Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
9942565f
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
9942565f
编写于
2月 12, 2018
作者:
武
武毅
提交者:
GitHub
2月 12, 2018
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #8386 from typhoonzero/fix_dist_transpiler_develop
Fix dist transpiler develop
上级
da02a581
dca9941e
变更
5
显示空白变更内容
内联
并排
Showing
5 changed file
with
34 addition
and
56 deletion
+34
-56
paddle/fluid/operators/concat_op.h
paddle/fluid/operators/concat_op.h
+2
-2
paddle/fluid/operators/split_op.h
paddle/fluid/operators/split_op.h
+1
-1
paddle/fluid/operators/strided_memcpy.h
paddle/fluid/operators/strided_memcpy.h
+4
-4
python/paddle/v2/fluid/distribute_transpiler.py
python/paddle/v2/fluid/distribute_transpiler.py
+27
-46
python/paddle/v2/fluid/framework.py
python/paddle/v2/fluid/framework.py
+0
-3
未找到文件。
paddle/fluid/operators/concat_op.h
浏览文件 @
9942565f
...
@@ -38,7 +38,7 @@ class ConcatKernel : public framework::OpKernel<T> {
...
@@ -38,7 +38,7 @@ class ConcatKernel : public framework::OpKernel<T> {
auto
in_stride
=
framework
::
stride_numel
(
in
->
dims
());
auto
in_stride
=
framework
::
stride_numel
(
in
->
dims
());
StridedNumelCopyWithAxis
<
T
>
(
ctx
.
device_context
(),
axis
,
StridedNumelCopyWithAxis
<
T
>
(
ctx
.
device_context
(),
axis
,
out
->
data
<
T
>
()
+
output_offset
,
out_stride
,
out
->
data
<
T
>
()
+
output_offset
,
out_stride
,
in
->
data
<
T
>
(),
in_stride
);
in
->
data
<
T
>
(),
in_stride
,
in_stride
[
axis
]
);
output_offset
+=
in_stride
[
axis
];
output_offset
+=
in_stride
[
axis
];
}
}
}
}
...
@@ -59,7 +59,7 @@ class ConcatGradKernel : public framework::OpKernel<T> {
...
@@ -59,7 +59,7 @@ class ConcatGradKernel : public framework::OpKernel<T> {
auto
out_stride
=
framework
::
stride_numel
(
out
->
dims
());
auto
out_stride
=
framework
::
stride_numel
(
out
->
dims
());
StridedNumelCopyWithAxis
<
T
>
(
ctx
.
device_context
(),
axis
,
out
->
data
<
T
>
(),
StridedNumelCopyWithAxis
<
T
>
(
ctx
.
device_context
(),
axis
,
out
->
data
<
T
>
(),
out_stride
,
in
->
data
<
T
>
()
+
input_offset
,
out_stride
,
in
->
data
<
T
>
()
+
input_offset
,
in_stride
);
in_stride
,
out_stride
[
axis
]
);
input_offset
+=
out_stride
[
axis
];
input_offset
+=
out_stride
[
axis
];
}
}
}
}
...
...
paddle/fluid/operators/split_op.h
浏览文件 @
9942565f
...
@@ -38,7 +38,7 @@ class SplitOpKernel : public framework::OpKernel<T> {
...
@@ -38,7 +38,7 @@ class SplitOpKernel : public framework::OpKernel<T> {
auto
out_stride
=
framework
::
stride_numel
(
out
->
dims
());
auto
out_stride
=
framework
::
stride_numel
(
out
->
dims
());
StridedNumelCopyWithAxis
<
T
>
(
ctx
.
device_context
(),
axis
,
out
->
data
<
T
>
(),
StridedNumelCopyWithAxis
<
T
>
(
ctx
.
device_context
(),
axis
,
out
->
data
<
T
>
(),
out_stride
,
in
->
data
<
T
>
()
+
input_offset
,
out_stride
,
in
->
data
<
T
>
()
+
input_offset
,
in_stride
);
in_stride
,
out_stride
[
axis
]
);
input_offset
+=
out_stride
[
axis
];
input_offset
+=
out_stride
[
axis
];
}
}
}
}
...
