Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
991345b3
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
991345b3
编写于
11月 24, 2020
作者:
W
Wojciech Uss
提交者:
GitHub
11月 24, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Add multi_gru_seq_fuse_pass and tests (#28604)
* Add multi_gru_seq_fuse_pass and tests * fix date * removed unused functions
上级
83cee3c9
变更
7
显示空白变更内容
内联
并排
Showing
7 changed file
with
449 addition
and
0 deletion
+449
-0
paddle/fluid/framework/ir/CMakeLists.txt
paddle/fluid/framework/ir/CMakeLists.txt
+2
-0
paddle/fluid/framework/ir/graph_pattern_detector.cc
paddle/fluid/framework/ir/graph_pattern_detector.cc
+53
-0
paddle/fluid/framework/ir/graph_pattern_detector.h
paddle/fluid/framework/ir/graph_pattern_detector.h
+27
-0
paddle/fluid/framework/ir/mkldnn/multi_gru_seq_fuse_pass.cc
paddle/fluid/framework/ir/mkldnn/multi_gru_seq_fuse_pass.cc
+139
-0
paddle/fluid/framework/ir/mkldnn/multi_gru_seq_fuse_pass.h
paddle/fluid/framework/ir/mkldnn/multi_gru_seq_fuse_pass.h
+40
-0
paddle/fluid/framework/ir/mkldnn/multi_gru_seq_fuse_pass_tester.cc
...uid/framework/ir/mkldnn/multi_gru_seq_fuse_pass_tester.cc
+187
-0
tools/static_mode_white_list.py
tools/static_mode_white_list.py
+1
-0
未找到文件。
paddle/fluid/framework/ir/CMakeLists.txt
浏览文件 @
991345b3
...
...
@@ -111,6 +111,7 @@ if(WITH_MKLDNN)
pass_library
(
reshape_transpose_matmul_mkldnn_fuse_pass inference DIR mkldnn
)
pass_library
(
matmul_transpose_reshape_fuse_pass inference DIR mkldnn
)
pass_library
(
batch_norm_act_fuse_pass inference DIR mkldnn
)
pass_library
(
multi_gru_seq_fuse_pass inference DIR mkldnn
)
endif
()
cc_library
(
fuse_bn_act_pass SRCS fuse_bn_act_pass.cc DEPS pass graph_pattern_detector
)
...
...
@@ -169,4 +170,5 @@ endif()
cc_test
(
test_matmul_transpose_reshape_fuse_pass SRCS mkldnn/matmul_transpose_reshape_fuse_pass_tester.cc DEPS matmul_transpose_reshape_fuse_pass
)
cc_test
(
test_cpu_bfloat16_placement_pass SRCS mkldnn/cpu_bfloat16_placement_pass_tester.cc DEPS cpu_bfloat16_placement_pass
)
cc_test
(
test_cpu_bfloat16_pass SRCS mkldnn/cpu_bfloat16_pass_tester.cc DEPS cpu_bfloat16_pass
)
cc_test
(
test_multi_gru_seq_fuse_pass SRCS mkldnn/multi_gru_seq_fuse_pass_tester.cc DEPS multi_gru_seq_fuse_pass
)
endif
()
paddle/fluid/framework/ir/graph_pattern_detector.cc
浏览文件 @
991345b3
...
...
