE
(
eltadd_out
)
...
...
@@ -239,8 +229,6 @@ struct FusedMultiTransformerDecoderFuseQKVPattern : public PatternBase {
PATTERN_DECL_NODE
(
ffn_eltadd1
);
// ELEMENTWISE_ADD
PATTERN_DECL_NODE
(
ffn_eltadd1_b
);
// ELEMENTWISE_ADD
PATTERN_DECL_NODE
(
ffn_eltadd1_out
);
PATTERN_DECL_NODE
(
ffn_dropout
);
PATTERN_DECL_NODE
(
ffn_dropout_out
);
// output elementwise_add
PATTERN_DECL_NODE
(
ffn_eltadd_out
)
...
...
@@ -299,8 +287,6 @@ struct MultiDevicesFusedMultiTransformerDecoderFuseQKVPattern
PATTERN_DECL_NODE
(
eltadd_qk_out
);
PATTERN_DECL_NODE
(
softmax_qk
);
PATTERN_DECL_NODE
(
softmax_qk_out
);
PATTERN_DECL_NODE
(
dropout_qk
);
PATTERN_DECL_NODE
(
dropout_qk_out
);
// QK, V matmul
PATTERN_DECL_NODE
(
matmul_qkv
);
...
...
@@ -319,8 +305,6 @@ struct MultiDevicesFusedMultiTransformerDecoderFuseQKVPattern
PATTERN_DECL_NODE
(
eltadd_linear
);
PATTERN_DECL_NODE
(
eltadd_linear_b
);
PATTERN_DECL_NODE
(
eltadd_linear_out
);
PATTERN_DECL_NODE
(
dropout_linear
);
PATTERN_DECL_NODE
(
dropout_linear_out
);
// output elementwise_add
PATTERN_DECL_NODE
(
eltadd_out
)
...
...
@@ -351,8 +335,6 @@ struct MultiDevicesFusedMultiTransformerDecoderFuseQKVPattern
PATTERN_DECL_NODE
(
ffn_eltadd1
);
// ELEMENTWISE_ADD
PATTERN_DECL_NODE
(
ffn_eltadd1_b
);
// ELEMENTWISE_ADD
PATTERN_DECL_NODE
(
ffn_eltadd1_out
);
PATTERN_DECL_NODE
(
ffn_dropout
);
PATTERN_DECL_NODE
(
ffn_dropout_out
);
// output elementwise_add
PATTERN_DECL_NODE
(
ffn_eltadd_out
)
...
...
paddle/fluid/framework/ir/fused_multi_transformer_decoder_pass_tester.cc
浏览文件 @
9ad0e37e
...
...
@@ -85,13 +85,11 @@ TEST(FusedMultiTransformerDecoderPass, basic) {
// (transpose_0, transpose_1) matmul -> matmul_qk
// (matmul_qk, bias_qk) elementwise_add -> eltadd_qk
// (eltadd_qk) softmax -> softmax_qk
// (softmax_qk) dropout -> dropout_qk
// (dropout_qk, transpose_2) matmul_v2 -> matmul_qkv
// (softmax_qk, transpose_2) matmul_v2 -> matmul_qkv
// (matmul_qkv) transpose -> transpose_qkv
// (transpose_qkv) reshape -> reshape_qkv
// (reshape_qkv) matmul_v2 -> matmul_linear
// (matmul_linear) elementwise_add -> eltadd_linear
// (eltadd_linear) dropout -> dropout_linear
// (eltadd_out) elementwise_add -> attention_out
//
// (attention_out, scale, bias) layer_norm -> ffn_layer_norm_out
...
...
@@ -100,8 +98,7 @@ TEST(FusedMultiTransformerDecoderPass, basic) {
// (ffn_eltadd0) gelu -> ffn_gelu
// (ffn_gelu) matmul_v2 -> ffn_matmul1
// (ffn_matmul1, ffn_bias1) elementwise_add -> ffn_eltadd1
// (ffn_eltadd1) dropout -> ffn_dropout
// (attention_out, ffn_dropout) elementwise_add -> ffn_output
// (attention_out, ffn_eltadd1) elementwise_add -> ffn_output
Layers
layers
;
// MHA: pre LayerNorm
...
...
@@ -154,10 +151,9 @@ TEST(FusedMultiTransformerDecoderPass, basic) {
auto
*
bqk
=
layers
.
data
(
"biasqk"
,
{
1
,
12
,
128
,
128
},
true
);
auto
*
elementwise_qk
=
layers
.
elementwise_add
(
matmul_qk
,
bqk
);
auto
*
softmax_qk
=
layers
.
softmax
(
elementwise_qk
,
-
1
);
auto
*
dropout_qk
=
layers
.
dropout
(
softmax_qk
,
0.1
,
"upscale_in_train"
);
// MHA: QKV matmul
auto
*
matmul_qkv
=
layers
.
matmul_v2
(
dropout
_qk
,
concat_v
);
auto
*
matmul_qkv
=
layers
.
matmul_v2
(
softmax
_qk
,
concat_v
);
auto
*
transpose_qkv
=
layers
.
transpose2
(
matmul_qkv
,
{
0
,
2
,
1
,
3
},
true
);
auto
*
reshape_qkv_out
=
layers
.
reshape2
(
transpose_qkv
,
{
1
,
128
,
1024
},
true
);
...
