Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
997651ab
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 2 年 前同步成功
通知
2325
Star
20933
Fork
5424
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
997651ab
编写于
2月 08, 2021
作者:
S
sandyhouse
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
update, test=develop
上级
d3105dbf
变更
2
显示空白变更内容
内联
并排
Showing
2 changed file
with
105 addition
and
63 deletion
+105
-63
paddle/fluid/framework/section_worker.cc
paddle/fluid/framework/section_worker.cc
+2
-2
python/paddle/distributed/fleet/meta_optimizers/sharding_optimizer.py
...e/distributed/fleet/meta_optimizers/sharding_optimizer.py
+103
-61
未找到文件。
paddle/fluid/framework/section_worker.cc
浏览文件 @
997651ab
...
...
@@ -99,8 +99,8 @@ void SectionWorker::TrainFiles() {
VLOG
(
3
)
<<
"Update: running op "
<<
op
->
Type
();
op
->
Run
(
*
microbatch_scopes_
[
num_microbatches_
-
1
],
place_
);
if
(
gc
)
{
DeleteUnusedTensors
(
*
microbatch_scopes_
[
0
],
op
.
get
(),
unused_vars_
,
gc
.
get
());
DeleteUnusedTensors
(
*
microbatch_scopes_
[
num_microbatches_
-
1
]
,
op
.
get
(),
unused_vars_
,
gc
.
get
());
}
}
}
...
...
python/paddle/distributed/fleet/meta_optimizers/sharding_optimizer.py
浏览文件 @
997651ab
...
...
@@ -40,6 +40,7 @@ class ShardingOptimizer(MetaOptimizerBase):
"LarsOptimizer"
,
"LambOptimizer"
,
"ModelParallelOptimizer"
,
"PipelineOptimizer"
,
]
self
.
meta_optimizers_black_list
=
[
"GraphExecutionOptimizer"
,
]
self
.
_main_program
=
None
...
...
@@ -98,14 +99,14 @@ class ShardingOptimizer(MetaOptimizerBase):
pp_optimizer
=
fluid
.
optimizer
.
PipelineOptimizer
(
self
.
inner_opt
)
main_program
=
loss
.
block
.
program
main_program
.
_pipeline_opt
=
dict
()
pp_rank
=
self
.
role_maker
.
_worker_index
(
)
//
self
.
user_defined_strategy
.
sharding_configs
[
'sharding_group_size'
]
pp_rank
=
self
.
role_maker
.
_worker_index
(
)
//
(
self
.
user_defined_strategy
.
sharding_configs
[
'sharding_group_size'
]
*
self
.
_inner_parallelism_size
)
main_program
.
_pipeline_opt
[
'local_rank'
]
=
pp_rank
main_program
.
_pipeline_opt
[
'global_rank'
]
=
self
.
role_maker
.
_worker_index
()
main_program
.
_pipeline_opt
[
'use_sharding'
]
=
True
main_program
.
_pipeline_opt
[
'ring_id'
]
=
1
main_program
.
_pipeline_opt
[
'ring_id'
]
=
2
optimize_ops
,
params_grads
,
program_list
=
pp_optimizer
.
minimize
(
loss
,
startup_program
,
parameter_list
,
no_grad_set
)
self
.
pipeline_nodes
=
len
(
program_list
)
...
...
@@ -358,16 +359,19 @@ class ShardingOptimizer(MetaOptimizerBase):
# config sharding & dp groups
self
.
_init_comm
()
# sharding
print
(
"sharding_group_endpoints:"
,
self
.
sharding_group_endpoints
)
print
(
"sharding_rank:"
,
self
.
sharding_rank
)
print
(
"sharding_ring_id:"
,
self
.
sharding_ring_id
)
self
.
_collective_helper
.
_init_communicator
(
self
.
_startup_program
,
self
.
current_endpoint
,
self
.
sharding_group_endpoints
,
self
.
sharding_rank
,
self
.
sharding_ring_id
,
True
)
# inner & outer model parallelism
if
self
.
_as_outer_parallelism
:
self
.
_collective_helper
.
_init_communicator
(
self
.
_startup_program
,
self
.
current_endpoint
,
self
.
mp_group_endpoints
,
self
.
mp_rank
,
self
.
mp_group_id
,
True
)
#
if self._as_outer_parallelism:
#
self._collective_helper._init_communicator(
#
self._startup_program, self.current_endpoint,
#
self.mp_group_endpoints, self.mp_rank, self.mp_group_id, True)
# dp
if
self
.
hybrid_dp
:
...
...