@@ -2511,6 +2511,59 @@ PDNode *patterns::FusionGru::operator()() {
return
out
;
}
PDNode
*
patterns
::
MultiGruSeq
::
operator
()()
{
auto
x
=
pattern
->
NewNode
(
x_repr
())
->
AsInput
()
->
assert_is_op_input
(
"multi_gru"
,
"X"
);
auto
gru1
=
pattern
->
NewNode
(
gru1_repr
())
->
assert_is_op
(
"multi_gru"
);
auto
wx11
=
pattern
->
NewNode
(
wx11_repr
())
->
AsInput
()
->
assert_is_op_nth_input
(
"multi_gru"
,
"WeightX"
,
0
);
auto
wx12
=
pattern
->
NewNode
(
wx12_repr
())
->
AsInput
()
->
assert_is_op_nth_input
(
"multi_gru"
,
"WeightX"
,
1
);
auto
wh11
=
pattern
->
NewNode
(
wh11_repr
())
->
AsInput
()
->
assert_is_op_nth_input
(
"multi_gru"
,
"WeightH"
,
0
);
auto
wh12
=
pattern
->
NewNode
(
wh12_repr
())
->
AsInput
()
->
assert_is_op_nth_input
(
"multi_gru"
,
"WeightH"
,
1
);
auto
b11
=
pattern
->
NewNode
(
b11_repr
())
->
AsInput
()
->
assert_is_op_nth_input
(
"multi_gru"
,
"Bias"
,
0
);
auto
b12
=
pattern
->
NewNode
(
b12_repr
())
->
AsInput
()
->
assert_is_op_nth_input
(
"multi_gru"
,
"Bias"
,
1
);
auto
h1
=
pattern
->
NewNode
(
h1_repr
())
->
AsOutput
()
->
assert_is_op_output
(
"multi_gru"
,
"Hidden"
)
->
assert_is_op_input
(
"multi_gru"
,
"X"
)
->
AsIntermediate
();
auto
gru2
=
pattern
->
NewNode
(
gru2_repr
())
->
assert_is_op
(
"multi_gru"
);
auto
wx21
=
pattern
->
NewNode
(
wx21_repr
())
->
AsInput
()
->
assert_is_op_nth_input
(
"multi_gru"
,
"WeightX"
,
0
);
auto
wx22
=
pattern
->
NewNode
(
wx22_repr
())
->
AsInput
()
->
assert_is_op_nth_input
(
"multi_gru"
,
"WeightX"
,
1
);
auto
wh21
=
pattern
->
NewNode
(
wh21_repr
())
->
AsInput
()
->
assert_is_op_nth_input
(
"multi_gru"
,
"WeightH"
,
0
);
auto
wh22
=
pattern
->
NewNode
(
wh22_repr
())
->
AsInput
()
->
assert_is_op_nth_input
(
"multi_gru"
,
"WeightH"
,
1
);
auto
b21
=
pattern
->
NewNode
(
b21_repr
())
->
AsInput
()
->
assert_is_op_nth_input
(
"multi_gru"
,
"Bias"
,
0
);
auto
b22
=
pattern
->
NewNode
(
b22_repr
())
->
AsInput
()
->
assert_is_op_nth_input
(
"multi_gru"
,
"Bias"
,
1
);
auto
h2
=
pattern
->
NewNode
(
h2_repr
())
->
AsOutput
()
->
assert_is_op_output
(
"multi_gru"
,
"Hidden"
);
gru1
->
LinksFrom
({
x
,
wx11
,
wx12
,
wh11
,
wh12
,
b11
,
b12
}).
LinksTo
({
h1
});
gru2
->
LinksFrom
({
h1
,
wx21
,
wx22
,
wh21
,
wh22
,
b21
,
b22
}).
LinksTo
({
h2
});
return
h2
;
}
}
// namespace ir
}
// namespace framework
}
// namespace paddle
paddle/fluid/framework/ir/graph_pattern_detector.h
浏览文件 @
991345b3
...
...
@@ -1420,6 +1420,33 @@ struct FusionGru : public PatternBase {
PATTERN_DECL_NODE
(
out
);
};
// two subsequent bi_fusion_gru ops
// Forward pass for fusion of two subsequent fusion_gru ops.