...
@@ -170,9 +166,7 @@ TEST(FusedMultiTransformerDecoderPass, basic) {
auto
*
linear_eltadd_out
=
layers
.
elementwise_add
(
linear_matmut_out
,
bias_l
,
nullptr
,
2
);
auto
*
dropout_qkv
=
layers
.
dropout
(
linear_eltadd_out
,
0.1
,
"upscale_in_train"
);
auto
*
attention_out
=
layers
.
elementwise_add
(
x
,
dropout_qkv
);
auto
*
attention_out
=
layers
.
elementwise_add
(
x
,
linear_eltadd_out
);
// FFN: pre LayerNorm
auto
*
ffn_ln_scale
=
layers
.
data
(
"ffn_ln_scale"
,
{
1024
},
true
);
...
...
@@ -195,9 +189,7 @@ TEST(FusedMultiTransformerDecoderPass, basic) {
auto
*
ffn_eltadd1_out
=
layers
.
elementwise_add
(
ffn_matmul1_out
,
ffn_bias1
,
nullptr
,
2
);
// FFN: dropout -> elementwise_add
auto
*
ffn_dropout
=
layers
.
dropout
(
ffn_eltadd1_out
,
0.1
,
"upscale_in_train"
);
layers
.
elementwise_add
(
attention_out
,
ffn_dropout
);
layers
.
elementwise_add
(
attention_out
,
ffn_eltadd1_out
);
std
::
unique_ptr
<
ir
::
Graph
>
graph
(
new
ir
::
Graph
(
layers
.
main_program
()));
graph
->
Set
(
"__param_scope__"
,
CreateParamScope
());
...
...
@@ -215,12 +207,12 @@ TEST(FusedMultiTransformerDecoderPass, basic) {
int
num_fused_nodes_after
=
GetNumOpNodes
(
graph
,
"fused_multi_transformer"
);
PADDLE_ENFORCE_EQ
(
num_nodes_before
,
num_nodes_after
+
72
,
num_nodes_after
+
60
,
platform
::
errors
::
InvalidArgument
(
"After the fused_multi_transformer_decoder_pass, The "
"node num in graph "
"should be %d, but the result is %d"
,
num_nodes_before
-
72
,
num_nodes_before
-
60
,
num_nodes_after
));
PADDLE_ENFORCE_EQ
(
num_fused_nodes_after
,
1
,
...
...
@@ -253,13 +245,11 @@ TEST(FusedMultiTransformerDecoderFuseQKVPass, basic) {
// (split_q, split_k) matmul -> matmul_qk
// (matmul_qk, bias_qk) elementwise_add -> eltadd_qk
// (eltadd_qk) softmax -> softmax_qk
// (softmax_qk) dropout -> dropout_qk
// (dropout_qk, transpose_2) matmul_v2 -> matmul_qkv
// (softmax_qk, transpose_2) matmul_v2 -> matmul_qkv
// (matmul_qkv) transpose -> transpose_qkv
// (transpose_qkv) reshape -> reshape_qkv
// (reshape_qkv) matmul_v2 -> matmul_linear
// (matmul_linear) elementwise_add -> eltadd_linear
// (eltadd_linear) dropout -> dropout_linear
// (eltadd_out) elementwise_add -> attention_out
//
// (attention_out, scale, bias) layer_norm -> ffn_layer_norm_out
...
...
@@ -268,8 +258,7 @@ TEST(FusedMultiTransformerDecoderFuseQKVPass, basic) {
// (ffn_eltadd0) gelu -> ffn_gelu
// (ffn_gelu) matmul_v2 -> ffn_matmul1
// (ffn_matmul1, ffn_bias1) elementwise_add -> ffn_eltadd1
// (ffn_eltadd1) dropout -> ffn_dropout
// (attention_out, ffn_dropout) elementwise_add -> ffn_output
// (attention_out, ffn_eltadd1) elementwise_add -> ffn_output
//
// (transpose_1, transpose_2) while -> decoder block
...
...
@@ -313,10 +302,9 @@ TEST(FusedMultiTransformerDecoderFuseQKVPass, basic) {
auto
*
bqk
=
layers
.
data
(
"biasqk"
,
{
1
,
12
,
128
,
128
},
true
);
auto
*
elementwise_qk
=
layers
.
elementwise_add
(
matmul_qk
,
bqk
);
auto
*
softmax_qk
=
layers
.
softmax
(
elementwise_qk
,
-
1
);
auto
*
dropout_qk
=
layers
.
dropout
(
softmax_qk
,
0.1
,
"upscale_in_train"
);
// MHA: QKV matmul
auto
*
matmul_qkv
=
layers
.
matmul_v2
(
dropout
_qk
,
concat_v
);
auto
*
matmul_qkv
=
layers
.
matmul_v2
(
softmax
_qk
,
concat_v
);
auto
*
transpose_qkv
=
layers
.
transpose2
(
matmul_qkv
,
{
0
,
2
,
1
,
3
},
true
);
auto
*
reshape_qkv_out
=
layers
.
reshape2
(
transpose_qkv
,
{
1
,
128
,
1024
},
true
);
...
