Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
9988f8ec
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
体验新版 GitCode,发现更多精彩内容 >>
未验证
提交
9988f8ec
编写于
6月 19, 2018
作者:
Y
Yu Yang
提交者:
GitHub
6月 19, 2018
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #11559 from qingqing01/fluid_doc_profiler
Polish profiler Python API.
上级
2c974d67
1473033f
变更
1
显示空白变更内容
内联
并排
Showing
1 changed file
with
112 addition
and
5 deletion
+112
-5
python/paddle/fluid/profiler.py
python/paddle/fluid/profiler.py
+112
-5
未找到文件。
python/paddle/fluid/profiler.py
浏览文件 @
9988f8ec
...
@@ -42,6 +42,9 @@ def cuda_profiler(output_file, output_mode=None, config=None):
...
@@ -42,6 +42,9 @@ def cuda_profiler(output_file, output_mode=None, config=None):
counters/options for profiling by `config` argument. The default config
counters/options for profiling by `config` argument. The default config
is ['gpustarttimestamp', 'gpustarttimestamp', 'gridsize3d',
is ['gpustarttimestamp', 'gpustarttimestamp', 'gridsize3d',
'threadblocksize', 'streamid', 'enableonstart 0', 'conckerneltrace'].
'threadblocksize', 'streamid', 'enableonstart 0', 'conckerneltrace'].
Then users can use NVIDIA Visual Profiler
(https://developer.nvidia.com/nvidia-visual-profiler) tools to load this
this output file to visualize results.
Args:
Args:
output_file (string) : The output file name, the result will be
output_file (string) : The output file name, the result will be
...
@@ -50,6 +53,33 @@ def cuda_profiler(output_file, output_mode=None, config=None):
...
@@ -50,6 +53,33 @@ def cuda_profiler(output_file, output_mode=None, config=None):
Comma separated values format. It should be 'kvp' or 'csv'.
Comma separated values format. It should be 'kvp' or 'csv'.
config (list of string) : The profiler options and counters can refer
config (list of string) : The profiler options and counters can refer
to "Compute Command Line Profiler User Guide".
to "Compute Command Line Profiler User Guide".
Raises:
ValueError: If `output_mode` is not in ['kvp', 'csv'].
Examples:
.. code-block:: python
import paddle.fluid as fluid
import paddle.fluid.profiler as profiler
epoc = 8
dshape = [4, 3, 28, 28]
data = fluid.layers.data(name='data', shape=[3, 28, 28], dtype='float32')
conv = fluid.layers.conv2d(data, 20, 3, stride=[1, 1], padding=[1, 1])
place = fluid.CUDAPlace(0)
exe = fluid.Executor(place)
exe.run(fluid.default_startup_program())
output_file = 'cuda_profiler.txt'
with profiler.cuda_profiler(output_file, 'csv') as nvprof:
for i in range(epoc):
input = np.random.random(dshape).astype('float32')
exe.run(fluid.default_main_program(), feed={'data': input})
# then use NVIDIA Visual Profiler (nvvp) to load this output file
# to visualize results.
"""
"""
if
output_mode
is
None
:
if
output_mode
is
None
:
output_mode
=
'csv'
output_mode
=
'csv'
...
@@ -69,19 +99,52 @@ def cuda_profiler(output_file, output_mode=None, config=None):
...
@@ -69,19 +99,52 @@ def cuda_profiler(output_file, output_mode=None, config=None):
def
reset_profiler
():
def
reset_profiler
():
"""The profiler clear interface.
"""
reset_profiler will clear the previous time record.
Clear the previous time record. This interface does not work for
`fluid.profiler.cuda_profiler`, it only works for
`fluid.profiler.start_profiler`, `fluid.profiler.stop_profiler`,
and `fluid.profiler.profiler`.
Examples:
.. code-block:: python
import paddle.fluid.profiler as profiler
with profiler.profiler(state, 'total', '/tmp/profile'):
for iter in range(10):
if iter == 2:
profiler.reset_profiler()
# ...
"""
"""
core
.
reset_profiler
()
core
.
reset_profiler
()
def
start_profiler
(
state
):
def
start_profiler
(
state
):
"""Enable the profiler.
"""
Enable the profiler. Uers can use `fluid.profiler.start_profiler` and
`fluid.profiler.stop_profiler` to insert the code, except the usage of
`fluid.profiler.profiler` interface.
Args:
Args:
state (string) : The profiling state, which should be 'CPU', 'GPU'
state (string) : The profiling state, which should be 'CPU', 'GPU'
or 'All'. 'CPU' means only profile CPU. 'GPU' means profiling
or 'All'. 'CPU' means only profile CPU. 'GPU' means profiling
GPU as well. 'All' also generates timeline.
