Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
9a8a4c77
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2299
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
9a8a4c77
编写于
12月 17, 2021
作者:
N
niuliling123
提交者:
GitHub
12月 17, 2021
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Delete cub_reduce.h and modified the TensorReduce to TensorReduceFunctorImpl (#38197)
上级
431a2d6a
变更
10
显示空白变更内容
内联
并排
Showing
10 changed file
with
29 addition
and
544 deletion
+29
-544
paddle/fluid/operators/broadcast_tensors_op.cu
paddle/fluid/operators/broadcast_tensors_op.cu
+4
-14
paddle/fluid/operators/controlflow/compare_all_op.cu
paddle/fluid/operators/controlflow/compare_all_op.cu
+6
-10
paddle/fluid/operators/fused/attn_bias_add.cu.h
paddle/fluid/operators/fused/attn_bias_add.cu.h
+1
-3
paddle/fluid/operators/kron_op.h
paddle/fluid/operators/kron_op.h
+5
-16
paddle/fluid/operators/matmul_v2_op.h
paddle/fluid/operators/matmul_v2_op.h
+3
-13
paddle/fluid/operators/reduce_ops/check_reduce_rank_test.cu
paddle/fluid/operators/reduce_ops/check_reduce_rank_test.cu
+5
-5
paddle/fluid/operators/reduce_ops/cub_reduce.h
paddle/fluid/operators/reduce_ops/cub_reduce.h
+0
-468
paddle/fluid/operators/reduce_ops/frobenius_norm_op.cu
paddle/fluid/operators/reduce_ops/frobenius_norm_op.cu
+1
-1
paddle/fluid/operators/reduce_ops/reduce_sum_op.part.cu
paddle/fluid/operators/reduce_ops/reduce_sum_op.part.cu
+1
-1
paddle/fluid/operators/solve_op.h
paddle/fluid/operators/solve_op.h
+3
-13
未找到文件。
paddle/fluid/operators/broadcast_tensors_op.cu
浏览文件 @
9a8a4c77
...
@@ -20,7 +20,7 @@ limitations under the License. */
...
@@ -20,7 +20,7 @@ limitations under the License. */
#include <unordered_map>
#include <unordered_map>
#include <vector>
#include <vector>
#include "paddle/fluid/operators/reduce_ops/
cub_reduce
.h"
#include "paddle/fluid/operators/reduce_ops/
reduce_op.cu
.h"
namespace
paddle
{
namespace
paddle
{
namespace
operators
{
namespace
operators
{
...
@@ -28,16 +28,6 @@ namespace operators {
...
@@ -28,16 +28,6 @@ namespace operators {
using
framework
::
Tensor
;
using
framework
::
Tensor
;
using
framework
::
DDim
;
using
framework
::
DDim
;
template
<
typename
Tout
>
struct
IdentityFunctor
{
HOSTDEVICE
explicit
inline
IdentityFunctor
()
{}
template
<
typename
U
>
HOSTDEVICE
inline
Tout
operator
()(
const
U
&
x
)
const
{
return
static_cast
<
Tout
>
(
x
);
}
};
template
<
typename
T
>
template
<
typename
T
>
class
CUDABroadcastTensorsGradOpKernel
:
public
framework
::
OpKernel
<
T
>
{
class
CUDABroadcastTensorsGradOpKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
public:
...
@@ -99,9 +89,9 @@ class CUDABroadcastTensorsGradOpKernel : public framework::OpKernel<T> {
...
@@ -99,9 +89,9 @@ class CUDABroadcastTensorsGradOpKernel : public framework::OpKernel<T> {
}
else
{
}
else
{
// reduce_sum implementation on CUDA
// reduce_sum implementation on CUDA
auto
stream
=
context
.
cuda_device_context
().
stream
();
auto
stream
=
context
.
cuda_device_context
().
stream
();
TensorReduce
<
T
,
T
,
cub
::
Sum
,
IdentityFunctor
<
T
>>
(
TensorReduce
FunctorImpl
<
T
,
T
,
kps
::
AddFunctor
,
kps
::
IdentityFunctor
<
T
>>
(
*
input_tensor
,
output_tensor
,
reduce_dims_vec
,
static_cast
<
T
>
(
0
),
*
input_tensor
,
output_tensor
,
kps
::
IdentityFunctor
<
T
>
(
),
cub
::
Sum
(),
IdentityFunctor
<
T
>
()
,
stream
);
reduce_dims_vec
,
stream
);
}
}
}
}
}
}
...
...
paddle/fluid/operators/controlflow/compare_all_op.cu
浏览文件 @
9a8a4c77
...
@@ -15,20 +15,16 @@ limitations under the License. */
...
@@ -15,20 +15,16 @@ limitations under the License. */
#include <thrust/fill.h>
#include <thrust/fill.h>
#include "paddle/fluid/operators/controlflow/compare_all_op.h"
#include "paddle/fluid/operators/controlflow/compare_all_op.h"
#include "paddle/fluid/operators/elementwise/elementwise_op_impl.cu.h"
#include "paddle/fluid/operators/elementwise/elementwise_op_impl.cu.h"
#include "paddle/fluid/operators/reduce_ops/
cub_reduce
.h"
#include "paddle/fluid/operators/reduce_ops/
reduce_op.cu
.h"
namespace
paddle
{
namespace
paddle
{
namespace
operators
{
namespace
operators
{
template
<
typename
T
>
template
<
typename
T
>
struct
IdentityFunctor
{
HOSTDEVICE
explicit
inline
IdentityFunctor
()
{}
HOSTDEVICE
inline
T
operator
()(
const
T
&
x
)
const
{
return
x
;
}
};
struct
BitwiseAdd
{
struct
BitwiseAdd
{
// Bitwise add operator, returns <tt>a + b</tt>
// Bitwise add operator, returns <tt>a + b</tt>
template
<
typename
T
>
inline
T
initial
()
{
return
static_cast
<
T
>
(
true
);
}
__host__
__device__
__forceinline__
T
operator
()(
const
T
&
a
,
__host__
__device__
__forceinline__
T
operator
()(
const
T
&
a
,
const
T
&
b
)
const
{
const
T
&
b
)
const
{
return
a
&
b
;
return
a
&
b
;
...