// Hidden of the last fusion_gru op is a result of the operator().
struct
MultiGruSeq
:
public
PatternBase
{
MultiGruSeq
(
PDPattern
*
pattern
,
const
std
::
string
&
name_scope
)
:
PatternBase
(
pattern
,
name_scope
,
"multi_gru_seq"
)
{}
PDNode
*
operator
()();
PATTERN_DECL_NODE
(
x
);
PATTERN_DECL_NODE
(
gru1
);
PATTERN_DECL_NODE
(
wx11
);
PATTERN_DECL_NODE
(
wx12
);
PATTERN_DECL_NODE
(
wh11
);
PATTERN_DECL_NODE
(
wh12
);
PATTERN_DECL_NODE
(
b11
);
PATTERN_DECL_NODE
(
b12
);
PATTERN_DECL_NODE
(
h1
);
PATTERN_DECL_NODE
(
gru2
);
PATTERN_DECL_NODE
(
wx21
);
PATTERN_DECL_NODE
(
wx22
);
PATTERN_DECL_NODE
(
wh21
);
PATTERN_DECL_NODE
(
wh22
);
PATTERN_DECL_NODE
(
b21
);
PATTERN_DECL_NODE
(
b22
);
PATTERN_DECL_NODE
(
h2
);
};
}
// namespace patterns
// Link two ir::Nodes from each other.
...
...
paddle/fluid/framework/ir/mkldnn/multi_gru_seq_fuse_pass.cc
0 → 100644
浏览文件 @
991345b3
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/framework/ir/mkldnn/multi_gru_seq_fuse_pass.h"
#include <limits>
#include <sstream>
#include <utility>
#include <vector>
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/ir/graph_pattern_detector.h"
#include "paddle/fluid/platform/errors.h"
#include "paddle/fluid/platform/mkldnn_helper.h"
#include "paddle/fluid/string/pretty_log.h"
namespace
paddle
{
namespace
framework
{
namespace
ir
{
using
EigenVectorArrayMap
=
Eigen
::
Map
<
Eigen
::
Array
<
double
,
Eigen
::
Dynamic
,
1
>>
;
using
string
::
PrettyLogDetail
;
namespace
{
std
::
vector
<
std
::
string
>
join_inputs
(
Node
*
op1
,
Node
*
op2
,
std
::
string
input_name
)
{
auto
in1
=
op1
->
Op
()
->
Input
(
input_name
);
auto
&
in2
=
op2
->
Op
()
->
Input
(
input_name
);
in1
.
insert
(
in1
.
end
(),
in2
.
begin
(),
in2
.
end
());
return
in1
;
}
}
// namespace
void
MultiGruSeqFusePass
::
ApplyImpl
(
ir
::
Graph
*
graph
)
const
{
VLOG
(
3
)
<<
"Fusing two consecutive multi_gru ops."
;
PADDLE_ENFORCE_NOT_NULL
(
graph
,
platform
::
errors
::
InvalidArgument
(
"Pointer to graph argument cannot be NULL."
));
FusePassBase
::
Init
(
name_scope_
,
graph
);
PADDLE_ENFORCE_NOT_NULL
(
param_scope
(),
platform
::
errors
::
InvalidArgument
(
"Scope cannot be nullptr."
));
GraphPatternDetector
gpd
;
patterns
::
MultiGruSeq
pattern
{
gpd
.