...
@@ -329,9 +317,7 @@ TEST(FusedMultiTransformerDecoderFuseQKVPass, basic) {
auto
*
linear_eltadd_out
=
layers
.
elementwise_add
(
linear_matmut_out
,
bias_l
,
nullptr
,
2
);
auto
*
dropout_qkv
=
layers
.
dropout
(
linear_eltadd_out
,
0.1
,
"upscale_in_train"
);
auto
*
attention_out
=
layers
.
elementwise_add
(
x
,
dropout_qkv
);
auto
*
attention_out
=
layers
.
elementwise_add
(
x
,
linear_eltadd_out
);
// FFN: pre LayerNorm
auto
*
ffn_ln_scale
=
layers
.
data
(
"ffn_ln_scale"
,
{
1024
},
true
);
...
...
@@ -354,9 +340,7 @@ TEST(FusedMultiTransformerDecoderFuseQKVPass, basic) {
auto
*
ffn_eltadd1_out
=
layers
.
elementwise_add
(
ffn_matmul1_out
,
ffn_bias1
,
nullptr
,
2
);
// FFN: dropout -> elementwise_add
auto
*
ffn_dropout
=
layers
.
dropout
(
ffn_eltadd1_out
,
0.1
,
"upscale_in_train"
);
layers
.
elementwise_add
(
attention_out
,
ffn_dropout
);
layers
.
elementwise_add
(
attention_out
,
ffn_eltadd1_out
);
std
::
unique_ptr
<
ir
::
Graph
>
graph
(
new
ir
::
Graph
(
layers
.
main_program
()));
graph
->
Set
(
"__param_scope__"
,
CreateParamScope
());
...
...
@@ -375,11 +359,11 @@ TEST(FusedMultiTransformerDecoderFuseQKVPass, basic) {
PADDLE_ENFORCE_EQ
(
num_nodes_before
,
num_nodes_after
+
62
,
num_nodes_after
+
50
,
platform
::
errors
::
InvalidArgument
(
"After the fused_multi_transformer_decoder_fuse_qkv_pass, "
"The node num in graph should be %d, but the result is %d"
,
num_nodes_before
-
62
,
num_nodes_before
-
50
,
num_nodes_after
));
PADDLE_ENFORCE_EQ
(
num_fused_nodes_after
,
1
,
...
...
@@ -413,14 +397,12 @@ TEST(MultiDevicesFusedMultiTransformerDecoderFuseQKVPass, basic) {
// (split_q, split_k) matmul -> matmul_qk
// (matmul_qk, bias_qk) elementwise_add -> eltadd_qk
// (eltadd_qk) softmax -> softmax_qk
// (softmax_qk) dropout -> dropout_qk
// (dropout_qk, transpose_2) matmul_v2 -> matmul_qkv
// (softmax_qk, transpose_2) matmul_v2 -> matmul_qkv
// (matmul_qkv) transpose -> transpose_qkv
// (transpose_qkv) reshape -> reshape_qkv
// (reshape_qkv) matmul_v2 -> matmul_linear
// (matmul_linear) c_allreduce_sum -> c_all_reduce_out
// (matmul_linear) elementwise_add -> eltadd_linear
// (eltadd_linear) dropout -> dropout_linear
// (eltadd_out) elementwise_add -> attention_out
//
// (attention_out, scale, bias) layer_norm -> ffn_layer_norm_out
...
...
@@ -431,8 +413,7 @@ TEST(MultiDevicesFusedMultiTransformerDecoderFuseQKVPass, basic) {
// (ffn_gelu) matmul_v2 -> ffn_matmul1
// (ffn_matmul1) c_allreduce_sum -> c_allreduce_out
// (ffn_matmul1, ffn_bias1) elementwise_add -> ffn_eltadd1
// (ffn_eltadd1) dropout -> ffn_dropout
// (attention_out, ffn_dropout) elementwise_add -> ffn_output
// (attention_out, ffn_eltadd1) elementwise_add -> ffn_output
//
// (transpose_1, transpose_2) while -> decoder block
...
...