...
paddle/fluid/operators/strided_memcpy.h
浏览文件 @
9942565f
...
@@ -54,7 +54,8 @@ inline void StridedNumelCopyWithAxis(const platform::DeviceContext& ctx,
...
@@ -54,7 +54,8 @@ inline void StridedNumelCopyWithAxis(const platform::DeviceContext& ctx,
int64_t
axis
,
T
*
dst
,
int64_t
axis
,
T
*
dst
,
const
framework
::
DDim
&
dst_stride_numel
,
const
framework
::
DDim
&
dst_stride_numel
,
const
T
*
src
,
const
T
*
src
,
const
framework
::
DDim
&
src_stride_numel
)
{
const
framework
::
DDim
&
src_stride_numel
,
int64_t
size
)
{
int64_t
before
=
dst_stride_numel
[
0
]
/
dst_stride_numel
[
axis
];
int64_t
before
=
dst_stride_numel
[
0
]
/
dst_stride_numel
[
axis
];
int64_t
src_after
=
src_stride_numel
[
axis
];
int64_t
src_after
=
src_stride_numel
[
axis
];
int64_t
dst_after
=
dst_stride_numel
[
axis
];
int64_t
dst_after
=
dst_stride_numel
[
axis
];
...
@@ -82,15 +83,14 @@ inline void StridedNumelCopyWithAxis(const platform::DeviceContext& ctx,
...
@@ -82,15 +83,14 @@ inline void StridedNumelCopyWithAxis(const platform::DeviceContext& ctx,
if
(
platform
::
is_cpu_place
(
place
))
{
if
(
platform
::
is_cpu_place
(
place
))
{
auto
&
cpu_place
=
boost
::
get
<
platform
::
CPUPlace
>
(
place
);
auto
&
cpu_place
=
boost
::
get
<
platform
::
CPUPlace
>
(
place
);
memory
::
Copy
(
cpu_place
,
dst
+
i
*
dst_after
,
cpu_place
,
memory
::
Copy
(
cpu_place
,
dst
+
i
*
dst_after
,
cpu_place
,
src
+
i
*
src_after
,
sizeof
(
T
)
*
s
rc_after
);
src
+
i
*
src_after
,
sizeof
(
T
)
*
s
ize
);
}
else
{
}
else
{
#ifdef PADDLE_WITH_CUDA
#ifdef PADDLE_WITH_CUDA
auto
&
gpu_place
=
boost
::
get
<
platform
::
CUDAPlace
>
(
place
);
auto
&
gpu_place
=
boost
::
get
<
platform
::
CUDAPlace
>
(
place
);
auto
&
cuda_ctx
=
auto
&
cuda_ctx
=
reinterpret_cast
<
const
platform
::
CUDADeviceContext
&>
(
ctx
);
reinterpret_cast
<
const
platform
::
CUDADeviceContext
&>
(
ctx
);
memory
::
Copy
(
gpu_place
,
dst
+
i
*
dst_after
,
gpu_place
,
memory
::
Copy
(
gpu_place
,
dst
+
i
*
dst_after
,
gpu_place
,
src
+
i
*
src_after
,
sizeof
(
T
)
*
src_after
,
src
+
i
*
src_after
,
sizeof
(
T
)
*
size
,
cuda_ctx
.
stream
());
cuda_ctx
.
stream
());
#else
#else
PADDLE_THROW
(
"Paddle is not compiled with GPU"
);
PADDLE_THROW
(
"Paddle is not compiled with GPU"
);
#endif
#endif
...
...
python/paddle/v2/fluid/distribute_transpiler.py
浏览文件 @
9942565f
...
@@ -121,6 +121,7 @@ def split_dense_variable(var_list,
...