@@ -757,7 +761,7 @@ class ShardingOptimizer(MetaOptimizerBase):
logging
.
info
(
"Using Sharing&DP mode !"
)
else
:
if
self
.
_as_outer_parallelism
:
if
self
.
_as_outer_parallelism
and
not
self
.
use_pipeline
:
self
.
sharding_ring_id
=
1
assert
self
.
global_word_size
>
self
.
_inner_parallelism_size
,
\
"global_word_size: {} should be larger than inner_parallelism_size: {}"
.
format
(
self
.
global_word_size
,
self
.
_inner_parallelism_size
)
...
...
@@ -801,14 +805,16 @@ class ShardingOptimizer(MetaOptimizerBase):
# logging.info("megatron endpoints: {}".format(
# magetron_endpoints))
if
self
.
use_pipeline
:
if
self
.
_inner_parallelism_size
==
1
:
self
.
sharding_ring_id
=
0
self
.
sharding_group_size
=
self
.
user_defined_strategy
.
sharding_configs
[
'sharding_group_size'
]
self
.
sharding_rank
=
self
.
global_rank
%
self
.
sharding_group_size
assert
self
.
sharding_group_size
*
self
.
pipeline_nodes
==
self
.
role_maker
.
_worker_num
(
assert
self
.
sharding_group_size
*
self
.
pipeline_nodes
*
self
.
_inner_parallelism_size
==
self
.
role_maker
.
_worker_num
(
)
self
.
pp_ring_id
=
1
self
.
pp_rank
=
self
.
global_rank
//
self
.
sharding_group_size
self
.
pp_ring_id
=
2
self
.
pp_rank
=
self
.
global_rank
//
(
self
.
sharding_group_size
*
self
.
_inner_parallelism_size
)
self
.
sharding_group_endpoints
=
[
ep
for
idx
,
ep
in
enumerate
(
self
.
endpoints
)
if
(
idx
//
self
.
sharding_group_size
)
==
self
.
pp_rank
...
...
@@ -816,60 +822,96 @@ class ShardingOptimizer(MetaOptimizerBase):
self
.
pp_group_size
=
self
.
pipeline_nodes
self
.
pp_group_endpoints
=
[
ep
for
idx
,
ep
in
enumerate
(
self
.
endpoints
)
if
(
idx
%
self
.
sharding_group_size
)
==
self
.
sharding_rank
if
(
idx
%
self
.
sharding_group_size
)
==
self
.
sharding_rank
]
else
:
self
.
sharding_ring_id
=
1
self
.
pp_ring_id
=
2
# self.cards_per_node = 8
self
.
sharding_group_size
=
self
.
user_defined_strategy
.
sharding_configs
[
'sharding_group_size'
]
self
.
sharding_rank
=
self
.
global_rank
//
self
.
_inner_parallelism_size
%
self
.
sharding_group_size
# self.sharding_group_id = self.global_rank // (self._inner_parallelism_size % self.sharding_group_size)
self
.
sharding_group_endpoints
=
[
ep
for
idx
,
ep
in
enumerate
(
self
.
endpoints
)
if
(
idx
//
self
.
_inner_parallelism_size
%
self
.
sharding_group_size
)
==
self
.
sharding_rank
]
assert
self
.
sharding_group_size
*
self
.
pipeline_nodes
*
self
.
_inner_parallelism_size
==
self
.
role_maker
.
_worker_num
(
)
self
.
pp_rank
=
self
.
global_rank
//
(
self
.
sharding_group_size
*
self
.
_inner_parallelism_size
)
offset
=
self
.
sharding_group_size
*
self
.
_inner_parallelism_size
idx_with_pp_0
=
self
.
global_rank
%
(
self
.
sharding_group_size
*
self
.
_inner_parallelism_size
)
self
.
pp_group_endpoints
=
[]
for
i
in
range
(
self
.
pipeline_nodes
):
self
.
pp_group_endpoints
.
append
(
self
.
endpoints
[
idx_with_pp_0
])
idx_with_pp_0
+=
offset
#self.pp_group_endpoints = [
# ep for idx, ep in enumerate(self.endpoints)
# if (idx % self.sharding_group_size) == self.sharding_rank
#]
self
.
mp_group_id
=
1
self
.
mp_rank
=
self
.
global_rank
self
.
mp_group_size
=
self
.
role_maker
.
_worker_num
()
self
.
mp_group_endpoints
=
self
.
endpoints
[:]
logging
.
info
(
"Using Sharing as Outer parallelism mode !"