mutable_pattern
(),
name_scope_
};
pattern
();
int
fused_count
=
0
;
auto
handler
=
[
&
](
const
GraphPatternDetector
::
subgraph_t
&
subgraph
,
Graph
*
g
)
{
GET_IR_NODE_FROM_SUBGRAPH
(
x
,
x
,
pattern
);
GET_IR_NODE_FROM_SUBGRAPH
(
gru1
,
gru1
,
pattern
);
GET_IR_NODE_FROM_SUBGRAPH
(
wx11
,
wx11
,
pattern
);
GET_IR_NODE_FROM_SUBGRAPH
(
wx12
,
wx12
,
pattern
);
GET_IR_NODE_FROM_SUBGRAPH
(
wh11
,
wh11
,
pattern
);
GET_IR_NODE_FROM_SUBGRAPH
(
wh12
,
wh12
,
pattern
);
GET_IR_NODE_FROM_SUBGRAPH
(
b11
,
b11
,
pattern
);
GET_IR_NODE_FROM_SUBGRAPH
(
b12
,
b12
,
pattern
);
GET_IR_NODE_FROM_SUBGRAPH
(
h1
,
h1
,
pattern
);
GET_IR_NODE_FROM_SUBGRAPH
(
gru2
,
gru2
,
pattern
);
GET_IR_NODE_FROM_SUBGRAPH
(
wx21
,
wx21
,
pattern
);
GET_IR_NODE_FROM_SUBGRAPH
(
wx22
,
wx22
,
pattern
);
GET_IR_NODE_FROM_SUBGRAPH
(
wh21
,
wh21
,
pattern
);
GET_IR_NODE_FROM_SUBGRAPH
(
wh22
,
wh22
,
pattern
);
GET_IR_NODE_FROM_SUBGRAPH
(
b21
,
b21
,
pattern
);
GET_IR_NODE_FROM_SUBGRAPH
(
b22
,
b22
,
pattern
);
GET_IR_NODE_FROM_SUBGRAPH
(
h2
,
h2
,
pattern
);
if
(
gru1
->
Op
()
->
GetAttrIfExists
<
bool
>
(
"origin_mode"
)
!=
gru2
->
Op
()
->
GetAttrIfExists
<
bool
>
(
"origin_mode"
))
{
LOG
(
INFO
)
<<
"The two multi_gru ops have different values of the "
"origin_mode attribute. Skipping fuse."
;
return
;
}
auto
wx
=
join_inputs
(
gru1
,
gru2
,
"WeightX"
);
auto
wh
=
join_inputs
(
gru1
,
gru2
,
"WeightH"
);
auto
b
=
join_inputs
(
gru1
,
gru2
,
"Bias"
);
OpDesc
multi_gru_desc
;
multi_gru_desc
.
SetType
(
"multi_gru"
);
multi_gru_desc
.
SetInput
(
"X"
,
std
::
vector
<
std
::
string
>
({
x
->
Name
()}));
multi_gru_desc
.
SetInput
(
"WeightX"
,
wx
);
multi_gru_desc
.
SetInput
(
"WeightH"
,
wh
);
multi_gru_desc
.
SetInput
(
"Bias"
,
b
);
multi_gru_desc
.
SetOutput
(
"Hidden"
,
std
::
vector
<
std
::
string
>
({
h2
->
Name
()}));
for
(
auto
&
attr
:
gru1
->
Op
()
->
GetAttrMap
())
{
multi_gru_desc
.
SetAttr
(
attr
.
first
,
attr
.
second
);
}
auto
layers
=
BOOST_GET_CONST
(
int
,
gru1
->
Op
()
->
GetAttr
(
"layers"
))
+
BOOST_GET_CONST
(
int
,
gru2
->
Op
()
->
GetAttr
(
"layers"
));
multi_gru_desc
.
SetAttr
(
"layers"
,
layers
);
auto
multi_gru
=
g
->
CreateOpNode
(
&
multi_gru_desc
);
// OpDesc will be copied.
