Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
9908d3cf
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
9908d3cf
编写于
6月 10, 2018
作者:
M
mozga-intel
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
MKLDNN layout: Support for convolution operator
上级
b7c683b8
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
230 addition
and
136 deletion
+230
-136
paddle/fluid/operators/conv_mkldnn_op.cc
paddle/fluid/operators/conv_mkldnn_op.cc
+229
-134
paddle/fluid/operators/conv_op.cc
paddle/fluid/operators/conv_op.cc
+1
-2
未找到文件。
paddle/fluid/operators/conv_mkldnn_op.cc
浏览文件 @
9908d3cf
...
@@ -18,6 +18,17 @@
...
@@ -18,6 +18,17 @@
namespace
paddle
{
namespace
paddle
{
namespace
operators
{
namespace
operators
{
using
conv_bwd_data
=
mkldnn
::
convolution_backward_data
;
using
conv_bwd_weights
=
mkldnn
::
convolution_backward_weights
;
using
conv_fwd
=
mkldnn
::
convolution_forward
;
using
framework
::
DataLayout
;
using
mkldnn
::
memory
;
using
mkldnn
::
primitive
;
using
mkldnn
::
reorder
;
using
mkldnn
::
stream
;
using
platform
::
to_void_cast
;
using
platform
::
GetMKLDNNFormat
;
template
<
typename
T
>
template
<
typename
T
>
class
ConvMKLDNNOpKernel
:
public
paddle
::
framework
::
OpKernel
<
T
>
{
class
ConvMKLDNNOpKernel
:
public
paddle
::
framework
::
OpKernel
<
T
>
{
public:
public:
...
@@ -25,6 +36,10 @@ class ConvMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
...
@@ -25,6 +36,10 @@ class ConvMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
PADDLE_ENFORCE
(
paddle
::
platform
::
is_cpu_place
(
ctx
.
GetPlace
()),
PADDLE_ENFORCE
(
paddle
::
platform
::
is_cpu_place
(
ctx
.
GetPlace
()),
"It must use CPUPlace."
);
"It must use CPUPlace."
);
// Get unique name for index
const
std
::
string
key
=
ctx
.
op
().
Output
(
"Output"
);
const
std
::
string
key_conv_pd
=
key
+
"@conv_pd"
;
auto
&
dev_ctx
=
auto
&
dev_ctx
=
ctx
.
template
device_context
<
paddle
::
platform
::
MKLDNNDeviceContext
>();
ctx
.
template
device_context
<
paddle
::
platform
::
MKLDNNDeviceContext
>();
const
auto
&
mkldnn_engine
=
dev_ctx
.
GetEngine
();
const
auto
&
mkldnn_engine
=
dev_ctx
.
GetEngine
();
...
@@ -33,10 +48,12 @@ class ConvMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
...
@@ -33,10 +48,12 @@ class ConvMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
auto
*
filter
=
ctx
.
Input
<
Tensor
>
(
"Filter"
);
auto
*
filter
=
ctx
.
Input
<
Tensor
>
(
"Filter"
);
auto
*
output
=
ctx
.
Output
<
Tensor
>
(
"Output"
);
auto
*
output
=
ctx
.
Output
<
Tensor
>
(
"Output"
);
// Get an unique name from "argument" name of "Output" variable
PADDLE_ENFORCE
(
input
->
layout
()
==
DataLayout
::
kMKLDNN
&&
// This name will be used as key when saving info into device context
input
->
format
()
!=
memory
::
format
::
format_undef
,
const
std
::
string
key
=
ctx
.
op
().
Output
(
"Output"
);
"Wrong layout/format set for Input tensor"
);
const
std
::
string
key_conv_pd
=
key
+
"@conv_pd"
;
PADDLE_ENFORCE
(
filter
->
layout
()
==
DataLayout
::
kMKLDNN
&&
filter
->
format
()
!=
memory
::
format
::
format_undef
,
"Wrong layout/format set for Filter tensor"
);
std
::
vector
<
int
>
strides
=
ctx
.
Attr
<
std
::
vector
<
int
>>
(
"strides"
);
std
::
vector
<
int
>
strides
=
ctx
.