@@ -121,6 +121,7 @@ def split_dense_variable(var_list,
block_size
+=
dim1
-
remains
block_size
+=
dim1
-
remains
# update split_count after aligning
# update split_count after aligning
split_count
=
int
(
math
.
ceil
(
var_numel
/
float
(
block_size
)))
split_count
=
int
(
math
.
ceil
(
var_numel
/
float
(
block_size
)))
print
(
"###split var "
,
var
.
name
,
var
.
shape
,
block_size
,
split_count
)
for
block_id
in
xrange
(
split_count
):
for
block_id
in
xrange
(
split_count
):
curr_block_size
=
min
(
block_size
,
var_numel
-
(
curr_block_size
=
min
(
block_size
,
var_numel
-
(
(
block_id
)
*
block_size
))
(
block_id
)
*
block_size
))
...
@@ -191,7 +192,6 @@ class DistributeTranspiler:
...
@@ -191,7 +192,6 @@ class DistributeTranspiler:
for
b
in
param_blocks
:
for
b
in
param_blocks
:
varname
,
block_id
,
_
=
b
.
split
(
":"
)
varname
,
block_id
,
_
=
b
.
split
(
":"
)
send_outputs
.
append
(
param_var_mapping
[
varname
][
int
(
block_id
)])
send_outputs
.
append
(
param_var_mapping
[
varname
][
int
(
block_id
)])
# let send_op know which endpoint to send which var to, eplist has the same
# let send_op know which endpoint to send which var to, eplist has the same
# order as send_inputs.
# order as send_inputs.
eplist
=
split_method
(
send_inputs
,
pserver_endpoints
)
eplist
=
split_method
(
send_inputs
,
pserver_endpoints
)
...
@@ -230,21 +230,6 @@ class DistributeTranspiler:
...
@@ -230,21 +230,6 @@ class DistributeTranspiler:
outputs
=
{
"Out"
:
[
orig_param
]},
outputs
=
{
"Out"
:
[
orig_param
]},
attrs
=
{
"axis"
:
0
})
attrs
=
{
"axis"
:
0
})
self
.
lr_param_mapping
=
self
.
_create_lr_param_mapping
()
def
_create_lr_param_mapping
(
self
):
lr_mapping
=
dict
()
for
_
,
opt_op
in
enumerate
(
self
.
optimize_ops
):
if
not
opt_op
.
inputs
or
not
opt_op
.
inputs
.
has_key
(
"LearningRate"
)
\
or
not
opt_op
.
inputs
.
has_key
(
"Param"
):
continue
lr
=
opt_op
.
inputs
[
"LearningRate"
].
name
param
=
opt_op
.
inputs
[
"Param"
].
name
if
not
lr_mapping
.
has_key
(
lr
):
lr_mapping
.
update
({
lr
:
list
()})
lr_mapping
[
lr
].
append
(
param
)
return
lr_mapping
def
_create_vars_from_blocklist
(
self
,
program
,
block_list
):
def
_create_vars_from_blocklist
(
self
,
program
,
block_list
):
# Create respective variables using the block_list
# Create respective variables using the block_list
block_map
=
dict
()
block_map
=
dict
()
...
@@ -271,6 +256,7 @@ class DistributeTranspiler:
...
@@ -271,6 +256,7 @@ class DistributeTranspiler:
splited_shape
=
[
rows
]
splited_shape
=
[
rows
]
if
len
(
orig_shape
)
>=
2
:
if
len
(
orig_shape
)
>=
2
:
splited_shape
.
extend
(
orig_shape
[
1
:])
splited_shape
.
extend
(
orig_shape
[
1
:])
print
(
"###splited: "
,
size
,
rows
,
splited_shape
)
var
=
program
.
global_block
().
create_var
(
var
=
program
.
global_block
().
create_var
(
name
=
"%s.block%d"
%
(
varname
,
i
),
name
=
"%s.block%d"
%
(
varname
,
i
),
psersistable
=
False
,
psersistable
=
False
,
...
