未验证 提交 9951b86f 编写于 作者: 张春乔 提交者: GitHub

[fp16] suppot fp16 input in nansum (#50847)

* add float16 in python/paddle/math

* add unittest for float16

* add float16 support in python.paddle.tensor.search.where

* remove fp16 error cases

* Add NotImplementedError unittest

* fix codestyle

* fluid to paddle.static; add cases with GPU

* Add float16 in English docs
上级 8aec0580
......@@ -72,22 +72,58 @@ class API_Test_Nansum(unittest.TestCase):
msg='nansum output is wrong, out =' + str(out4_np),
)
def test_error_api(self):
# test nansum api with float16
def test_static_graph_fp16(self):
paddle.enable_static()
startup_program = paddle.static.Program()
train_program = paddle.static.Program()
with paddle.static.program_guard(train_program, startup_program):
input = paddle.static.data(
name='input', dtype='float16', shape=[2, 4]
)
out1 = paddle.nansum(input)
out2 = paddle.nansum(input, axis=0)
out3 = paddle.nansum(input, axis=-1)
out4 = paddle.nansum(input, axis=1, keepdim=True)
if fluid.core.is_compiled_with_cuda():
place = paddle.CUDAPlace(0)
exe = paddle.static.Executor(place)
exe.run(startup_program)
# input dtype error
def run1():
input = fluid.data(name='input', dtype='float16', shape=[2, 3])
output = paddle.nansum(input)
self.assertRaises(TypeError, run1)
x = np.array(
[[float('nan'), 3, 5, 9], [1, 2, float('-nan'), 7]]
).astype(np.float16)
res = exe.run(
train_program,
feed={'input': x},
fetch_list=[out1, out2, out3, out4],
)
# axis type error
def run2():
input = fluid.data(name='input', dtype='float16', shape=[2, 3])
output = paddle.nansum(input, axis=1.2)
out1_np = np.array(res[0])
out2_np = np.array(res[1])
out3_np = np.array(res[2])
out4_np = np.array(res[3])
out1_ref = np.array([27]).astype(np.float16)
out2_ref = np.array([1, 5, 5, 16]).astype(np.float16)
out3_ref = np.array([17, 10]).astype(np.float16)
out4_ref = np.array([[17], [10]]).astype(np.float16)
self.assertRaises(TypeError, run2)
self.assertTrue(
(out1_np == out1_ref).all(),
msg='nansum output is wrong, out =' + str(out1_np),
)
self.assertTrue(
(out2_np == out2_ref).all(),
msg='nansum output is wrong, out =' + str(out2_np),
)
self.assertTrue(
(out3_np == out3_ref).all(),
msg='nansum output is wrong, out =' + str(out3_np),
)
self.assertTrue(
(out4_np == out4_ref).all(),
msg='nansum output is wrong, out =' + str(out4_np),
)
def test_dygraph(self):
x = np.array(
......
......@@ -1349,7 +1349,7 @@ def nansum(x, axis=None, dtype=None, keepdim=False, name=None):
Computes the sum of tensor elements over the given axis, treating Not a Numbers (NaNs) as zero.
Args:
x (Tensor): An N-D Tensor, the data type is float32, float64, int32 or int64.
x (Tensor): An N-D Tensor, the data type is float16, float32, float64, int32 or int64.
axis (int|list|tuple, optional): The dimensions along which the nansum is performed. If
:attr:`None`, nansum all elements of :attr:`x` and return a
Tensor with a single element, otherwise must be in the
......@@ -1392,7 +1392,7 @@ def nansum(x, axis=None, dtype=None, keepdim=False, name=None):
out6 = paddle.nansum(y, axis=[0, 1]) # [9, 18]
"""
check_variable_and_dtype(
x, 'x', ['float32', 'float64', 'int32', 'int64'], 'nansum'
x, 'x', ['float16', 'float32', 'float64', 'int32', 'int64'], 'nansum'
)
check_type(axis, 'axis', (int, list, tuple, type(None)), 'nansum')
......
......@@ -574,8 +574,8 @@ def where(condition, x=None, y=None, name=None):
Args:
condition (Tensor): The condition to choose x or y. When True (nonzero), yield x, otherwise yield y.
x (Tensor|scalar, optional): A Tensor or scalar to choose when the condition is True with data type of float32, float64, int32 or int64. Either both or neither of x and y should be given.
y (Tensor|scalar, optional): A Tensor or scalar to choose when the condition is False with data type of float32, float64, int32 or int64. Either both or neither of x and y should be given.
x (Tensor|scalar, optional): A Tensor or scalar to choose when the condition is True with data type of float16, float32, float64, int32 or int64. Either both or neither of x and y should be given.
y (Tensor|scalar, optional): A Tensor or scalar to choose when the condition is False with data type of float16, float32, float64, int32 or int64. Either both or neither of x and y should be given.
name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
Returns:
......@@ -639,10 +639,10 @@ def where(condition, x=None, y=None, name=None):
else:
check_variable_and_dtype(condition, 'condition', ['bool'], 'where')
check_variable_and_dtype(
x, 'x', ['float32', 'float64', 'int32', 'int64'], 'where'
x, 'x', ['float16', 'float32', 'float64', 'int32', 'int64'], 'where'
)
check_variable_and_dtype(
y, 'y', ['float32', 'float64', 'int32', 'int64'], 'where'
y, 'y', ['float16', 'float32', 'float64', 'int32', 'int64'], 'where'
)
helper = LayerHelper("where", **locals())
out = helper.create_variable_for_type_inference(dtype=x.dtype)
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册