GPU as well. 'All' also generates timeline.
Raises:
ValueError: If `state` is not in ['CPU', 'GPU', 'All'].
Examples:
.. code-block:: python
import paddle.fluid.profiler as profiler
profiler.start_profiler('GPU')
for iter in range(10):
if iter == 2:
profiler.reset_profiler()
# except each iteration
profiler.stop_profiler('total', '/tmp/profile')
"""
"""
if
core
.
is_profiler_enabled
():
if
core
.
is_profiler_enabled
():
return
return
...
@@ -97,7 +160,10 @@ def start_profiler(state):
...
@@ -97,7 +160,10 @@ def start_profiler(state):
def
stop_profiler
(
sorted_key
=
None
,
profile_path
=
'/tmp/profile'
):
def
stop_profiler
(
sorted_key
=
None
,
profile_path
=
'/tmp/profile'
):
"""Stop the profiler.
"""
Stop the profiler. Uers can use `fluid.profiler.start_profiler` and
`fluid.profiler.stop_profiler` to insert the code, except the usage of
`fluid.profiler.profiler` interface.
Args:
Args:
sorted_key (string) : If None, the profiling results will be printed
sorted_key (string) : If None, the profiling results will be printed
...
@@ -111,6 +177,23 @@ def stop_profiler(sorted_key=None, profile_path='/tmp/profile'):
...
@@ -111,6 +177,23 @@ def stop_profiler(sorted_key=None, profile_path='/tmp/profile'):
The `ave` means sorting by the average execution time.
The `ave` means sorting by the average execution time.
profile_path (string) : If state == 'All', it will write a profile
profile_path (string) : If state == 'All', it will write a profile
proto output file.
proto output file.
Raises:
ValueError: If `sorted_key` is not in
['calls', 'total', 'max', 'min', 'ave'].
Examples:
.. code-block:: python
import paddle.fluid.profiler as profiler
profiler.start_profiler('GPU')
for iter in range(10):
if iter == 2:
profiler.reset_profiler()
# except each iteration
profiler.stop_profiler('total', '/tmp/profile')
"""
"""
if
not
core
.
is_profiler_enabled
():
if
not
core
.
is_profiler_enabled
():
return
return
...
@@ -137,7 +220,12 @@ def profiler(state, sorted_key=None, profile_path='/tmp/profile'):
...
@@ -137,7 +220,12 @@ def profiler(state, sorted_key=None, profile_path='/tmp/profile'):
Different from cuda_profiler, this profiler can be used to profile both CPU
Different from cuda_profiler, this profiler can be used to profile both CPU
and GPU program. By defalut, it records the CPU and GPU operator kernels,
and GPU program. By defalut, it records the CPU and GPU operator kernels,
if you want to profile other program, you can refer the profiling tutorial
if you want to profile other program, you can refer the profiling tutorial
to add more records.
to add more records in C++ code.
If the state == 'All', a profile proto file will be written to
`profile_path`. This file records timeline information during the execution.
Then users can visualize this file to see the timeline, please refer
https://github.com/PaddlePaddle/Paddle/blob/develop/doc/fluid/howto/optimization/timeline.md
Args:
Args:
state (string) : The profiling state, which should be 'CPU' or 'GPU',
state (string) : The profiling state, which should be 'CPU' or 'GPU',
...
@@ -156,6 +244,25 @@ def profiler(state, sorted_key=None, profile_path='/tmp/profile'):
...
@@ -156,6 +244,25 @@ def profiler(state, sorted_key=None, profile_path='/tmp/profile'):
The `ave` means sorting by the average execution time.
The `ave` means sorting by the average execution time.
profile_path (string) : If state == 'All', it will write a profile
profile_path (string) : If state == 'All', it will write a profile
proto output file.
proto output file.
Raises:
ValueError: If `state` is not in ['CPU', 'GPU', 'All']. If `sorted_key` is
not in ['calls', 'total', 'max', 'min', 'ave'].
Examples:
.. code-block:: python
import paddle.fluid.profiler as profiler
with profiler.profiler('All', 'total', '/tmp/profile') as prof:
for pass_id in range(pass_num):
for batch_id, data in enumerate(train_reader()):
exe.run(fluid.default_main_program(),
feed=feeder.feed(data),
fetch_list=[],
use_program_cache=True)
# ...
"""
"""
start_profiler
(
state
)
start_profiler
(
state
)
yield
yield
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录