@@ -278,6 +264,7 @@ class DistributeTranspiler:
...
@@ -278,6 +264,7 @@ class DistributeTranspiler:
type
=
orig_var
.
type
,
type
=
orig_var
.
type
,
shape
=
splited_shape
)
# flattend splited var
shape
=
splited_shape
)
# flattend splited var
var_mapping
[
varname
].
append
(
var
)
var_mapping
[
varname
].
append
(
var
)
print
(
"###created split var "
,
var
)
return
var_mapping
return
var_mapping
def
_clone_var
(
self
,
block
,
var
):
def
_clone_var
(
self
,
block
,
var
):
...
@@ -369,18 +356,9 @@ class DistributeTranspiler:
...
@@ -369,18 +356,9 @@ class DistributeTranspiler:
pass
pass
return
orig_shape
return
orig_shape
def
_fetch_var_names
(
self
,
param_dict
):
res
=
[]
if
not
param_dict
:
return
res
for
_
,
values
in
param_dict
.
iteritems
():
if
not
isinstance
(
values
,
list
):
values
=
[
values
]
res
+=
[
v
.
name
for
v
in
values
]
return
res
def
_append_pserver_ops
(
self
,
optimize_block
,
opt_op
,
endpoint
):
def
_append_pserver_ops
(
self
,
optimize_block
,
opt_op
,
endpoint
):
program
=
optimize_block
.
program
program
=
optimize_block
.
program
pserver_block
=
program
.
global_block
()
new_inputs
=
dict
()
new_inputs
=
dict
()
# update param/grad shape first, then other inputs like
# update param/grad shape first, then other inputs like
# moment can use the updated shape
# moment can use the updated shape
...
@@ -395,11 +373,11 @@ class DistributeTranspiler:
...
@@ -395,11 +373,11 @@ class DistributeTranspiler:
# do not append this op if current endpoint
# do not append this op if current endpoint
# is not dealing with this grad block
# is not dealing with this grad block
return
return
merged_var
=
p
rogram
.
global_block
()
.
vars
[
grad_block
.
name
]
merged_var
=
p
server_block
.
vars
[
grad_block
.
name
]
# append merging ops if trainers > 1
# append merging ops if trainers > 1
if
self
.
trainers
>
1
:
if
self
.
trainers
>
1
:
vars2merge
=
self
.
_create_var_for_trainers
(
vars2merge
=
self
.
_create_var_for_trainers
(
p
rogram
.
global_block
()
,
grad_block
,
self
.
trainers
)
p
server_block
,
grad_block
,
self
.
trainers
)
optimize_block
.
append_op
(
optimize_block
.
append_op
(
type
=
"sum"
,
type
=
"sum"
,
inputs
=
{
"X"
:
vars2merge
},
inputs
=
{
"X"
:
vars2merge
},
...
@@ -419,29 +397,27 @@ class DistributeTranspiler:
...
@@ -419,29 +397,27 @@ class DistributeTranspiler:
break
break
if
not
param_block
:
if
not
param_block
:
return
return
tmpvar
=
p
rogram
.
global_block
()
.
create_var
(
tmpvar
=
p
server_block
.
create_var
(
name
=
param_block
.
name
,
name
=
param_block
.
name
,
persistable
=
True
,
persistable
=
True
,
dtype
=
param_block
.
dtype
,
dtype
=
param_block
.
dtype
,
shape
=
param_block
.
shape
)
shape
=
param_block
.
shape
)
new_inputs
[
key
]
=
tmpvar
new_inputs
[
key
]
=
tmpvar
elif
key
==
"LearningRate"
:
elif
key
==
"LearningRate"
:
# leraning rate variable has already be created by non-optimize op,
# leraning rate variable has already be created by non-optimize op,
# don't create it once again.
# don't create it once again.
new_inputs
[
key
]
=
program
.
global_block
().
vars
[
opt_op
.
input
(
key
)[
new_inputs
[
key
]
=
pserver_block
.
vars
[
opt_op
.