@@ -67,9 +63,9 @@ class CompareReduceOpKernel
...
@@ -67,9 +63,9 @@ class CompareReduceOpKernel
reduce_dims
.
resize
(
tmp
.
dims
().
size
());
reduce_dims
.
resize
(
tmp
.
dims
().
size
());
for
(
int
i
=
0
;
i
<
reduce_dims
.
size
();
++
i
)
reduce_dims
[
i
]
=
i
;
for
(
int
i
=
0
;
i
<
reduce_dims
.
size
();
++
i
)
reduce_dims
[
i
]
=
i
;
auto
stream
=
context
.
cuda_device_context
().
stream
();
auto
stream
=
context
.
cuda_device_context
().
stream
();
TensorReduce
<
bool
,
bool
,
BitwiseAdd
,
IdentityFunctor
<
bool
>>
(
TensorReduce
FunctorImpl
<
bool
,
bool
,
BitwiseAdd
,
tmp
,
z
,
reduce_dims
,
true
,
BitwiseAdd
(),
IdentityFunctor
<
bool
>
(),
kps
::
IdentityFunctor
<
bool
>>
(
stream
);
tmp
,
z
,
kps
::
IdentityFunctor
<
bool
>
(),
reduce_dims
,
stream
);
}
}
}
}
};
};
...
...
paddle/fluid/operators/fused/attn_bias_add.cu.h
浏览文件 @
9a8a4c77
...
@@ -33,7 +33,7 @@ namespace cub = hipcub;
...
@@ -33,7 +33,7 @@ namespace cub = hipcub;
#include "paddle/fluid/operators/elementwise/elementwise_functor.h"
#include "paddle/fluid/operators/elementwise/elementwise_functor.h"
#include "paddle/fluid/operators/elementwise/elementwise_op_broadcast.cu.h"
#include "paddle/fluid/operators/elementwise/elementwise_op_broadcast.cu.h"
#include "paddle/fluid/operators/kernel_primitives/kernel_primitives.h"
#include "paddle/fluid/operators/kernel_primitives/kernel_primitives.h"
#include "paddle/fluid/operators/reduce_ops/reduce_
functor_op
.h"
#include "paddle/fluid/operators/reduce_ops/reduce_
op.cu
.h"
#include "paddle/fluid/platform/fast_divmod.h"
#include "paddle/fluid/platform/fast_divmod.h"
namespace
paddle
{
namespace
paddle
{
...
@@ -41,8 +41,6 @@ namespace operators {
...
@@ -41,8 +41,6 @@ namespace operators {
#define MAX_INPUT_NUM 2
#define MAX_INPUT_NUM 2
namespace
kps
=
paddle
::
operators
::
kernel_primitives
;
template
<
typename
T
>
template
<
typename
T
>
using
CudnnDataType
=
platform
::
CudnnDataType
<
T
>
;
using
CudnnDataType
=
platform
::
CudnnDataType
<
T
>
;
template
<
typename
T
>
template
<
typename
T
>
...
...
paddle/fluid/operators/kron_op.h
浏览文件 @
9a8a4c77
...
@@ -19,7 +19,7 @@ limitations under the License. */
...
@@ -19,7 +19,7 @@ limitations under the License. */
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/platform/for_range.h"
#include "paddle/fluid/platform/for_range.h"
#if defined(__NVCC__) || defined(__HIPCC__)
#if defined(__NVCC__) || defined(__HIPCC__)
#include "paddle/fluid/operators/reduce_ops/
cub_reduce
.h"
#include "paddle/fluid/operators/reduce_ops/
reduce_op.cu
.h"
#include "thrust/device_vector.h"
#include "thrust/device_vector.h"
#endif
#endif
...
@@ -237,15 +237,6 @@ struct KronGradElemFunctor<platform::complex<T>> {
...
@@ -237,15 +237,6 @@ struct KronGradElemFunctor<platform::complex<T>> {
const
int
ndims_
;
const
int
ndims_
;
};
};
struct
IdentityFunctor
{
HOSTDEVICE
explicit
inline
IdentityFunctor
()
{}
template
<
typename
U
>
HOSTDEVICE
inline
U
operator
()(
const
U
&
x
)
const
{
return
x
;
}
};
template
<
typename
DeviceContext
,
typename
T
>
template
<
typename
DeviceContext
,
typename
T
>
struct
KronGradOpFunctor
{
struct
KronGradOpFunctor
{
void
operator
()(
const
DeviceContext
&
dev_ctx
,
const
framework
::
Tensor
&
dout
,
void
operator
()(
const
DeviceContext
&
dev_ctx
,
const
framework
::
Tensor
&
dout
,
...
@@ -314,14 +305,12 @@ struct KronGradOpFunctor {
...
