未验证 提交 9a570fb9 编写于 作者: Y yuyang18

Add demo code about pyreader

上级 76086df4
......@@ -13,13 +13,14 @@
# limitations under the License.
import contextlib
from .. import core
from ..framework import convert_np_dtype_to_dtype_, default_main_program, default_startup_program, Program
from ..unique_name import generate as unique_name
from control_flow import BlockGuard
from ..layer_helper import LayerHelper
from layer_function_generator import templatedoc
from .. import core
from ..executor import global_scope
from layer_function_generator import generate_layer_fn, templatedoc
from ..framework import convert_np_dtype_to_dtype_, default_main_program, \
default_startup_program
from ..layer_helper import LayerHelper
from ..unique_name import generate as unique_name
__all__ = [
'data', 'BlockGuardServ', 'ListenAndServ', 'Send', 'Recv',
......@@ -446,7 +447,7 @@ def random_data_generator(low, high, shapes, lod_levels, for_parallel=True):
return monkey_patch_reader_methods(main_prog_var)
def py_reader(capacity, shapes, dtypes, lod_levels=None):
def py_reader(capacity, shapes, dtypes, lod_levels=None, name=None):
"""
Create a reader and blocking queue for data feeding in Python
......@@ -460,9 +461,11 @@ def py_reader(capacity, shapes, dtypes, lod_levels=None):
Args:
capacity(int): The maximum capacity of the BlockingQueue.
shapes(list): List of tuples which declaring data shapes.
dtypes(list): List of strs which declaring data type.
lod_levels(list): List of ints which declaring data lod_level.
shapes(list|tuple): List of tuples which declaring data shapes.
dtypes(list|tuple): List of strs which declaring data type.
lod_levels(list|tuple): List of ints which declaring data lod_level.
name(basestring): The prefix Python queue name and Reader name. None will
be generated automatically.
Returns:
tuple(Variable, BlockingQueue):
......@@ -503,12 +506,18 @@ def py_reader(capacity, shapes, dtypes, lod_levels=None):
if lod_levels is None:
lod_levels = [0] * len(shapes)
if name is None:
queue_name = unique_name('lod_tensor_blocking_queue')
reader_name = unique_name('create_py_reader')
else:
queue_name = "_".join([name, "queue"])
reader_name = "_".join([name, "reader"])
var = global_scope().var(queue_name)
feed_queue = core.init_lod_tensor_blocking_queue(var, capacity, shapes)
startup_blk = default_startup_program().current_block()
startup_var = startup_blk.create_var(name=unique_name('create_py_reader'))
startup_var = startup_blk.create_var(name=reader_name)
startup_blk.append_op(
type='create_py_reader',
inputs={'blocking_queue': queue_name},
......
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import paddle.fluid as fluid
import paddle.dataset.mnist as mnist
import paddle
import threading
import numpy
def network(is_train):
reader, queue = fluid.layers.py_reader(
capacity=10,
shapes=((-1, 784), (-1, 1)),
dtypes=('float32', 'int64'),
name="train_reader" if is_train else "test_reader")
img, label = fluid.layers.read_file(fluid.layers.double_buffer(reader))
hidden = img
for i in xrange(2):
hidden = fluid.layers.fc(input=hidden, size=100, act='tanh')
hidden = fluid.layers.dropout(
hidden, dropout_prob=0.5, is_test=not is_train)
prediction = fluid.layers.fc(input=hidden, size=10, act='softmax')
loss = fluid.layers.cross_entropy(input=prediction, label=label)
return fluid.layers.mean(loss), queue
def pipe_reader_to_queue(reader_creator, queue):
with fluid.program_guard(fluid.Program(), fluid.Program()):
feeder = fluid.DataFeeder(
feed_list=[
fluid.layers.data(
name='img', dtype='float32', shape=[784]),
fluid.layers.data(
name='label', dtype='int64', shape=[1])
],
place=fluid.CPUPlace())
def __thread_main__():
for data in feeder.decorate_reader(
reader_creator, multi_devices=False)():
tmp = fluid.core.LoDTensorArray()
tmp.append(data['img'])
tmp.append(data['label'])
queue.push(tmp)
queue.close()
th = threading.Thread(target=__thread_main__)
th.start()
return th
def main():
train_prog = fluid.Program()
startup_prog = fluid.Program()
with fluid.program_guard(train_prog, startup_prog):
with fluid.unique_name.guard():
loss, train_queue = network(True)
adam = fluid.optimizer.Adam(learning_rate=0.01)
adam.minimize(loss)
test_prog = fluid.Program()
with fluid.program_guard(test_prog, fluid.Program()):
with fluid.unique_name.guard():
test_loss, test_queue = network(False)
fluid.Executor(fluid.CUDAPlace(0)).run(startup_prog)
trainer = fluid.ParallelExecutor(use_cuda=True, loss_name=loss.name)
tester = fluid.ParallelExecutor(use_cuda=True, share_vars_from=trainer)
for epoch_id in xrange(10):
pipe_reader_to_queue(paddle.batch(mnist.train(), 32), train_queue)
pipe_reader_to_queue(paddle.batch(mnist.test(), 32), test_queue)
try:
print 'train_loss', numpy.array(trainer.run(fetch_list=[loss.name]))
except fluid.core.EOFException:
print 'End of epoch', epoch_id
if __name__ == '__main__':
main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册