Attr
<
std
::
vector
<
int
>>
(
"strides"
);
std
::
vector
<
int
>
paddings
=
ctx
.
Attr
<
std
::
vector
<
int
>>
(
"paddings"
);
std
::
vector
<
int
>
paddings
=
ctx
.
Attr
<
std
::
vector
<
int
>>
(
"paddings"
);
...
@@ -63,60 +80,86 @@ class ConvMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
...
@@ -63,60 +80,86 @@ class ConvMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
paddle
::
framework
::
vectorize2int
(
filter
->
dims
());
paddle
::
framework
::
vectorize2int
(
filter
->
dims
());
std
::
vector
<
int
>
dst_tz
=
paddle
::
framework
::
vectorize2int
(
output
->
dims
());
std
::
vector
<
int
>
dst_tz
=
paddle
::
framework
::
vectorize2int
(
output
->
dims
());
// TODO(pzelazko-intel): support more formats
// create mkldnn memory from input tensors (data/weights)
auto
src_md
=
platform
::
MKLDNNMemDesc
(
auto
user_src_memory
=
memory
(
src_tz
,
mkldnn
::
memory
::
data_type
::
f32
,
mkldnn
::
memory
::
format
::
nchw
);
{{{
src_tz
},
memory
::
data_type
::
f32
,
input
->
format
()},
mkldnn_engine
},
auto
weights_md
=
to_void_cast
(
input_data
));
platform
::
MKLDNNMemDesc
(
weights_tz
,
mkldnn
::
memory
::
data_type
::
f32
,
auto
user_weights_memory
=
mkldnn
::
memory
::
format
::
oihw
);
memory
({{{
weights_tz
},
memory
::
data_type
::
f32
,
filter
->
format
()},
auto
dst_md
=
platform
::
MKLDNNMemDesc
(
mkldnn_engine
},
dst_tz
,
mkldnn
::
memory
::
data_type
::
f32
,
mkldnn
::
memory
::
format
::
nchw
);
to_void_cast
(
filter_data
));
auto
src_memory
=
/* create memory descriptor for convolution without specified format
mkldnn
::
memory
({
src_md
,
mkldnn_engine
},
* ('any') which lets a primitive (convolution in this case) choose
reinterpret_cast
<
void
*>
(
const_cast
<
T
*>
(
input_data
)));
* the memory format preferred for best performance
auto
weights_memory
=
*/
mkldnn
::
memory
({
weights_md
,
mkldnn_engine
},
auto
src_md
=
platform
::
MKLDNNMemDesc
(
src_tz
,
memory
::
data_type
::
f32
,
reinterpret_cast
<
void
*>
(
const_cast
<
T
*>
(
filter_data
)));
memory
::
format
::
any
);
auto
dst_memory
=
mkldnn
::
memory
({
dst_md
,
mkldnn_engine
},
output_data
);
auto
weights_md
=
platform
::
MKLDNNMemDesc
(
weights_tz
,
memory
::
data_type
::
f32
,
memory
::
format
::
any
);
std
::
shared_ptr
<
mkldnn
::
convolution_forward
::
primitive_desc
>
conv_pd
=
auto
dst_md
=
platform
::
MKLDNNMemDesc
(
dst_tz
,
memory
::
data_type
::
f32
,
ConvFwdPrimitiveDesc
(
src_md
,
weights_md
,
dst_md
,
strides
,
paddings
,
memory
::
format
::
any
);
mkldnn_engine
);
// create a conv primitive descriptor and save it for usage in backward
// save conv_pd into global device context to be referred in backward path
std
::
shared_ptr
<
conv_fwd
::
primitive_desc
>
conv_pd
=
ConvFwdPrimitiveDesc
(
dev_ctx
.