@@ -314,14 +305,12 @@ struct KronGradOpFunctor {
#if defined(__NVCC__) || defined(__HIPCC__)
#if defined(__NVCC__) || defined(__HIPCC__)
auto
stream
=
dev_ctx
.
stream
();
// it is a cuda device_context
auto
stream
=
dev_ctx
.
stream
();
// it is a cuda device_context
if
(
dx
)
{
if
(
dx
)
{
TensorReduce
<
T
,
T
,
cub
::
Sum
,
IdentityFunctor
>
(
TensorReduceFunctorImpl
<
T
,
T
,
kps
::
AddFunctor
,
kps
::
IdentityFunctor
<
T
>>
(
dout_x
,
dx
,
{
1
},
static_cast
<
T
>
(
0
),
cub
::
Sum
(),
IdentityFunctor
(),
dout_x
,
dx
,
kps
::
IdentityFunctor
<
T
>
(),
{
1
},
stream
);
stream
);
}
}
if
(
dy
)
{
if
(
dy
)
{
TensorReduce
<
T
,
T
,
cub
::
Sum
,
IdentityFunctor
>
(
TensorReduceFunctorImpl
<
T
,
T
,
kps
::
AddFunctor
,
kps
::
IdentityFunctor
<
T
>>
(
dout_y
,
dy
,
{
1
},
static_cast
<
T
>
(
0
),
cub
::
Sum
(),
IdentityFunctor
(),
dout_y
,
dy
,
kps
::
IdentityFunctor
<
T
>
(),
{
1
},
stream
);
stream
);
}
}
#else
#else
auto
*
place
=
dev_ctx
.
eigen_device
();
auto
*
place
=
dev_ctx
.
eigen_device
();
...
...
paddle/fluid/operators/matmul_v2_op.h
浏览文件 @
9a8a4c77
...
@@ -31,7 +31,7 @@ limitations under the License. */
...
@@ -31,7 +31,7 @@ limitations under the License. */
#include "paddle/pten/include/linalg.h"
#include "paddle/pten/include/linalg.h"
#if defined(__NVCC__) || defined(__HIPCC__)
#if defined(__NVCC__) || defined(__HIPCC__)
#include "paddle/fluid/operators/reduce_ops/
cub_reduce
.h"
#include "paddle/fluid/operators/reduce_ops/
reduce_op.cu
.h"
#endif
#endif
namespace
paddle
{
namespace
paddle
{
...
@@ -39,24 +39,14 @@ namespace operators {
...
@@ -39,24 +39,14 @@ namespace operators {
using
framework
::
Tensor
;
using
framework
::
Tensor
;
struct
IdentityFunctor
{
HOSTDEVICE
explicit
inline
IdentityFunctor
()
{}
template
<
typename
U
>
HOSTDEVICE
inline
U
operator
()(
const
U
&
x
)
const
{
return
x
;
}
};
template
<
typename
DeviceContext
,
typename
T
>
template
<
typename
DeviceContext
,
typename
T
>
void
ReduceSumForMatmulGrad
(
const
Tensor
*
input
,
Tensor
*
output
,
void
ReduceSumForMatmulGrad
(
const
Tensor
*
input
,
Tensor
*
output
,
const
std
::
vector
<
int
>&
reduce_dims
,
const
std
::
vector
<
int
>&
reduce_dims
,
const
paddle
::
framework
::
ExecutionContext
&
ctx
)
{
const
paddle
::
framework
::
ExecutionContext
&
ctx
)
{
#if defined(__NVCC__) || defined(__HIPCC__)
#if defined(__NVCC__) || defined(__HIPCC__)
auto
stream
=
ctx
.
cuda_device_context
().
stream
();
auto
stream
=
ctx
.
cuda_device_context
().
stream
();
TensorReduce
<
T
,
T
,
cub
::
Sum
,
IdentityFunctor
>
(
*
input
,
output
,
reduce_dims
,
TensorReduceFunctorImpl
<
T
,
T
,
kps
::
AddFunctor
,
kps
::
IdentityFunctor
<
T
>>
(
static_cast
<
T
>
(
0
),
cub
::
Sum
(),
*
input
,
output
,
kps
::
IdentityFunctor
<
T
>
(),
reduce_dims
,
stream
);
IdentityFunctor
(),
stream
);
#else
#else
ReduceKernelFunctor
<
DeviceContext
,
T
,
ops
::
SumFunctor
>
(
ReduceKernelFunctor
<
DeviceContext
,
T
,
ops
::
SumFunctor
>
(
input
,
output
,
reduce_dims
,
true
,
false
,
ctx
)
input
,
output
,
reduce_dims
,
true
,
false
,
ctx
)
...
...
paddle/fluid/operators/reduce_ops/check_reduce_rank_test.cu
浏览文件 @
9a8a4c77
...
@@ -13,11 +13,11 @@
...
@@ -13,11 +13,11 @@
// limitations under the License.
// limitations under the License.
#include "gtest/gtest.h"
#include "gtest/gtest.h"
#include "paddle/fluid/operators/reduce_ops/
cub_reduce
.h"
#include "paddle/fluid/operators/reduce_ops/
reduce_op.cu
.h"
namespace
paddle
{
namespace
paddle
{
namespace
operators
{
namespace
operators
{
namespace
detail
{
namespace
detail
s
{
TEST
(
test_reduce_rank_check
,
all
)
{
TEST
(
test_reduce_rank_check
,
all
)
{
using
EnforceNotMet
=
paddle
::
platform
::
EnforceNotMet
;
using
EnforceNotMet
=
paddle
::
platform
::
EnforceNotMet
;
...
@@ -39,15 +39,15 @@ TEST(test_reduce_rank_check, all) {
...