input
(
key
)[
0
]]
0
]]
for
key
in
opt_op
.
input_names
:
for
key
in
opt_op
.
input_names
:
new_shape
=
None
new_shape
=
None
if
key
in
[
"Param"
,
"Grad"
,
"LearningRate"
]:
if
key
in
[
"Param"
,
"Grad"
,
"LearningRate"
]:
continue
continue
var
=
program
.
global_block
().
vars
[
opt_op
.
input
(
key
)[
0
]]
var
=
self
.
program
.
global_block
().
vars
[
opt_op
.
input
(
key
)[
0
]]
# update accumulator variable shape
# update accumulator variable shape
param_shape
=
new_inputs
[
"Param"
].
shape
param_shape
=
new_inputs
[
"Param"
].
shape
new_shape
=
self
.
_get_optimizer_input_shape
(
opt_op
.
type
,
key
,
new_shape
=
self
.
_get_optimizer_input_shape
(
opt_op
.
type
,
key
,
var
.
shape
,
param_shape
)
var
.
shape
,
param_shape
)
tmpvar
=
p
rogram
.
global_block
()
.
create_var
(
tmpvar
=
p
server_block
.
create_var
(
name
=
var
.
name
,
name
=
var
.
name
,
persistable
=
var
.
persistable
,
persistable
=
var
.
persistable
,
dtype
=
var
.
dtype
,
dtype
=
var
.
dtype
,
...
@@ -449,11 +425,14 @@ class DistributeTranspiler:
...
@@ -449,11 +425,14 @@ class DistributeTranspiler:
new_inputs
[
key
]
=
tmpvar
new_inputs
[
key
]
=
tmpvar
# change output's ParamOut variable
# change output's ParamOut variable
opt_op
.
outputs
[
"ParamOut"
]
=
new_inputs
[
"Param"
]
outputs
=
self
.
_get_output_map_from_op
(
self
.
program
.
global_block
().
vars
,
opt_op
)
outputs
[
"ParamOut"
]
=
new_inputs
[
"Param"
]
optimize_block
.
append_op
(
optimize_block
.
append_op
(
type
=
opt_op
.
type
,
type
=
opt_op
.
type
,
inputs
=
new_inputs
,
inputs
=
new_inputs
,
outputs
=
o
pt_op
.
o
utputs
,
outputs
=
outputs
,
attrs
=
opt_op
.
attrs
)
attrs
=
opt_op
.
attrs
)
def
_append_pserver_non_opt_ops
(
self
,
optimize_block
,
opt_op
):
def
_append_pserver_non_opt_ops
(
self
,
optimize_block
,
opt_op
):
...
@@ -497,11 +476,12 @@ class DistributeTranspiler:
...
@@ -497,11 +476,12 @@ class DistributeTranspiler:
# If one op's input is another op's output or
# If one op's input is another op's output or
# one op's output is another op's input, we say
# one op's output is another op's input, we say
# the two operator is connected.
# the two operator is connected.
op1_input_names
=
self
.
_fetch_var_names
(
op1
.
inputs
)
op1_input_names
=
op1
.
desc
.
input_arg_names
()
op1_output_names
=
self
.
_fetch_var_names
(
op1
.
outputs
)
op1_output_names
=
op1
.
desc
.
output_arg_names
()
op2_input_names
=
op2
.
desc
.
input_arg_names
()
op2_output_names
=
op2
.
desc
.
output_arg_names
()
op2_input_names
=
self
.
_fetch_var_names
(
op2
.
inputs
)
op2_output_names
=
self
.
_fetch_var_names
(
op2
.
outputs
)
if
set
(
op1_output_names
)
&
set
(
op2_input_names
)
or
\
if
set
(
op1_output_names
)
&
set
(
op2_input_names
)
or
\
set
(
op1_input_names
)
&
set
(
op2_output_names
):
set
(
op1_input_names
)
&
set
(
op2_output_names
):
return
True
return
True
...