SetBlob
(
key_conv_pd
,
conv_pd
);
src_md
,
weights_md
,
dst_md
,
strides
,
paddings
,
mkldnn_engine
);
// create reorder primitive if the input format is not the preferred one
auto
src_memory
=
user_src_memory
;
primitive
reorder_src
;
bool
is_src_reordered
=
false
;
if
(
memory
::
primitive_desc
(
conv_pd
->
src_primitive_desc
())
!=
user_src_memory
.
get_primitive_desc
())
{
src_memory
=
memory
(
conv_pd
->
src_primitive_desc
());
reorder_src
=
reorder
(
user_src_memory
,
src_memory
);
is_src_reordered
=
true
;
}
auto
weights_memory
=
user_weights_memory
;
primitive
reorder_weights
;
bool
is_weights_reordered
=
false
;
if
(
memory
::
primitive_desc
(
conv_pd
->
weights_primitive_desc
())
!=
user_weights_memory
.
get_primitive_desc
())
{
weights_memory
=
memory
(
conv_pd
->
weights_primitive_desc
());
reorder_weights
=
reorder
(
user_weights_memory
,
weights_memory
);
is_weights_reordered
=
true
;
}
// create memory primitive for conv dst
auto
dst_memory
=
memory
(
conv_pd
->
dst_primitive_desc
(),
output_data
);
// create convolution op primitive
// create convolution op primitive
auto
conv_prim
=
mkldnn
::
convolution_forward
(
*
conv_pd
,
src_memory
,
auto
conv_prim
=
conv_fwd
(
*
conv_pd
,
src_memory
,
weights_memory
,
dst_memory
);
weights_memory
,
dst_memory
);
// push primitive to stream and wait until it's executed
// push primitive to stream and wait until it's executed
std
::
vector
<
mkldnn
::
primitive
>
pipeline
{
conv_prim
};
std
::
vector
<
primitive
>
pipeline
;
mkldnn
::
stream
(
mkldnn
::
stream
::
kind
::
eager
).
submit
(
pipeline
).
wait
();
if
(
is_src_reordered
)
pipeline
.
push_back
(
reorder_src
);
if
(
is_weights_reordered
)
pipeline
.
push_back
(
reorder_weights
);
pipeline
.
push_back
(
conv_prim
);
stream
(
stream
::
kind
::
eager
).
submit
(
pipeline
).
wait
();
// Save conv_pd/src_memory/weights_memory for backward pass
dev_ctx
.
SetBlob
(
key_conv_pd
,
conv_pd
);
output
->
set_layout
(
DataLayout
::
kMKLDNN
);
output
->
set_format
(
GetMKLDNNFormat
(
dst_memory
));
}
}
private:
private:
std
::
unique_ptr
<
mkldnn
::
convolution_forward
::
primitive_desc
>
std
::
unique_ptr
<
conv_fwd
::
primitive_desc
>
ConvFwdPrimitiveDesc
(
ConvFwdPrimitiveDesc
(
const
mkldnn
::
memory
::
desc
&
src
,
const
memory
::
desc
&
src
,
const
memory
::
desc
&
weights
,
const
mkldnn
::
memory
::
desc
&
weights
,
const
memory
::
desc
&
dst
,
const
std
::
vector
<
int
>&
strides
,
const
mkldnn
::
memory
::
desc
&
dst
,
const
std
::
vector
<
int
>&
paddings
,
const
mkldnn
::
engine
&
engine
)
const
{
const
std
::
vector
<
int
>&
strides
,
memory
::
dims
stride_dims
=
{
strides
[
0
],
strides
[
1
]};
const
std
::
vector
<
int
>&
paddings
,
memory
::
dims
padding_dims
=
{
paddings
[
0
],
paddings
[
1
]};
const
mkldnn
::
engine
&
engine
)
const
{
mkldnn
::
memory
::
dims
stride_dims
=
{
strides
[
0
],
strides
[
1
]};
auto
conv_desc
=
mkldnn
::
memory
::
dims
padding_dims
=
{
paddings
[
0
],
paddings
[
1
]};
conv_fwd
::
desc
(
mkldnn
::
prop_kind
::
forward
,
mkldnn
::
convolution_direct
,
src
,
weights
,
dst
,
stride_dims
,
padding_dims
,
auto
conv_desc
=
mkldnn
::
convolution_forward
::
desc
(
padding_dims
,
mkldnn
::
padding_kind
::
zero
);
mkldnn
::
prop_kind
::
forward
,
mkldnn
::
convolution_direct
,
src
,
weights
,
dst
,
stride_dims
,
padding_dims
,
padding_dims
,
auto
p_conv_pd
=
new
conv_fwd
::
primitive_desc
(
conv_desc
,
engine
);
mkldnn
::
padding_kind
::
zero
);
return
std
::
unique_ptr
<
conv_fwd
::
primitive_desc
>
(
p_conv_pd
);
auto
p_conv_pd
=
new
mkldnn
::
convolution_forward
::
primitive_desc
(
conv_desc
,
engine
);
return
std
::
unique_ptr
<
mkldnn
::
convolution_forward
::
primitive_desc
>
(
p_conv_pd
);
}
}
};
};
...