@@ -39,15 +39,15 @@ TEST(test_reduce_rank_check, all) {
}
}
if
(
is_valid
)
{
if
(
is_valid
)
{
CheckReduceRank
IsValid
(
reduce_rank
,
rank
);
CheckReduceRank
(
reduce_rank
,
rank
);
}
else
{
}
else
{
ASSERT_THROW
(
CheckReduceRank
IsValid
(
reduce_rank
,
rank
),
ASSERT_THROW
(
CheckReduceRank
(
reduce_rank
,
rank
),
paddle
::
platform
::
EnforceNotMet
);
paddle
::
platform
::
EnforceNotMet
);
}
}
}
}
}
}
}
}
}
// namespace detail
}
// namespace detail
s
}
// namespace operators
}
// namespace operators
}
// namespace paddle
}
// namespace paddle
paddle/fluid/operators/reduce_ops/cub_reduce.h
已删除
100644 → 0
浏览文件 @
431a2d6a
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <algorithm>
#include <cmath>
#include <numeric>
#include <set>
#include <vector>
#ifdef __NVCC__
#include "cub/cub.cuh" // NOLINT
#endif
#ifdef __HIPCC__
#include <hipcub/hipcub.hpp>
namespace
cub
=
hipcub
;
#endif
#include "paddle/fluid/framework/tensor.h"
#include "paddle/fluid/framework/tensor_util.h"
#include "paddle/fluid/operators/amp/fp16_type_traits.h"
namespace
paddle
{
namespace
operators
{
namespace
detail
{
template
<
typename
T
,
size_t
ElementCount
>
struct
Array
{
public:
HOSTDEVICE
inline
Array
()
{}
HOSTDEVICE
inline
T
&
operator
[](
size_t
index
)
{
return
data_
[
index
];
}
HOSTDEVICE
inline
const
T
&
operator
[](
size_t
index
)
const
{
return
data_
[
index
];
}
HOSTDEVICE
constexpr
inline
size_t
size
()
const
{
return
ElementCount
;
}
template
<
typename
VectorLikeType
>
static
inline
Array
<
T
,
ElementCount
>
From
(
const
VectorLikeType
&
vec
)
{
PADDLE_ENFORCE_EQ
(
vec
.
size
(),
ElementCount
,
platform
::
errors
::
InvalidArgument
(
"Cub reduce Array: size not match. Received "
"vec.size() %d != ElementCount %d."
,
vec
.
size
(),
ElementCount
));
size_t
n
=
static_cast
<
size_t
>
(
vec
.
size
());
Array
<
T
,
ElementCount
>
ret
;
for
(
size_t
i
=
0
;
i
<
n
;
++
i
)
ret
[
i
]
=
vec
[
i
];
return
ret
;
}
private:
T
data_
[
ElementCount
];
};
// reduce the 1d array to one element
template
<
typename
Tx
,
typename
MPType
,
typename
Ty
,
typename
ReduceOp
,
typename
TransformOp
,
int
BlockDim
>
__global__
void
ReduceKernel1D
(
const
Tx
*
x
,
Ty
*
y
,
ReduceOp
reducer
,
TransformOp
transformer
,
MPType
init
,
int
reduce_num
)
{
int
thread_id
=
blockIdx
.
x
*
blockDim
.
x
+
threadIdx
.
x
;
typedef
cub
::
BlockReduce
<
MPType
,
BlockDim
>
BlockReduce
;
__shared__
typename
BlockReduce
::
TempStorage
temp_storage
;
MPType
local_data
=
init
;
for
(
int
i
=
thread_id
;
i
<
reduce_num
;
i
+=
gridDim
.
x
*
blockDim
.
x
)
{
local_data
=
static_cast
<
MPType
>
(
reducer
(
local_data
,
static_cast
<
MPType
>
(
transformer
(
x
[
i
]))));
}
__syncthreads
();
local_data
=
BlockReduce
(
temp_storage
).
Reduce
(
local_data
,
reducer
);
if
(
threadIdx
.
x
==
0
)
{
y
[
blockIdx
.
x
]
=
static_cast
<
Ty
>
(
local_data
);
}
}
// reduce the last axis of 2d array
template
<
typename
Tx
,
typename
MPType
,
typename
Ty
,
typename
ReduceOp
,
typename
TransformOp
,
int
BlockDim
>
__global__
void
ReduceKernel2D
(
const
Tx
*
x
,
Ty
*
y
,
ReduceOp
reducer
,
TransformOp
transformer
,
MPType
init
,
int
reduce_num
)
{
__shared__
typename
cub
::
BlockReduce
<
MPType
,
BlockDim
>::
TempStorage
temp_storage
;
int
idx_x
=
blockIdx
.
x
*
reduce_num
;
int
idx_y
=
threadIdx
.
x
;
MPType
reduce_var
=
init
;
for
(
int
idx_y
=
threadIdx
.
x
;
idx_y
<
reduce_num
;
idx_y
+=
BlockDim
)
reduce_var
=
reducer
(
reduce_var
,
static_cast
<
MPType
>
(
transformer
(
x
[
idx_x
+
idx_y
])));
__syncthreads
();
reduce_var
=
cub
::
BlockReduce
<
MPType
,
BlockDim
>
(
temp_storage
)
.
Reduce
(
reduce_var
,
reducer
);
if
(
threadIdx
.
x
==
0
)
{
y
[
blockIdx
.
x
]
=
static_cast
<
Ty
>
(
reduce_var
);
}
}
template
<
typename
Tx
,
typename
MPType
,
typename
Ty
,
typename
ReduceOp
,
typename
TransformOp
,
int
BlockDim
,
int
Rank
,
int
ReduceRank
>
__global__
void
ReduceKernel
(
const
Tx
*
x
,
Ty
*
y
,
ReduceOp
reducer
,
TransformOp
transformer
,
MPType
init
,
int
reduce_num
,
Array
<
int
,
Rank
>
x_strides
,
Array
<
int
,
ReduceRank
>
reduce_dim
,
Array
<
int
,
ReduceRank
>
reduce_strides
,
Array
<
int
,
Rank
-
ReduceRank
>
left_dim
,
Array
<
int
,
Rank
-
ReduceRank
>
left_strides
)
{
__shared__
typename
cub
::
BlockReduce
<
MPType
,
BlockDim
>::
TempStorage
temp_storage
;
Array
<
int
,
Rank
>
sub_index
;
int
left_idx
=
blockIdx
.
x
;
for
(
int
i
=
0
;
i
<
Rank
-
ReduceRank
;
++
i
)
{
sub_index
[
left_dim
[
i
]]
=
left_idx
/
left_strides
[
i
];
left_idx
%=
left_strides
[
i
];
}
int
reduce_idx
=
threadIdx
.