)
self
.
dp_ring_id
=
-
1
self
.
dp_rank
=
-
1
self
.
dp_group_size
=
None
self
.
dp_group_endpoints
=
None
logging
.
info
(
"Using Sharing with pipeline !"
)
else
:
self
.
sharding_ring_id
=
0
self
.
sharding_rank
=
self
.
global_rank
self
.
sharding_group_size
=
self
.
role_maker
.
_worker_num
()
self
.
sharding_group_endpoints
=
self
.
endpoints
#
else:
#
self.sharding_ring_id = 0
#
self.sharding_rank = self.global_rank
#
self.sharding_group_size = self.role_maker._worker_num()
#
self.sharding_group_endpoints = self.endpoints
# sharding parallelism is the only model parallelism in the current setting
self
.
mp_group_id
=
self
.
sharding_ring_id
self
.
mp_rank
=
self
.
sharding_rank
self
.
mp_group_size
=
self
.
sharding_group_size
self
.
mp_group_endpoints
=
self
.
sharding_group_endpoints
[:]
#
# sharding parallelism is the only model parallelism in the current setting
#
self.mp_group_id = self.sharding_ring_id
#
self.mp_rank = self.sharding_rank
#
self.mp_group_size = self.sharding_group_size
#
self.mp_group_endpoints = self.sharding_group_endpoints[:]
logging
.
info
(
"Using Sharing alone mode !"
)
#
logging.info("Using Sharing alone mode !")
self
.
dp_ring_id
=
-
1
self
.
dp_rank
=
-
1
self
.
dp_group_size
=
None
self
.
dp_group_endpoints
=
None
self
.
pp_ring_id
=
-
1
self
.
pp_rank
=
-
1
self
.
pp_group_size
=
None
self
.
pp_group_endpoints
=
None
self
.
dp_ring_id
=
-
1
self
.
dp_rank
=
-
1
self
.
dp_group_size
=
None
self
.
dp_group_endpoints
=
None
#
self.pp_ring_id = -1
#
self.pp_rank = -1
#
self.pp_group_size = None
#
self.pp_group_endpoints = None
#
self.dp_ring_id = -1
#
self.dp_rank = -1
#
self.dp_group_size = None
#
self.dp_group_endpoints = None
logging
.
info
(
"Using Sharing alone mode !"
)
logging
.
info
(
"global word size: {}"
.
format
(
self
.
global_word_size
))
logging
.
info
(
"global rank: {}"
.
format
(
self
.
global_rank
))
logging
.
info
(
"sharding group_size: {}"
.
format
(
self
.
sharding_group_size
))
logging
.
info
(
"sharding rank: {}"
.
format
(
self
.
sharding_rank
))
logging
.
info
(
"current model parallelism group_size: {}"
.
format
(
self
.
mp_group_size
))
logging
.
info
(
"current model parallelism rank: {}"
.
format
(
self
.
mp_rank
))
logging
.
info
(
"dp group size: {}"
.
format
(
self
.
dp_group_size
))
logging
.
info
(
"dp rank: {}"
.
format
(
self
.
dp_rank
))
logging
.
info
(
"current endpoint: {}"
.
format
(
self
.
current_endpoint
))
logging
.
info
(
"global word endpoints: {}"
.
format
(
self
.
endpoints
))
logging
.
info
(
"sharding group endpoints: {}"
.
format
(
self
.
sharding_group_endpoints
))
logging
.
info
(
"current model parallelism group endpoints: {}"
.
format
(
self
.
mp_group_endpoints
))
logging
.
info
(
"dp group endpoints: {}"
.
format
(
self
.
dp_group_endpoints
))
#
logging.info("global word size: {}".format(self.global_word_size))
#
logging.info("global rank: {}".format(self.global_rank))
#
logging.info("sharding group_size: {}".format(self.sharding_group_size))
#
logging.info("sharding rank: {}".format(self.sharding_rank))
#
logging.info("current model parallelism group_size: {}".format(
#
self.mp_group_size))
#
logging.info("current model parallelism rank: {}".format(self.mp_rank))
#
logging.info("dp group size: {}".format(self.dp_group_size))
#
logging.info("dp rank: {}".format(self.dp_rank))
#
logging.info("current endpoint: {}".format(self.current_endpoint))
#
logging.info("global word endpoints: {}".format(self.endpoints))
#
logging.info("sharding group endpoints: {}".format(
#
self.sharding_group_endpoints))
#
logging.info("current model parallelism group endpoints: {}".format(
#
self.mp_group_endpoints))
#
logging.info("dp group endpoints: {}".format(self.dp_group_endpoints))
return
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录