@@ -139,6 +182,19 @@ class ConvMKLDNNGradOpKernel : public paddle::framework::OpKernel<T> {
...
@@ -139,6 +182,19 @@ class ConvMKLDNNGradOpKernel : public paddle::framework::OpKernel<T> {
Tensor
*
input_grad
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"Input"
));
Tensor
*
input_grad
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"Input"
));
Tensor
*
filter_grad
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"Filter"
));
Tensor
*
filter_grad
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"Filter"
));
PADDLE_ENFORCE
(
input
->
layout
()
==
DataLayout
::
kMKLDNN
&&
input
->
format
()
!=
memory
::
format
::
format_undef
,
"Wrong layout/format set for Input tensor"
);
PADDLE_ENFORCE
(
filter
->
layout
()
==
DataLayout
::
kMKLDNN
&&
filter
->
format
()
!=
memory
::
format
::
format_undef
,
"Wrong layout/format set for Filter tensor"
);
PADDLE_ENFORCE
(
output
->
layout
()
==
DataLayout
::
kMKLDNN
&&
output
->
format
()
!=
memory
::
format
::
format_undef
,
"Wrong layout/format set for Output tensor"
);
PADDLE_ENFORCE
(
output_grad
->
layout
()
==
DataLayout
::
kMKLDNN
&&
output_grad
->
format
()
!=
memory
::
format
::
format_undef
,
"Wrong layout/format set for output_grad tensor"
);
if
(
!
input_grad
&&
!
filter_grad
)
return
;
if
(
!
input_grad
&&
!
filter_grad
)
return
;
// Get an unique name from "argument" name of "Output" variable
// Get an unique name from "argument" name of "Output" variable
...
@@ -167,108 +223,147 @@ class ConvMKLDNNGradOpKernel : public paddle::framework::OpKernel<T> {
...
@@ -167,108 +223,147 @@ class ConvMKLDNNGradOpKernel : public paddle::framework::OpKernel<T> {
paddle
::
framework
::
vectorize2int
(
filter
->
dims
());
paddle
::
framework
::
vectorize2int
(
filter
->
dims
());
std
::
vector
<
int
>
dst_tz
=
paddle
::
framework
::
vectorize2int
(
output
->
dims
());
std
::
vector
<
int
>
dst_tz
=
paddle
::
framework
::
vectorize2int
(
output
->
dims
());
// TODO(pzelazko-intel): support more formats
// create mkldnn memory from input tensors (input/weights/output_grad)
auto
src_md
=
platform
::
MKLDNNMemDesc
(
auto
user_src_memory
=
memory
(
src_tz
,
mkldnn
::
memory
::
data_type
::
f32
,
mkldnn
::
memory
::
format
::
nchw
);
{{{
src_tz
},
memory
::
data_type
::
f32
,
input
->
format
()},
mkldnn_engine
},
auto
diff_src_md
=
platform
::
MKLDNNMemDesc
(
to_void_cast
(
input_data
));
src_tz
,
mkldnn
::
memory
::
data_type
::
f32
,
mkldnn
::
memory
::
format
::
nchw
);
auto
user_weights_memory
=
auto
weights_md
=
memory
({{{
weights_tz
},
memory
::
data_type
::
f32
,
filter
->
format
()},
platform
::
MKLDNNMemDesc
(
weights_tz
,
mkldnn
::
memory
::
data_type
::
f32
,
mkldnn_engine
},
mkldnn
::
memory
::
format
::
oihw
);
to_void_cast
(
filter_data
));
auto
diff_weights_md
=
auto
user_diff_dst_memory
=
platform
::
MKLDNNMemDesc
(
weights_tz
,
mkldnn
::
memory
::
data_type
::
f32
,
memory
({{{
dst_tz
},
memory
::
data_type
::
f32
,
output_grad
->
format
()},
mkldnn
::
memory