@@ -477,10 +458,9 @@ TEST(MultiDevicesFusedMultiTransformerDecoderFuseQKVPass, basic) {
auto
*
bqk
=
layers
.
data
(
"biasqk"
,
{
1
,
12
,
128
,
128
},
true
);
auto
*
elementwise_qk
=
layers
.
elementwise_add
(
matmul_qk
,
bqk
);
auto
*
softmax_qk
=
layers
.
softmax
(
elementwise_qk
,
-
1
);
auto
*
dropout_qk
=
layers
.
dropout
(
softmax_qk
,
0.1
,
"upscale_in_train"
);
// MHA: QKV matmul
auto
*
matmul_qkv
=
layers
.
matmul_v2
(
dropout
_qk
,
concat_v
);
auto
*
matmul_qkv
=
layers
.
matmul_v2
(
softmax
_qk
,
concat_v
);
auto
*
transpose_qkv
=
layers
.
transpose2
(
matmul_qkv
,
{
0
,
2
,
1
,
3
},
true
);
auto
*
reshape_qkv_out
=
layers
.
reshape2
(
transpose_qkv
,
{
1
,
128
,
1024
},
true
);
...
...
@@ -494,9 +474,7 @@ TEST(MultiDevicesFusedMultiTransformerDecoderFuseQKVPass, basic) {
auto
*
linear_eltadd_out
=
layers
.
elementwise_add
(
c_allreduce_out
,
bias_l
,
nullptr
,
2
);
auto
*
dropout_qkv
=
layers
.
dropout
(
linear_eltadd_out
,
0.1
,
"upscale_in_train"
);
auto
*
attention_out
=
layers
.
elementwise_add
(
x
,
dropout_qkv
);
auto
*
attention_out
=
layers
.
elementwise_add
(
x
,
linear_eltadd_out
);
// FFN: pre LayerNorm
auto
*
ffn_ln_scale
=
layers
.
data
(
"ffn_ln_scale"
,
{
1024
},
true
);
...
...
@@ -521,9 +499,7 @@ TEST(MultiDevicesFusedMultiTransformerDecoderFuseQKVPass, basic) {
auto
*
ffn_eltadd1_out
=
layers
.
elementwise_add
(
ffn_c_allreduce_out
,
ffn_bias1
,
nullptr
,
2
);
// FFN: dropout -> elementwise_add
auto
*
ffn_dropout
=
layers
.
dropout
(
ffn_eltadd1_out
,
0.1
,
"upscale_in_train"
);
layers
.
elementwise_add
(
attention_out
,
ffn_dropout
);
layers
.
elementwise_add
(
attention_out
,
ffn_eltadd1_out
);
std
::
unique_ptr
<
ir
::
Graph
>
graph
(
new
ir
::
Graph
(
layers
.
main_program
()));
graph
->
Set
(
"__param_scope__"
,
CreateParamScope
());
...
...
@@ -544,11 +520,11 @@ TEST(MultiDevicesFusedMultiTransformerDecoderFuseQKVPass, basic) {
PADDLE_ENFORCE_EQ
(
num_nodes_before
,
num_nodes_after
+
70
,
num_nodes_after
+
58
,
platform
::
errors
::
InvalidArgument
(
"After the fused_multi_transformer_decoder_fuse_qkv_pass, "
"The node num in graph should be %d, but the result is %d"
,
num_nodes_before
-
70
,
num_nodes_before
-
58
,
num_nodes_after
));
PADDLE_ENFORCE_EQ
(
num_fused_nodes_after
,
1
,
...
...
paddle/fluid/framework/ir/fused_multi_transformer_encoder_pass.cc
浏览文件 @
9ad0e37e
此差异已折叠。
点击以展开。
paddle/fluid/framework/ir/fused_multi_transformer_encoder_pass.h
浏览文件 @
9ad0e37e
...
...
@@ -82,8 +82,6 @@ struct FusedMultiTransformerEncoderPattern : public PatternBase {
PATTERN_DECL_NODE
(
eltadd_qk_out
);
PATTERN_DECL_NODE
(
softmax_qk
);
PATTERN_DECL_NODE
(
softmax_qk_out
);
PATTERN_DECL_NODE
(
dropout_qk
);
PATTERN_DECL_NODE
(
dropout_qk_out
);
// QK, V matmul
PATTERN_DECL_NODE
(
matmul_qkv
);
...
...
@@ -100,8 +98,6 @@ struct FusedMultiTransformerEncoderPattern : public PatternBase {
PATTERN_DECL_NODE
(
eltadd_linear
);
PATTERN_DECL_NODE
(
eltadd_linear_b
);
PATTERN_DECL_NODE
(
eltadd_linear_out
);
PATTERN_DECL_NODE
(
dropout_linear
);
PATTERN_DECL_NODE
(
dropout_linear_out
);
// output elementwise_add
PATTERN_DECL_NODE
(
eltadd_out
)
...
...
@@ -131,8 +127,6 @@ struct FusedMultiTransformerEncoderPattern : public PatternBase {
PATTERN_DECL_NODE
(
ffn_eltadd1
);
// ELEMENTWISE_ADD
PATTERN_DECL_NODE
(
ffn_eltadd1_b
);
// ELEMENTWISE_ADD
PATTERN_DECL_NODE
(
ffn_eltadd1_out
);
PATTERN_DECL_NODE
(
ffn_dropout
);
PATTERN_DECL_NODE
(
ffn_dropout_out
);
// output elementwise_add
PATTERN_DECL_NODE
(
ffn_eltadd_out
)
...