x
;
for
(
int
j
=
0
;
j
<
ReduceRank
;
++
j
)
{
sub_index
[
reduce_dim
[
j
]]
=
reduce_idx
/
reduce_strides
[
j
];
reduce_idx
%=
reduce_strides
[
j
];
}
int
idx_x
=
0
;
for
(
int
k
=
0
;
k
<
Rank
;
++
k
)
idx_x
+=
(
sub_index
[
k
]
*
x_strides
[
k
]);
MPType
reduce_var
=
static_cast
<
MPType
>
(
transformer
(
x
[
idx_x
]));
for
(
int
i
=
threadIdx
.
x
+
BlockDim
;
i
<
reduce_num
;
i
+=
BlockDim
)
{
int
reduce_idx
=
i
;
for
(
int
j
=
0
;
j
<
ReduceRank
;
++
j
)
{
sub_index
[
reduce_dim
[
j
]]
=
reduce_idx
/
reduce_strides
[
j
];
reduce_idx
%=
reduce_strides
[
j
];
}
int
idx_x
=
0
;
for
(
int
k
=
0
;
k
<
Rank
;
++
k
)
idx_x
+=
(
sub_index
[
k
]
*
x_strides
[
k
]);
reduce_var
=
static_cast
<
MPType
>
(
reducer
(
reduce_var
,
static_cast
<
MPType
>
(
transformer
(
x
[
idx_x
]))));
}
__syncthreads
();
reduce_var
=
cub
::
BlockReduce
<
MPType
,
BlockDim
>
(
temp_storage
)
.
Reduce
(
reduce_var
,
reducer
);
if
(
threadIdx
.
x
==
0
)
{
y
[
blockIdx
.
x
]
=
static_cast
<
Ty
>
(
reduce_var
);
}
}
static
inline
std
::
vector
<
int
>
GetStrides
(
const
std
::
vector
<
int
>&
dims
)
{
int
n
=
static_cast
<
int
>
(
dims
.
size
());
if
(
n
==
0
)
return
std
::
vector
<
int
>
();
std
::
vector
<
int
>
strides
(
n
);
strides
.
back
()
=
1
;
for
(
int
i
=
n
-
2
;
i
>=
0
;
--
i
)
{
strides
[
i
]
=
strides
[
i
+
1
]
*
dims
[
i
+
1
];
}
return
strides
;
}
static
inline
std
::
vector
<
int
>
GetStrides
(
const
std
::
vector
<
int
>&
dims
,
const
std
::
vector
<
int
>&
idx
)
{
int
n
=
static_cast
<
int
>
(
idx
.
size
());
if
(
n
==
0
)
return
std
::
vector
<
int
>
();
std
::
vector
<
int
>
strides
(
n
);
strides
.
back
()
=
1
;
for
(
int
i
=
n
-
2
;
i
>=
0
;
--
i
)
{
strides
[
i
]
=
strides
[
i
+
1
]
*
dims
[
idx
[
i
+
1
]];
}
return
strides
;
}
#ifdef __HIPCC__
constexpr
int
kMaxBlockDim
=
256
;
#else
constexpr
int
kMaxBlockDim
=
512
;
#endif
static
inline
int
GetDesiredBlockDim
(
int
block_dim
)
{
return
block_dim
>=
kMaxBlockDim
?
kMaxBlockDim
:
(
1
<<
static_cast
<
int
>
(
std
::
log2
(
block_dim
)));
}
static
inline
void
CheckReduceRankIsValid
(
int
reduce_rank
,
int
rank
)
{
if
(
rank
%
2
==
0
)
{
PADDLE_ENFORCE_EQ
(
reduce_rank
,
rank
/
2
,
platform
::
errors
::
InvalidArgument
(
"ReduceOp: invalid reduce rank. When rank = %d, "
"reduce_rank must be %d, but got %d."
,
rank
,
rank
/
2
,
reduce_rank
));
}
else
{
auto
lower_rank
=
(
rank
-
1
)
/
2
;
auto
upper_rank
=
(
rank
+
1
)
/
2
;
PADDLE_ENFORCE_EQ
(
reduce_rank
==
lower_rank
||
reduce_rank
==
upper_rank
,
true
,
platform
::
errors
::
InvalidArgument
(
"ReduceOp: invalid reduce rank. When rank = %d, reduce_rank "
"must be %d or %d, but got %d."
,
rank
,
lower_rank
,
upper_rank
,
reduce_rank
));
}
}
template
<
typename
Tx
,
typename
MPType
,
typename
Ty
,
typename
ReduceOp
,
typename
TransformOp
,
int
BlockDim
>
typename
std
::
enable_if
<!
std
::
is_same
<
Tx
,
paddle
::
platform
::
float16
>::
value
,
void
>::
type
LaunchCubReduceKernel
(
const
Tx
*
x_data
,
Ty
*
y_data
,
const
platform
::
Place
&
place
,
const
ReduceOp
&
reducer
,
const
TransformOp
&
transformer
,
const
MPType
&
init
,
int
reduce_num
,
gpuStream_t
stream
)
{
cub
::
TransformInputIterator
<
Ty
,
TransformOp
,
const
Tx
*>
trans_x
(
x_data
,
transformer
);
size_t
temp_storage_bytes
=
0
;
cub
::
DeviceReduce
::
Reduce
(
nullptr
,
temp_storage_bytes
,
trans_x
,
y_data
,
reduce_num
,
reducer
,
init
,
stream
);
framework
::
Tensor
tmp
;
auto
*
temp_storage
=
tmp
.