@@ -521,8 +501,8 @@ class DistributeTranspiler:
...
@@ -521,8 +501,8 @@ class DistributeTranspiler:
def
_is_opt_op
(
self
,
op
):
def
_is_opt_op
(
self
,
op
):
# NOTE: It's a HACK implement.
# NOTE: It's a HACK implement.
# optimize op: SGDOptimize, MomentumOptimizer, AdamOptimizer and etc...
# optimize op: SGDOptimize, MomentumOptimizer, AdamOptimizer and etc...
if
op
.
inputs
and
op
.
inputs
.
has_key
(
"Param"
)
\
if
"Param"
in
op
.
input_names
and
\
and
op
.
inputs
.
has_key
(
"LearningRate"
)
:
"LearningRate"
in
op
.
input_names
:
return
True
return
True
return
False
return
False
...
@@ -530,12 +510,12 @@ class DistributeTranspiler:
...
@@ -530,12 +510,12 @@ class DistributeTranspiler:
param_names
=
[
param_names
=
[
p
.
name
for
p
in
self
.
param_grad_ep_mapping
[
endpoint
][
"params"
]
p
.
name
for
p
in
self
.
param_grad_ep_mapping
[
endpoint
][
"params"
]
]
]
if
op
.
input
s
[
"Param"
].
name
in
param_names
:
if
op
.
input
(
"Param"
)
in
param_names
:
return
True
return
True
else
:
else
:
for
n
in
param_names
:
for
n
in
param_names
:
param
=
op
.
input
s
[
"Param"
].
name
param
=
op
.
input
(
"Param"
)[
0
]
if
same_or_split_var
(
n
,
param
)
and
n
!=
op
.
inputs
[
"Param"
].
name
:
if
same_or_split_var
(
n
,
param
)
and
n
!=
param
:
return
True
return
True
return
False
return
False
return
False
return
False
...
@@ -551,6 +531,8 @@ class DistributeTranspiler:
...
@@ -551,6 +531,8 @@ class DistributeTranspiler:
"""
"""
# step5
# step5
pserver_program
=
Program
()
pserver_program
=
Program
()
print
(
"param mapping on pserver: #### "
,
self
.
param_grad_ep_mapping
[
endpoint
][
"params"
])
for
v
in
self
.
param_grad_ep_mapping
[
endpoint
][
"params"
]:
for
v
in
self
.
param_grad_ep_mapping
[
endpoint
][
"params"
]:
self
.
_clone_var
(
pserver_program
.
global_block
(),
v
)
self
.
_clone_var
(
pserver_program
.
global_block
(),
v
)
for
v
in
self
.
param_grad_ep_mapping
[
endpoint
][
"grads"
]:
for
v
in
self
.
param_grad_ep_mapping
[
endpoint
][
"grads"
]:
...
@@ -564,7 +546,6 @@ class DistributeTranspiler:
...
@@ -564,7 +546,6 @@ class DistributeTranspiler:
persistable
=
True
,
persistable
=
True
,
dtype
=
v
.
dtype
,
dtype
=
v
.
dtype
,
shape
=
v
.
shape
)
shape
=
v
.
shape
)
# step6
# step6
optimize_block
=
pserver_program
.
create_block
(
0
)
optimize_block
=
pserver_program
.
create_block
(
0
)
# step 6.1
# step 6.1
...
...
python/paddle/v2/fluid/framework.py
浏览文件 @
9942565f
...
@@ -400,9 +400,6 @@ class Operator(object):
...
@@ -400,9 +400,6 @@ class Operator(object):
"""
"""
self
.
block
=
block
self
.
block
=
block
self
.
desc
=
desc
self
.
desc
=
desc
# for clone a new operator
self
.
inputs
=
inputs
self
.
outputs
=
outputs
self
.
attrs
=
attrs
self
.
attrs
=
attrs
if
len
(
self
.
desc
.
type
())
!=
0
:
if
len
(
self
.
desc
.
type
())
!=
0
:
return
return
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录