IR_NODE_LINK_TO
(
x
,
multi_gru
);
IR_NODE_LINK_TO
(
wx11
,
multi_gru
);
IR_NODE_LINK_TO
(
wx12
,
multi_gru
);
IR_NODE_LINK_TO
(
wx21
,
multi_gru
);
IR_NODE_LINK_TO
(
wx22
,
multi_gru
);
IR_NODE_LINK_TO
(
wh11
,
multi_gru
);
IR_NODE_LINK_TO
(
wh12
,
multi_gru
);
IR_NODE_LINK_TO
(
wh21
,
multi_gru
);
IR_NODE_LINK_TO
(
wh22
,
multi_gru
);
IR_NODE_LINK_TO
(
b11
,
multi_gru
);
IR_NODE_LINK_TO
(
b12
,
multi_gru
);
IR_NODE_LINK_TO
(
b21
,
multi_gru
);
IR_NODE_LINK_TO
(
b22
,
multi_gru
);
IR_NODE_LINK_TO
(
multi_gru
,
h2
);
GraphSafeRemoveNodes
(
graph
,
{
gru1
,
gru2
,
h1
});
++
fused_count
;
};
gpd
(
graph
,
handler
);
AddStatis
(
fused_count
);
PrettyLogDetail
(
"--- fused %d sequences of two multi_gru ops"
,
fused_count
);
}
}
// namespace ir
}
// namespace framework
}
// namespace paddle
REGISTER_PASS
(
multi_gru_seq_fuse_pass
,
paddle
::
framework
::
ir
::
MultiGruSeqFusePass
);
paddle/fluid/framework/ir/mkldnn/multi_gru_seq_fuse_pass.h
0 → 100644
浏览文件 @
991345b3
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <memory>
#include <string>
#include <unordered_map>
#include <utility>
#include "paddle/fluid/framework/ir/fuse_pass_base.h"
#include "paddle/fluid/framework/ir/graph.h"
#include "paddle/fluid/framework/ir/graph_pattern_detector.h"
namespace
paddle
{
namespace
framework
{
namespace
ir
{
class
MultiGruSeqFusePass
:
public
FusePassBase
{
public:
virtual
~
MultiGruSeqFusePass
()
{}
protected:
void
ApplyImpl
(
ir
::
Graph
*
graph
)
const
override
;
const
std
::
string
name_scope_
{
"multi_gru_seq"
};
};
}
// namespace ir
}
// namespace framework
}
// namespace paddle
paddle/fluid/framework/ir/mkldnn/multi_gru_seq_fuse_pass_tester.cc
0 → 100644
浏览文件 @
991345b3
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/framework/ir/mkldnn/multi_gru_seq_fuse_pass.h"
#include <gtest/gtest.h>
#include <initializer_list>
namespace
paddle
{
namespace
framework
{
namespace
ir
{
const
std
::
vector
<
std
::
string
>
churn_out_vars
(
ProgramDesc
*
prog
,
const
std
::
string
&
prefix
,
int
number
)
{
auto
v
=
std
::
vector
<
std
::
string
>
();
for
(
int
i
=
0
;
i
<
number
;
++
i
)
{
auto
name
=
prefix
+
std
::
to_string
(
i
);
prog
->
MutableBlock
(
0
)
->
Var
(
name
);
v
.
push_back
(
name
);
}
return
v
;
}
void
create_vars
(
ProgramDesc
*
prog
,
const
std
::
initializer_list
<
std
::
string
>&
names
)
{
for
(
auto
name
:
names
)
prog
->
MutableBlock
(
0
)
->
Var
(
name
);
}
void
SetMultiGruOp
(
ProgramDesc
*
prog
,
const
std
::
string
x
,
const
std
::
vector
<
std
::
string
>
wx
,
const
std
::
vector
<
std
::
string
>
wh
,
const
std
::
vector
<
std
::
string
>
b
,
const
std
::
string
h
,
int
layers
,
bool
origin_mode
)
{
auto
*
op
=
prog
->
MutableBlock
(
0
)
->
AppendOp
();
op
->
SetType
(
"multi_gru"
);
op
->
SetInput
(
"X"
,
{
x
});
op
->
SetInput
(
"WeightX"
,
wx
);
op
->
SetInput
(
"WeightH"
,
wh
);
op
->