mutable_data
<
uint8_t
>
(
framework
::
make_ddim
({
static_cast
<
int64_t
>
(
temp_storage_bytes
)}),
place
);
cub
::
DeviceReduce
::
Reduce
(
temp_storage
,
temp_storage_bytes
,
trans_x
,
y_data
,
reduce_num
,
reducer
,
init
,
stream
);
}
template
<
typename
Tx
,
typename
MPType
,
typename
Ty
,
typename
ReduceOp
,
typename
TransformOp
,
int
BlockDim
>
typename
std
::
enable_if
<
std
::
is_same
<
Tx
,
paddle
::
platform
::
float16
>::
value
,
void
>::
type
LaunchCubReduceKernel
(
const
Tx
*
x_data
,
Ty
*
y_data
,
const
platform
::
Place
&
place
,
const
ReduceOp
&
reducer
,
const
TransformOp
&
transformer
,
const
MPType
&
init
,
int
reduce_num
,
gpuStream_t
stream
)
{
int
element_per_block
=
BlockDim
*
10
;
int
block_per_grid
=
(
reduce_num
+
element_per_block
-
1
)
/
element_per_block
;
framework
::
Tensor
tmp
;
auto
*
temp_storage
=
tmp
.
mutable_data
<
MPType
>
(
framework
::
make_ddim
(
{
static_cast
<
int64_t
>
(
block_per_grid
*
sizeof
(
MPType
))}),
place
);
// each block reduce number to interim result
ReduceKernel1D
<
Tx
,
MPType
,
MPType
,
ReduceOp
,
TransformOp
,
BlockDim
><<<
block_per_grid
,
BlockDim
,
0
,
stream
>>>
(
x_data
,
temp_storage
,
reducer
,
transformer
,
init
,
reduce_num
);
// reduce all number to final result
ReduceKernel1D
<
MPType
,
MPType
,
Ty
,
ReduceOp
,
TransformOp
,
BlockDim
><<<
1
,
BlockDim
,
0
,
stream
>>>
(
temp_storage
,
y_data
,
reducer
,
transformer
,
init
,
block_per_grid
);
}
template
<
typename
Tx
,
typename
Ty
,
int
BlockDim
,
typename
ReduceOp
,
typename
TransformOp
>
static
void
TensorReduceImpl
(
const
Tx
*
x_data
,
Ty
*
y_data
,
const
platform
::
Place
&
place
,
const
ReduceOp
&
reducer
,
const
TransformOp
&
transformer
,
const
Ty
&
init
,
int
left_num
,
int
reduce_num
,
const
std
::
vector
<
int
>&
x_strides
,
const
std
::
vector
<
int
>&
reduce_dim
,
const
std
::
vector
<
int
>&
reduce_strides
,
const
std
::
vector
<
int
>&
left_dim
,
const
std
::
vector
<
int
>&
left_strides
,
gpuStream_t
stream
)
{
using
MPType
=
typename
details
::
MPTypeTrait
<
Ty
>::
Type
;
MPType
init_mp
=
static_cast
<
MPType
>
(
init
);
#define CUB_RANK_CASE(i, ...) \
case i: { \
constexpr auto kRank = i; \
switch (reduce_rank) { __VA_ARGS__; } \
} break
#define CUB_REDUCE_RANK_CASE(i, ...) \
case i: { \
constexpr auto kReduceRank = i; \
ReduceKernel<Tx, MPType, Ty, ReduceOp, TransformOp, BlockDim, kRank, \
kReduceRank><<<left_num, BlockDim, 0, stream>>>( \
x_data, y_data, reducer, transformer, init_mp, reduce_num, \
Array<int, kRank>::From(x_strides), \
Array<int, kReduceRank>::From(reduce_dim), \
Array<int, kReduceRank>::From(reduce_strides), \
Array<int, kRank - kReduceRank>::From(left_dim), \
Array<int, kRank - kReduceRank>::From(left_strides)); \
} break
int
rank
=
x_strides
.
size
();
int
reduce_rank
=
reduce_strides
.
size
();
if
(
rank
==
reduce_rank
)
{
LaunchCubReduceKernel
<
Tx
,
MPType
,
Ty
,
ReduceOp
,
TransformOp
,
BlockDim
>
(
x_data
,
y_data
,
place
,
reducer
,
transformer
,
init_mp
,
reduce_num
,
stream
);
return
;
}
if
(
rank
==
2
&&
reduce_rank
==
1
&&
reduce_dim
[
0
]
==
1
)
{
ReduceKernel2D
<
Tx
,
MPType
,
Ty
,
ReduceOp
,
TransformOp
,
BlockDim
><<<
left_num
,
BlockDim
,
0
,
stream
>>>
(
x_data
,
y_data
,
reducer
,
transformer
,
init_mp
,
reduce_num
);
return
;
}
/*
if (rank == 3 && reduce_rank == 1 && reduce_dim[0] == 1) {
// TODO(liangdun): we can optimize 3d case which the 2nd axis is reduced.
// Currently, it is handled by code below, but inefficient
return;
}
*/
/**
* Since we have combined the adjacent reduce dimensions inside TensorReduce,
* The reduce ranks and non-reduce ranks must be interleaving. That is to say,
* the rank of Tensor must be `1010...` or `0101...` where 1 represents that
* the dimension is about to be reduced.
*
* Therefore,
* If rank is odd, only need to switch-case (rank - 1)/2 and (rank + 1)/2.
* If rank is even, only need to switch-case rank/2.
*
* The total switch-case numbers reduce from 1+2+3+...+8=36 to (1+2)*4=12,
* it would speed up compiling and make the binary size lower.