...
@@ -179,8 +173,6 @@ struct FusedMultiTransformerEncoderFuseQKVPattern : public PatternBase {
PATTERN_DECL_NODE
(
eltadd_qk_out
);
PATTERN_DECL_NODE
(
softmax_qk
);
PATTERN_DECL_NODE
(
softmax_qk_out
);
PATTERN_DECL_NODE
(
dropout_qk
);
PATTERN_DECL_NODE
(
dropout_qk_out
);
// QK, V matmul
PATTERN_DECL_NODE
(
matmul_qkv
);
...
...
@@ -200,8 +192,6 @@ struct FusedMultiTransformerEncoderFuseQKVPattern : public PatternBase {
PATTERN_DECL_NODE
(
eltadd_linear
);
PATTERN_DECL_NODE
(
eltadd_linear_b
);
PATTERN_DECL_NODE
(
eltadd_linear_out
);
PATTERN_DECL_NODE
(
dropout_linear
);
PATTERN_DECL_NODE
(
dropout_linear_out
);
// output elementwise_add
PATTERN_DECL_NODE
(
eltadd_out
)
...
...
@@ -228,8 +218,6 @@ struct FusedMultiTransformerEncoderFuseQKVPattern : public PatternBase {
PATTERN_DECL_NODE
(
ffn_eltadd1
);
// ELEMENTWISE_ADD
PATTERN_DECL_NODE
(
ffn_eltadd1_b
);
// ELEMENTWISE_ADD
PATTERN_DECL_NODE
(
ffn_eltadd1_out
);
PATTERN_DECL_NODE
(
ffn_dropout
);
PATTERN_DECL_NODE
(
ffn_dropout_out
);
// output elementwise_add
PATTERN_DECL_NODE
(
ffn_eltadd_out
)
...
...
@@ -280,8 +268,6 @@ struct MultiDevicesFusedMultiTransformerEncoderFuseQKVPattern
PATTERN_DECL_NODE
(
eltadd_qk_out
);
PATTERN_DECL_NODE
(
softmax_qk
);
PATTERN_DECL_NODE
(
softmax_qk_out
);
PATTERN_DECL_NODE
(
dropout_qk
);
PATTERN_DECL_NODE
(
dropout_qk_out
);
// QK, V matmul
PATTERN_DECL_NODE
(
matmul_qkv
);
...
...
@@ -303,8 +289,6 @@ struct MultiDevicesFusedMultiTransformerEncoderFuseQKVPattern
PATTERN_DECL_NODE
(
eltadd_linear
);
PATTERN_DECL_NODE
(
eltadd_linear_b
);
PATTERN_DECL_NODE
(
eltadd_linear_out
);
PATTERN_DECL_NODE
(
dropout_linear
);
PATTERN_DECL_NODE
(
dropout_linear_out
);
// output elementwise_add
PATTERN_DECL_NODE
(
eltadd_out
)
...
...
@@ -335,8 +319,6 @@ struct MultiDevicesFusedMultiTransformerEncoderFuseQKVPattern
PATTERN_DECL_NODE
(
ffn_eltadd1
);
// ELEMENTWISE_ADD
PATTERN_DECL_NODE
(
ffn_eltadd1_b
);
// ELEMENTWISE_ADD
PATTERN_DECL_NODE
(
ffn_eltadd1_out
);
PATTERN_DECL_NODE
(
ffn_dropout
);
PATTERN_DECL_NODE
(
ffn_dropout_out
);
// output elementwise_add
PATTERN_DECL_NODE
(
ffn_eltadd_out
)
...
...
paddle/fluid/framework/ir/fused_multi_transformer_encoder_pass_tester.cc
浏览文件 @
9ad0e37e
...
...
@@ -81,13 +81,11 @@ TEST(FusedMultiTransformerEncoderPass, basic) {
// (transpose_0, transpose_1) matmul -> matmul_qk
// (matmul_qk, bias_qk) elementwise_add -> eltadd_qk
// (eltadd_qk) softmax -> softmax_qk
// (softmax_qk) dropout -> dropout_qk
// (dropout_qk, transpose_2) matmul_v2 -> matmul_qkv
// (softmax_qk, transpose_2) matmul_v2 -> matmul_qkv
// (matmul_qkv) transpose -> transpose_qkv
// (transpose_qkv) reshape -> reshape_qkv
// (reshape_qkv) matmul_v2 -> matmul_linear
// (matmul_linear) elementwise_add -> eltadd_linear
// (eltadd_linear) dropout -> dropout_linear
// (eltadd_out) elementwise_add -> attention_out
//
// (attention_out, scale, bias) layer_norm -> ffn_layer_norm_out
...
...