SetInput
(
"Bias"
,
b
);
op
->
SetOutput
(
"Hidden"
,
{
h
});
op
->
SetAttr
(
"layers"
,
layers
);
op
->
SetAttr
(
"origin_mode"
,
origin_mode
);
}
// (x, wx1, wh1, b1) -> multi_gru1 -> h1
// (h1, wx2, wh2, b2) -> multi_gru2 -> h2
void
MainTest
(
int
layers1
,
int
layers2
,
bool
origin_mode1
,
bool
origin_mode2
)
{
ProgramDesc
prog
;
// Create variables
create_vars
(
&
prog
,
{
"x"
,
"h1"
,
"h2"
});
const
std
::
vector
<
std
::
string
>
wx1
=
churn_out_vars
(
&
prog
,
"wx1"
,
2
*
layers1
);
const
std
::
vector
<
std
::
string
>
wx2
=
churn_out_vars
(
&
prog
,
"wx2"
,
2
*
layers2
);
const
std
::
vector
<
std
::
string
>
wh1
=
churn_out_vars
(
&
prog
,
"wh1"
,
2
*
layers1
);
const
std
::
vector
<
std
::
string
>
wh2
=
churn_out_vars
(
&
prog
,
"wh2"
,
2
*
layers2
);
const
std
::
vector
<
std
::
string
>
b1
=
churn_out_vars
(
&
prog
,
"b1"
,
2
*
layers1
);
const
std
::
vector
<
std
::
string
>
b2
=
churn_out_vars
(
&
prog
,
"b2"
,
2
*
layers2
);
// Create program descriptor
SetMultiGruOp
(
&
prog
,
"x"
,
wx1
,
wh1
,
b1
,
"h1"
,
layers1
,
origin_mode1
);
SetMultiGruOp
(
&
prog
,
"h1"
,
wx2
,
wh2
,
b2
,
"h2"
,
layers2
,
origin_mode2
);
// Apply pass
std
::
unique_ptr
<
ir
::
Graph
>
graph
(
new
ir
::
Graph
(
prog
));
Scope
scope
;
graph
->
SetNotOwned
(
kParamScopeAttr
,
&
scope
);
int
original_nodes_num
=
graph
->
Nodes
().
size
();
auto
pass
=
PassRegistry
::
Instance
().
Get
(
"multi_gru_seq_fuse_pass"
);
graph
.
reset
(
pass
->
Apply
(
graph
.
release
()));
int
current_nodes_num
=
graph
->
Nodes
().
size
();
// Verify graph after fuse
bool
should_fuse
=
origin_mode1
==
origin_mode2
;
int
count_multi_gru
=
0
;
auto
layers
=
layers1
;
auto
wx
=
wx1
;
auto
wh
=
wh1
;
auto
b
=
b1
;
auto
h
=
"h1"
;
if
(
should_fuse
)
{
layers
+=
layers2
;
wx
.
insert
(
wx
.
end
(),
wx2
.
begin
(),
wx2
.
end
());
wh
.
insert
(
wh
.
end
(),
wh2
.
begin
(),
wh2
.
end
());
b
.
insert
(
b
.
end
(),
b2
.
begin
(),
b2
.
end
());
h
=
"h2"
;
}
for
(
auto
*
node
:
graph
->
Nodes
())
{
if
(
node
->
IsOp
())
{
auto
*
op
=
node
->
Op
();
if
(
op
->
Type
()
==
"multi_gru"
)
{
if
(
op
->
Input
(
"X"
)[
0
]
==
"x"
)
{
EXPECT_EQ
(
op
->
GetAttrIfExists
<
int
>
(
"layers"
),
layers
);
EXPECT_EQ
(
op
->
Input
(
"WeightX"
).
size
(),
2u
*
layers
);
EXPECT_EQ
(
op
->
Input
(
"WeightH"
).
size
(),
2u
*
layers
);
EXPECT_EQ
(
op
->
Input
(
"Bias"
).
size
(),
2u
*
layers
);
for
(
int
i
=
0
;
i
<
2
*
layers
;
++
i
)
{
EXPECT_EQ
(
op
->
Input
(
"WeightX"
)[
i
],
wx
[
i
]);
EXPECT_EQ
(
op
->
Input
(
"WeightH"
)[
i
],
wh
[
i
]);
EXPECT_EQ
(
op
->
Input
(
"Bias"
)[
i
],
b
[
i
]);
}
EXPECT_EQ
(
op
->
Output
(
"Hidden"
)[
0
],
h
);
EXPECT_EQ
(
op
->
GetAttrIfExists
<
bool
>
(
"origin_mode"
),
origin_mode1
);
}
else
{
EXPECT_EQ
(
op
->
GetAttrIfExists
<
int
>
(
"layers"
),
layers2
);
EXPECT_EQ
(
op
->
Input
(
"X"
)[
0
],
"h1"
);
EXPECT_EQ
(
op
->
Input
(
"WeightX"
).