*/
CheckReduceRankIsValid
(
reduce_rank
,
rank
);
switch
(
rank
)
{
CUB_RANK_CASE
(
2
,
CUB_REDUCE_RANK_CASE
(
1
););
CUB_RANK_CASE
(
3
,
CUB_REDUCE_RANK_CASE
(
1
);
CUB_REDUCE_RANK_CASE
(
2
););
CUB_RANK_CASE
(
4
,
CUB_REDUCE_RANK_CASE
(
2
););
CUB_RANK_CASE
(
5
,
CUB_REDUCE_RANK_CASE
(
2
);
CUB_REDUCE_RANK_CASE
(
3
););
CUB_RANK_CASE
(
6
,
CUB_REDUCE_RANK_CASE
(
3
););
CUB_RANK_CASE
(
7
,
CUB_REDUCE_RANK_CASE
(
3
);
CUB_REDUCE_RANK_CASE
(
4
););
CUB_RANK_CASE
(
8
,
CUB_REDUCE_RANK_CASE
(
4
););
CUB_RANK_CASE
(
9
,
CUB_REDUCE_RANK_CASE
(
4
);
CUB_REDUCE_RANK_CASE
(
5
););
}
#undef CUB_REDUCE_RANK_CASE
#undef CUB_RANK_CASE
}
}
// namespace detail
template
<
typename
Tx
,
typename
Ty
,
typename
ReduceOp
,
typename
TransformOp
>
void
TensorReduce
(
const
framework
::
Tensor
&
x
,
framework
::
Tensor
*
y
,
std
::
vector
<
int
>
origin_reduce_dims
,
const
Ty
&
init
,
const
ReduceOp
&
reducer
,
const
TransformOp
&
transformer
,
gpuStream_t
stream
)
{
auto
x_dim
=
framework
::
vectorize
<
int
>
(
x
.
dims
());
std
::
vector
<
int
>
new_x_dim
,
new_reduce_dims
;
int
is_reduced
=
0
;
for
(
auto
e
:
origin_reduce_dims
)
{
auto
pos
=
e
>=
0
?
e
:
e
+
x_dim
.
size
();
is_reduced
|=
1
<<
e
;
}
for
(
int
i
=
0
;
i
<
x_dim
.
size
();
i
++
)
{
if
((
i
==
0
)
||
(((
is_reduced
>>
i
)
^
(
is_reduced
>>
(
i
-
1
)))
&
1
))
{
new_x_dim
.
push_back
(
x_dim
[
i
]);
if
((
is_reduced
>>
i
)
&
1
)
new_reduce_dims
.
push_back
(
new_x_dim
.
size
()
-
1
);
}
else
{
new_x_dim
[
new_x_dim
.
size
()
-
1
]
*=
x_dim
[
i
];
}
}
x_dim
=
new_x_dim
;
origin_reduce_dims
=
new_reduce_dims
;
int
x_rank
=
static_cast
<
int
>
(
x_dim
.
size
());
std
::
set
<
int
>
left_set
,
reduce_set
;
for
(
int
i
=
0
;
i
<
x_rank
;
++
i
)
left_set
.
insert
(
i
);
for
(
auto
e
:
origin_reduce_dims
)
{
left_set
.
erase
(
e
);
reduce_set
.
insert
(
e
);
}
std
::
vector
<
int
>
reduce_dim
(
reduce_set
.
begin
(),
reduce_set
.
end
());
std
::
vector
<
int
>
left_dim
(
left_set
.
begin
(),
left_set
.
end
());
std
::
vector
<
int
>
x_strides
=
detail
::
GetStrides
(
x_dim
);
std
::
vector
<
int
>
reduce_strides
=
detail
::
GetStrides
(
x_dim
,
reduce_dim
);
std
::
vector
<
int
>
left_strides
=
detail
::
GetStrides
(
x_dim
,
left_dim
);
int
reduce_num
=
reduce_strides
[
0
]
*
x_dim
[
reduce_dim
[
0
]];
int
left_num
=
1
;
if
(
left_dim
.
size
())
left_num
=
left_strides
[
0
]
*
x_dim
[
left_dim
[
0
]];
std
::
vector
<
int
>
y_dim
(
left_dim
.
size
());
for
(
int
i
=
0
;
i
<
left_dim
.
size
();
++
i
)
{
y_dim
[
i
]
=
x_dim
[
left_dim
[
i
]];
}
auto
x_data
=
x
.
data
<
Tx
>
();
auto
y_data
=
y
->
mutable_data
<
Ty
>
(
x
.
place
());
if
(
reduce_num
==
1
)
{
auto
out_dims
=
y
->
dims
();
framework
::
TensorCopy
(
x
,
y
->
place
(),
y
);
y
->
Resize
(
out_dims
);
return
;
}
#define CUB_BLOCK_DIM_CASE(block_dim) \
case block_dim: { \
constexpr auto kBlockDim = block_dim; \
detail::TensorReduceImpl<Tx, Ty, block_dim, ReduceOp, TransformOp>( \
x_data, y_data, x.place(), reducer, transformer, init, left_num, \
reduce_num, x_strides, reduce_dim, reduce_strides, left_dim, \
left_strides, stream); \
} break
switch
(
detail
::
GetDesiredBlockDim
(
reduce_num
))
{
CUB_BLOCK_DIM_CASE
(
512
);
CUB_BLOCK_DIM_CASE
(
256
);
CUB_BLOCK_DIM_CASE
(
128
);
CUB_BLOCK_DIM_CASE
(
64
);
CUB_BLOCK_DIM_CASE
(
32
);
CUB_BLOCK_DIM_CASE
(
16
);
CUB_BLOCK_DIM_CASE
(
8
);
CUB_BLOCK_DIM_CASE
(
4
);
CUB_BLOCK_DIM_CASE
(
2
);
}
#undef CUB_BLOCK_DIM_CASE
}
template
<
typename
Tx
,
typename
ReduceOp
,
template
<
typename
>
class
TransformOp
>
struct
TensorReduceFunctor
{
const
framework
::
Tensor
&
x
;
framework
::
Tensor
*
y
;
std
::
vector
<
int
>
origin_reduce_dims
;
const
double
&
init
;
const
ReduceOp
&
reducer
;
gpuStream_t
stream
;
TensorReduceFunctor
(
const
framework
::
Tensor
&
x
,
framework
::
Tensor
*
y
,
std
::
vector
<
int
>
origin_reduce_dims
,
const
double
&
init
,
const
ReduceOp
&
reducer
,
gpuStream_t
stream
)
:
x
(
x
),
y
(
y
),
origin_reduce_dims
(
origin_reduce_dims
),
init
(
init
),
reducer
(
reducer
),
stream
(
stream
)
{}
template
<
typename
Ty
>
void
apply
()
const
{
const
Ty
&
init_cast
=
static_cast
<
Ty
>
(
init
);
TensorReduce
<
Tx
,
Ty
,
ReduceOp
,
TransformOp
<
Ty
>>
(
x
,
y
,
origin_reduce_dims
,
init_cast
,
reducer
,
TransformOp
<
Ty
>
(),
stream
);
}
};
}
// namespace operators
}
// namespace paddle
paddle/fluid/operators/reduce_ops/frobenius_norm_op.cu
浏览文件 @
9a8a4c77
...