@@ -96,8 +94,7 @@ TEST(FusedMultiTransformerEncoderPass, basic) {
// (ffn_eltadd0) gelu -> ffn_gelu
// (ffn_gelu) matmul_v2 -> ffn_matmul1
// (ffn_matmul1, ffn_bias1) elementwise_add -> ffn_eltadd1
// (ffn_eltadd1) dropout -> ffn_dropout
// (attention_out, ffn_dropout) elementwise_add -> ffn_output
// (attention_out, ffn_eltadd1) elementwise_add -> ffn_output
//
// (transpose_1, transpose_2) while -> decoder block
...
...
@@ -149,10 +146,9 @@ TEST(FusedMultiTransformerEncoderPass, basic) {
auto
*
bqk
=
layers
.
data
(
"biasqk"
,
{
1
,
12
,
128
,
128
},
true
);
auto
*
elementwise_qk
=
layers
.
elementwise_add
(
matmul_qk
,
bqk
,
nullptr
,
-
1
);
auto
*
softmax_qk
=
layers
.
softmax
(
elementwise_qk
,
-
1
);
auto
*
dropout_qk
=
layers
.
dropout
(
softmax_qk
,
0.1
,
"upscale_in_train"
);
// MHA: QKV matmul
auto
*
matmul_qkv
=
layers
.
matmul_v2
(
dropout
_qk
,
transpose_2
);
auto
*
matmul_qkv
=
layers
.
matmul_v2
(
softmax
_qk
,
transpose_2
);
auto
*
transpose_qkv
=
layers
.
transpose2
(
matmul_qkv
,
{
0
,
2
,
1
,
3
},
true
);
auto
*
reshape_qkv_out
=
layers
.
reshape2
(
transpose_qkv
,
{
1
,
128
,
1024
},
true
);
...
...
@@ -165,9 +161,7 @@ TEST(FusedMultiTransformerEncoderPass, basic) {
auto
*
linear_eltadd_out
=
layers
.
elementwise_add
(
linear_matmut_out
,
bias_l
,
nullptr
,
2
);
auto
*
dropout_qkv
=
layers
.
dropout
(
linear_eltadd_out
,
0.1
,
"upscale_in_train"
);
auto
*
attention_out
=
layers
.
elementwise_add
(
x
,
dropout_qkv
);
auto
*
attention_out
=
layers
.
elementwise_add
(
x
,
linear_eltadd_out
);
// FFN: pre LayerNorm
auto
*
ffn_ln_scale
=
layers
.
data
(
"ffn_ln_scale"
,
{
1024
},
true
);
...
...
@@ -190,9 +184,7 @@ TEST(FusedMultiTransformerEncoderPass, basic) {
auto
*
ffn_eltadd1_out
=
layers
.
elementwise_add
(
ffn_matmul1_out
,
ffn_bias1
,
nullptr
,
2
);
// FFN: dropout -> elementwise_add
auto
*
ffn_dropout
=
layers
.
dropout
(
ffn_eltadd1_out
,
0.1
,
"upscale_in_train"
);
layers
.
elementwise_add
(
attention_out
,
ffn_dropout
);
layers
.
elementwise_add
(
attention_out
,
ffn_eltadd1_out
);
std
::
unique_ptr
<
ir
::
Graph
>
graph
(
new
ir
::
Graph
(
layers
.
main_program
()));
graph
->
Set
(
"__param_scope__"
,
CreateParamScope
());
...
...
@@ -210,12 +202,12 @@ TEST(FusedMultiTransformerEncoderPass, basic) {
int
num_fused_nodes_after
=
GetNumOpNodes
(
graph
,
"fused_multi_transformer"
);
PADDLE_ENFORCE_EQ
(
num_nodes_before
,
num_nodes_after
+
68
,
num_nodes_after
+
56
,
platform
::
errors
::
InvalidArgument
(
"After the fused_multi_transformer_encoder_pass, The "
"node num in graph "
"should be %d, but the result is %d"
,
num_nodes_before
-
68
,
num_nodes_before
-
56
,
num_nodes_after
));
PADDLE_ENFORCE_EQ
(
num_fused_nodes_after
,
1
,
...
...
@@ -246,13 +238,11 @@ TEST(FusedMultiTransformerEncoderFuseQKVPass, basic) {
// (split_q, split_k) matmul -> matmul_qk
// (matmul_qk, bias_qk) elementwise_add -> eltadd_qk
// (eltadd_qk) softmax -> softmax_qk
// (softmax_qk) dropout -> dropout_qk
// (dropout_qk, transpose_2) matmul_v2 -> matmul_qkv
// (softmax_qk, transpose_2) matmul_v2 -> matmul_qkv
// (matmul_qkv) transpose -> transpose_qkv
// (transpose_qkv) reshape -> reshape_qkv
// (reshape_qkv) matmul_v2 -> matmul_linear
// (matmul_linear) elementwise_add -> eltadd_linear
// (eltadd_linear) dropout -> dropout_linear
// (eltadd_out) elementwise_add -> attention_out
//
// (attention_out, scale, bias) layer_norm -> ffn_layer_norm_out
...