size
(),
2u
*
layers2
);
EXPECT_EQ
(
op
->
Input
(
"WeightH"
).
size
(),
2u
*
layers2
);
EXPECT_EQ
(
op
->
Input
(
"Bias"
).
size
(),
2u
*
layers2
);
for
(
int
i
=
0
;
i
<
2
*
layers2
;
++
i
)
{
EXPECT_EQ
(
op
->
Input
(
"WeightX"
)[
i
],
wx2
[
i
]);
EXPECT_EQ
(
op
->
Input
(
"WeightH"
)[
i
],
wh2
[
i
]);
EXPECT_EQ
(
op
->
Input
(
"Bias"
)[
i
],
b2
[
i
]);
}
EXPECT_EQ
(
op
->
Output
(
"Hidden"
)[
0
],
"h2"
);
EXPECT_EQ
(
op
->
GetAttrIfExists
<
bool
>
(
"origin_mode"
),
origin_mode2
);
}
++
count_multi_gru
;
}
}
}
// If the fuse is applied, then:
// nodes to be removed: 2x multi_gru + 1x hidden(output)
// nodes to be added: multi_gru
// If the fuse is not applied, then:
// nodes to be removed: none
// nodes to be added: none
const
int
removed_nodes_count
=
should_fuse
?
3
:
0
;
const
int
added_nodes_count
=
should_fuse
?
1
:
0
;
EXPECT_EQ
(
original_nodes_num
-
removed_nodes_count
+
added_nodes_count
,
current_nodes_num
);
EXPECT_EQ
(
count_multi_gru
,
should_fuse
?
1
:
2
);
}
TEST
(
MultiGruSeqFusePass
,
same_origin_modes_1
)
{
int
layers1
=
1
;
int
layers2
=
1
;
bool
origin_mode1
=
false
;
bool
origin_mode2
=
false
;
MainTest
(
layers1
,
layers2
,
origin_mode1
,
origin_mode2
);
}
TEST
(
MultiGruSeqFusePass
,
same_origin_modes_2
)
{
int
layers1
=
2
;
int
layers2
=
3
;
bool
origin_mode1
=
false
;
bool
origin_mode2
=
false
;
MainTest
(
layers1
,
layers2
,
origin_mode1
,
origin_mode2
);
}
TEST
(
MultiGruSeqFusePass
,
same_origin_modes_3
)
{
int
layers1
=
2
;
int
layers2
=
1
;
bool
origin_mode1
=
true
;
bool
origin_mode2
=
true
;
MainTest
(
layers1
,
layers2
,
origin_mode1
,
origin_mode2
);
}
TEST
(
MultiGruSeqFusePass
,
different_origin_modes
)
{
int
layers1
=
2
;
int
layers2
=
2
;
bool
origin_mode1
=
true
;
bool
origin_mode2
=
false
;
MainTest
(
layers1
,
layers2
,
origin_mode1
,
origin_mode2
);
}
}
// namespace ir
}
// namespace framework
}
// namespace paddle
USE_PASS
(
multi_gru_seq_fuse_pass
);
tools/static_mode_white_list.py
浏览文件 @
991345b3
...
...
@@ -603,6 +603,7 @@ STATIC_MODE_TESTING_LIST = [
'test_matmul_bf16_mkldnn_op'
,
'test_mul_int8_mkldnn_op'
,
'test_multi_gru_mkldnn_op'
,
'test_multi_gru_seq_fuse_pass'
,
'test_pool2d_int8_mkldnn_op'
,
'test_pool2d_mkldnn_op'
,
'test_quantize_mkldnn_op'
,
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录