@@ -12,8 +12,8 @@
...
@@ -12,8 +12,8 @@
// See the License for the specific language governing permissions and
// See the License for the specific language governing permissions and
// limitations under the License.
// limitations under the License.
#include "paddle/fluid/operators/reduce_ops/cub_reduce.h"
#include "paddle/fluid/operators/reduce_ops/frobenius_norm_op.h"
#include "paddle/fluid/operators/reduce_ops/frobenius_norm_op.h"
#include "paddle/fluid/operators/reduce_ops/reduce_op.cu.h"
template
<
typename
T
>
template
<
typename
T
>
using
CUDAFrobeniusNormKernel
=
using
CUDAFrobeniusNormKernel
=
...
...
paddle/fluid/operators/reduce_ops/reduce_sum_op.part.cu
浏览文件 @
9a8a4c77
...
@@ -12,7 +12,7 @@
...
@@ -12,7 +12,7 @@
// See the License for the specific language governing permissions and
// See the License for the specific language governing permissions and
// limitations under the License.
// limitations under the License.
#include "paddle/fluid/operators/reduce_ops/
cub_reduce
.h"
#include "paddle/fluid/operators/reduce_ops/
reduce_op.cu
.h"
#include "paddle/fluid/operators/reduce_ops/reduce_sum_op.h"
#include "paddle/fluid/operators/reduce_ops/reduce_sum_op.h"
template
<
typename
T
>
template
<
typename
T
>
...
...
paddle/fluid/operators/solve_op.h
浏览文件 @
9a8a4c77
...
@@ -26,7 +26,7 @@ limitations under the License. */
...
@@ -26,7 +26,7 @@ limitations under the License. */
#include "paddle/fluid/operators/reduce_ops/reduce_sum_op.h"
#include "paddle/fluid/operators/reduce_ops/reduce_sum_op.h"
#include "paddle/fluid/operators/squeeze_op.h"
#include "paddle/fluid/operators/squeeze_op.h"
#if defined(__NVCC__) || defined(__HIPCC__)
#if defined(__NVCC__) || defined(__HIPCC__)
#include "paddle/fluid/operators/reduce_ops/
cub_reduce
.h"
#include "paddle/fluid/operators/reduce_ops/
reduce_op.cu
.h"
#endif
#endif
#define MAX_RANK_SUPPORTED 6
#define MAX_RANK_SUPPORTED 6
...
@@ -39,24 +39,14 @@ using framework::To32BitIndex;
...
@@ -39,24 +39,14 @@ using framework::To32BitIndex;
constexpr
int
kMULMKLDNNINT8
=
1
;
constexpr
int
kMULMKLDNNINT8
=
1
;
struct
IdentityFunctor
{
HOSTDEVICE
explicit
inline
IdentityFunctor
()
{}
template
<
typename
U
>
HOSTDEVICE
inline
U
operator
()(
const
U
&
x
)
const
{
return
x
;
}
};
template
<
typename
DeviceContext
,
typename
T
>
template
<
typename
DeviceContext
,
typename
T
>
void
ReduceSumForSolve
(
const
Tensor
*
input
,
Tensor
*
output
,
void
ReduceSumForSolve
(
const
Tensor
*
input
,
Tensor
*
output
,
const
std
::
vector
<
int
>&
reduce_dims
,
bool
keep_dim
,
const
std
::
vector
<
int
>&
reduce_dims
,
bool
keep_dim
,
const
paddle
::
framework
::
ExecutionContext
&
ctx
)
{
const
paddle
::
framework
::
ExecutionContext
&
ctx
)
{
#if defined(__NVCC__) || defined(__HIPCC__)
#if defined(__NVCC__) || defined(__HIPCC__)
auto
stream
=
ctx
.
cuda_device_context
().
stream
();
auto
stream
=
ctx
.
cuda_device_context
().
stream
();
TensorReduce
<
T
,
T
,
cub
::
Sum
,
IdentityFunctor
>
(
*
input
,
output
,
reduce_dims
,
TensorReduceFunctorImpl
<
T
,
T
,
kps
::
AddFunctor
,
kps
::
IdentityFunctor
<
T
>>
(
static_cast
<
T
>
(
0
),
cub
::
Sum
(),
*
input
,
output
,
kps
::
IdentityFunctor
<
T
>
(),
reduce_dims
,
stream
);
IdentityFunctor
(),
stream
);
#else
#else
ReduceKernelFunctor
<
DeviceContext
,
T
,
ops
::
SumFunctor
>
(
ReduceKernelFunctor
<
DeviceContext
,
T
,
ops
::
SumFunctor
>
(
input
,
output
,
reduce_dims
,
keep_dim
,
false
,
ctx
)
input
,
output
,
reduce_dims
,
keep_dim
,
false
,
ctx
)
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录