...
@@ -261,8 +251,7 @@ TEST(FusedMultiTransformerEncoderFuseQKVPass, basic) {
// (ffn_eltadd0) gelu -> ffn_gelu
// (ffn_gelu) matmul_v2 -> ffn_matmul1
// (ffn_matmul1, ffn_bias1) elementwise_add -> ffn_eltadd1
// (ffn_eltadd1) dropout -> ffn_dropout
// (attention_out, ffn_dropout) elementwise_add -> ffn_output
// (attention_out, ffn_eltadd1) elementwise_add -> ffn_output
//
// (transpose_1, transpose_2) while -> decoder block
...
...
@@ -304,10 +293,9 @@ TEST(FusedMultiTransformerEncoderFuseQKVPass, basic) {
auto
*
bqk
=
layers
.
data
(
"biasqk"
,
{
1
,
12
,
128
,
128
},
true
);
auto
*
elementwise_qk
=
layers
.
elementwise_add
(
matmul_qk
,
bqk
);
auto
*
softmax_qk
=
layers
.
softmax
(
elementwise_qk
,
-
1
);
auto
*
dropout_qk
=
layers
.
dropout
(
softmax_qk
,
0.1
,
"upscale_in_train"
);
// MHA: QKV matmul
auto
*
matmul_qkv
=
layers
.
matmul_v2
(
dropout
_qk
,
split_v
);
auto
*
matmul_qkv
=
layers
.
matmul_v2
(
softmax
_qk
,
split_v
);
auto
*
transpose_qkv
=
layers
.
transpose2
(
matmul_qkv
,
{
0
,
2
,
1
,
3
},
true
);
auto
*
reshape_qkv_out
=
layers
.
reshape2
(
transpose_qkv
,
{
1
,
128
,
1024
},
true
);
...
...
@@ -320,9 +308,7 @@ TEST(FusedMultiTransformerEncoderFuseQKVPass, basic) {
auto
*
linear_eltadd_out
=
layers
.
elementwise_add
(
linear_matmut_out
,
bias_l
,
nullptr
,
2
);
auto
*
dropout_qkv
=
layers
.
dropout
(
linear_eltadd_out
,
0.1
,
"upscale_in_train"
);
auto
*
attention_out
=
layers
.
elementwise_add
(
x
,
dropout_qkv
);
auto
*
attention_out
=
layers
.
elementwise_add
(
x
,
linear_eltadd_out
);
// FFN: pre LayerNorm
auto
*
ffn_ln_scale
=
layers
.
data
(
"ffn_ln_scale"
,
{
1024
},
true
);
...
...
@@ -345,9 +331,7 @@ TEST(FusedMultiTransformerEncoderFuseQKVPass, basic) {
auto
*
ffn_eltadd1_out
=
layers
.
elementwise_add
(
ffn_matmul1_out
,
ffn_bias1
,
nullptr
,
2
);
// FFN: dropout -> elementwise_add
auto
*
ffn_dropout
=
layers
.
dropout
(
ffn_eltadd1_out
,
0.1
,
"upscale_in_train"
);
layers
.
elementwise_add
(
attention_out
,
ffn_dropout
);
layers
.
elementwise_add
(
attention_out
,
ffn_eltadd1_out
);
std
::
unique_ptr
<
ir
::
Graph
>
graph
(
new
ir
::
Graph
(
layers
.
main_program
()));
graph
->
Set
(
"__param_scope__"
,
CreateParamScope
());
...
...
@@ -366,11 +350,11 @@ TEST(FusedMultiTransformerEncoderFuseQKVPass, basic) {
PADDLE_ENFORCE_EQ
(
num_nodes_before
,
num_nodes_after
+
56
,
num_nodes_after
+
44
,
platform
::
errors
::
InvalidArgument
(
"After the fused_multi_transformer_encoder_fuse_qkv_pass, "
"The node num in graph should be %d, but the result is %d"
,
num_nodes_before
-
56
,
num_nodes_before
-
44
,
num_nodes_after
));
PADDLE_ENFORCE_EQ
(
num_fused_nodes_after
,
1
,
...
...
@@ -402,14 +386,12 @@ TEST(MultiDevicesFusedMultiTransformerEncoderFuseQKVPass, basic) {
// (split_q, split_k) matmul -> matmul_qk
// (matmul_qk, bias_qk) elementwise_add -> eltadd_qk
// (eltadd_qk) softmax -> softmax_qk
// (softmax_qk) dropout -> dropout_qk
// (dropout_qk, transpose_2) matmul_v2 -> matmul_qkv
// (softmax_qk, transpose_2) matmul_v2 -> matmul_qkv
// (matmul_qkv) transpose -> transpose_qkv
// (transpose_qkv) reshape -> reshape_qkv
// (reshape_qkv) matmul_v2 -> matmul_linear
// (matmul_linear) c_all_reduce -> c_all_reduce_out
// (c_all_reduce_out) elementwise_add -> eltadd_linear
// (eltadd_linear) dropout -> dropout_linear
// (eltadd_out) elementwise_add -> attention_out
//
// (attention_out, scale, bias) layer_norm -> ffn_layer_norm_out
...
