diff --git a/paddle/operators/sequence_slice_op.cc b/paddle/operators/sequence_slice_op.cc index a7e659b76338c893db546ad581669b32fc034d5c..a5928e4cfec0e64b485127896cee784b1de172c9 100755 --- a/paddle/operators/sequence_slice_op.cc +++ b/paddle/operators/sequence_slice_op.cc @@ -75,14 +75,17 @@ class SequenceSliceOpMaker : public framework::OpProtoAndCheckerMaker { "the input of SequenceSliceOp."); AddInput("Offset", "(Tensor), " - "A vector to describes offset for sub sequence item."); + "a vector to describe the offset of every input sequence for " + "sub sequence item."); AddInput("Length", "(Tensor), " - "A vector to describes length for sub sequence item."); + "a vector to describe the length of every input sequence for " + "sub sequence item."); AddOutput("Out", - "(LoDTensor), output of sequence slice Op."); + "(LoDTensor), The output of SequenceSliceOp."); AddComment(R"DOC( Sequence slice operator + The operator crop a subsequence from given sequence with given start offset and subsequence length. It only supports sequence (LoD Tensor with level number is 1). - Case: @@ -91,13 +94,13 @@ It only supports sequence (LoD Tensor with level number is 1). c1, c2] [d1, d2; e1, e2]] - LoD(X) = {{0, 3, 5}}; Dims(X) = (4, 1, 2) - Offset = (0, 1); Length = (2, 1) + LoD(X) = {{0, 3, 5}}; Dims(X) = (5, 2) + Offset = [0, 1]; Length = [2, 1] Out = [[a1, a2; b1, b2] [e1, e2]] - LoD(Out) = {{0, 2, 3}} + LoD(Out) = {{0, 2, 3}}; Dims(Out) = (3, 2) NOTE: The length of the input, offset and length should be the same. The offset start from 0. )DOC"); } diff --git a/paddle/operators/sequence_slice_op.h b/paddle/operators/sequence_slice_op.h index 7599a0abf402a90a8b843ce0143ff597b8b80333..8717413197a40a4727e1a61ef18bf5ab17bb2b33 100755 --- a/paddle/operators/sequence_slice_op.h +++ b/paddle/operators/sequence_slice_op.h @@ -87,9 +87,10 @@ class SequenceSliceOpKernel : public framework::OpKernel { out->mutable_data(ctx.GetPlace()); auto out_lod = SequenceSliceLoD(*in, offset_data, length_data); + auto out_dims = in->dims(); + out_dims[0] = out_lod[0][out_lod[0].size() - 1]; + out->Resize(out_dims); out->set_lod(out_lod); - math::SetConstant set_zero; - set_zero(ctx.device_context(), out, static_cast(0)); auto in_stride = framework::stride(in->dims()); auto out_stride = framework::stride(out->dims()); diff --git a/python/paddle/v2/framework/tests/test_sequence_slice_op.py b/python/paddle/v2/fluid/tests/test_sequence_slice_op.py similarity index 60% rename from python/paddle/v2/framework/tests/test_sequence_slice_op.py rename to python/paddle/v2/fluid/tests/test_sequence_slice_op.py index 47b616b743427797a2dc47f9e7839ab220121224..80f4bfbdd1160c1423c984e73cac54fbd3831241 100755 --- a/python/paddle/v2/framework/tests/test_sequence_slice_op.py +++ b/python/paddle/v2/fluid/tests/test_sequence_slice_op.py @@ -5,25 +5,32 @@ from op_test import OpTest class TestSequenceSliceOp(OpTest): def set_data(self): + self.init_test_case() # only supprot one level LoD - x = np.random.random((100, 3, 2)).astype('float32') - lod = [[0, 20, 40, 60, 80, 100]] - offset = np.array([1, 2, 3, 4, 5]).flatten().astype("int64") - length = np.array([10, 8, 6, 4, 2]).flatten().astype("int64") + x = np.random.random(self.x_dim).astype('float32') + lod = self.x_lod + offset = np.array(self.offset).flatten().astype("int64") + length = np.array(self.length).flatten().astype("int64") self.inputs = {'X': (x, lod), 'Offset': offset, 'Length': length} - outs = np.zeros((100, 3, 2)).astype('float32') + outs = [] #np.zeros((100, 3, 2)).astype('float32') out_lod = [[0]] out_lod_offset = 0 for i in range(len(offset)): sub_x = x[lod[0][i] + offset[i]: lod[0] [i] + offset[i] + length[i], :] out_lod_offset = out_lod_offset + len(sub_x) - outs[out_lod[0][i]: out_lod_offset, :] = sub_x + outs.append(sub_x) out_lod[0].append(out_lod_offset) - + outs = np.concatenate(outs, axis=0) self.outputs = {'Out': (outs, out_lod)} + def init_test_case(self): + self.x_dim = (100, 3, 2) + self.x_lod = [[0, 20, 40, 60, 80, 100]] + self.offset = [1, 2, 3, 4, 5] + self.length = [10, 8, 6, 4, 2] + def setUp(self): self.op_type = "sequence_slice" self.set_data()