...
@@ -420,8 +402,7 @@ TEST(MultiDevicesFusedMultiTransformerEncoderFuseQKVPass, basic) {
// (ffn_gelu) matmul_v2 -> ffn_matmul1
// (ffn_matmul1) c_all_reduce -> ffn_c_all_reduce_out
// (ffn_c_all_reduce_out, ffn_bias1)elementwise_add -> ffn_eltadd1
// (ffn_eltadd1) dropout -> ffn_dropout
// (attention_out, ffn_dropout) elementwise_add -> ffn_output
// (attention_out, ffn_eltadd1) elementwise_add -> ffn_output
//
// (transpose_1, transpose_2) while -> decoder block
...
...
@@ -464,10 +445,9 @@ TEST(MultiDevicesFusedMultiTransformerEncoderFuseQKVPass, basic) {
auto
*
bqk
=
layers
.
data
(
"biasqk"
,
{
1
,
12
,
128
,
128
},
true
);
auto
*
elementwise_qk
=
layers
.
elementwise_add
(
matmul_qk
,
bqk
);
auto
*
softmax_qk
=
layers
.
softmax
(
elementwise_qk
,
-
1
);
auto
*
dropout_qk
=
layers
.
dropout
(
softmax_qk
,
0.1
,
"upscale_in_train"
);
// MHA: QKV matmul
auto
*
matmul_qkv
=
layers
.
matmul_v2
(
dropout
_qk
,
split_v
);
auto
*
matmul_qkv
=
layers
.
matmul_v2
(
softmax
_qk
,
split_v
);
auto
*
transpose_qkv
=
layers
.
transpose2
(
matmul_qkv
,
{
0
,
2
,
1
,
3
},
true
);
auto
*
reshape_qkv_out
=
layers
.
reshape2
(
transpose_qkv
,
{
1
,
128
,
1024
},
true
);
...
...
@@ -481,9 +461,7 @@ TEST(MultiDevicesFusedMultiTransformerEncoderFuseQKVPass, basic) {
auto
*
linear_eltadd_out
=
layers
.
elementwise_add
(
c_allreduce_out
,
bias_l
,
nullptr
,
2
);
auto
*
dropout_qkv
=
layers
.
dropout
(
linear_eltadd_out
,
0.1
,
"upscale_in_train"
);
auto
*
attention_out
=
layers
.
elementwise_add
(
x
,
dropout_qkv
);
auto
*
attention_out
=
layers
.
elementwise_add
(
x
,
linear_eltadd_out
);
// FFN: pre LayerNorm
auto
*
ffn_ln_scale
=
layers
.
data
(
"ffn_ln_scale"
,
{
1024
},
true
);
...
...
@@ -508,9 +486,7 @@ TEST(MultiDevicesFusedMultiTransformerEncoderFuseQKVPass, basic) {
auto
*
ffn_eltadd1_out
=
layers
.
elementwise_add
(
ffn_allreduce_out
,
ffn_bias1
,
nullptr
,
2
);
// FFN: dropout -> elementwise_add
auto
*
ffn_dropout
=
layers
.
dropout
(
ffn_eltadd1_out
,
0.1
,
"upscale_in_train"
);
layers
.
elementwise_add
(
attention_out
,
ffn_dropout
);
layers
.
elementwise_add
(
attention_out
,
ffn_eltadd1_out
);
std
::
unique_ptr
<
ir
::
Graph
>
graph
(
new
ir
::
Graph
(
layers
.
main_program
()));
graph
->
Set
(
"__param_scope__"
,
CreateParamScope
());
...
...
@@ -531,11 +507,11 @@ TEST(MultiDevicesFusedMultiTransformerEncoderFuseQKVPass, basic) {
PADDLE_ENFORCE_EQ
(
num_nodes_before
,
num_nodes_after
+
64
,
num_nodes_after
+
52
,
platform
::
errors
::
InvalidArgument
(
"After the fused_multi_transformer_encoder_fuse_qkv_pass, "
"The node num in graph should be %d, but the result is %d"
,
num_nodes_before
-
64
,
num_nodes_before
-
52
,
num_nodes_after
));
PADDLE_ENFORCE_EQ
(
num_fused_nodes_after
,
1
,
...
...
paddle/fluid/framework/ir/pass.cc
浏览文件 @
9ad0e37e
...
...
@@ -39,6 +39,7 @@ namespace ir {
static
const
char
kParamScopeAttr
[]
=
"__param_scope__"
;
static
const
std
::
vector
<
std
::
string
>
support_subgraph_passes
=
{
"simplify_with_basic_ops_pass"
,
"fused_multi_transformer_encoder_pass"
,
"fused_multi_transformer_decoder_pass"
,
"fused_multi_transformer_encoder_fuse_qkv_pass"
,
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录