::
format
::
oihw
);
mkldnn_engine
},
auto
diff_dst_md
=
platform
::
MKLDNNMemDesc
(
to_void_cast
(
output_grad_data
));
dst_tz
,
mkldnn
::
memory
::
data_type
::
f32
,
mkldnn
::
memory
::
format
::
nchw
);
/* create memory descriptor for conv backward without specified format
// create memory
* ('any') which lets a primitive (conv backward in this case) choose
auto
diff_dst_memory
=
mkldnn
::
memory
(
* the memory format preferred for best performance
{
diff_weights_md
,
mkldnn_engine
},
*/
reinterpret_cast
<
void
*>
(
const_cast
<
T
*>
(
output_grad_data
)));
auto
src_md
=
platform
::
MKLDNNMemDesc
(
src_tz
,
memory
::
data_type
::
f32
,
memory
::
format
::
any
);
auto
diff_src_md
=
platform
::
MKLDNNMemDesc
(
src_tz
,
memory
::
data_type
::
f32
,
memory
::
format
::
any
);
auto
weights_md
=
platform
::
MKLDNNMemDesc
(
weights_tz
,
memory
::
data_type
::
f32
,
memory
::
format
::
any
);
auto
diff_weights_md
=
platform
::
MKLDNNMemDesc
(
weights_tz
,
memory
::
data_type
::
f32
,
memory
::
format
::
any
);
auto
diff_dst_md
=
platform
::
MKLDNNMemDesc
(
dst_tz
,
memory
::
data_type
::
f32
,
memory
::
format
::
any
);
// Retrieve conv_pd from device context
// Retrieve conv_pd from device context
auto
conv_pd
=
auto
conv_pd
=
std
::
static_pointer_cast
<
conv_fwd
::
primitive_desc
>
(
std
::
static_pointer_cast
<
mkldnn
::
convolution_forward
::
primitive_desc
>
(
dev_ctx
.
GetBlob
(
key_conv_pd
));
dev_ctx
.
GetBlob
(
key_conv_pd
));
PADDLE_ENFORCE
(
conv_pd
!=
nullptr
,
PADDLE_ENFORCE
(
conv_pd
!=
nullptr
,
"Fail to find conv_pd in device context"
);
"Fail to find conv_pd in device context"
);
// create backward conv primitive for weights
// create backward conv primitive for weights
if
(
filter_grad
)
{
if
(
filter_grad
)
{
// create primitive descriptor
// create backward convolution primitive descriptor
mkldnn
::
convolution_backward_weights
::
primitive_desc
conv_bwd_weights_pd
=
auto
conv_bwd_weights_desc
=
conv_bwd_weights
::
desc
(
ConvBwdWeightsPrimitiveDesc
(
src_md
,
diff_weights_md
,
diff_dst_md
,
mkldnn
::
convolution_direct
,
src_md
,
diff_weights_md
,
diff_dst_md
,
strides
,
paddings
,
*
conv_pd
,
strides
,
paddings
,
paddings
,
mkldnn
::
padding_kind
::
zero
);
mkldnn_engine
);
auto
conv_bwd_weights_pd
=
conv_bwd_weights
::
primitive_desc
(
conv_bwd_weights_desc
,
mkldnn_engine
,
*
conv_pd
);
// create memory
// create reorder primitive if the input format is not the preferred one
auto
src_memory
=
user_src_memory
;
primitive
reorder_src
;
bool
is_src_reordered
=
false
;
if
(
memory
::
primitive_desc
(
conv_bwd_weights_pd
.
src_primitive_desc
())
!=
user_src_memory
.
get_primitive_desc
())
{
src_memory
=
memory
(
conv_bwd_weights_pd
.
src_primitive_desc
());
reorder_src
=
reorder
(
user_src_memory
,
src_memory
);
is_src_reordered
=
true
;
}
auto
diff_dst_memory_4filter
=
user_diff_dst_memory
;
primitive
reorder_diff_dst_4filter
;
bool
is_diff_dst_reordered_4filter
=
false
;
if
(
memory
::
primitive_desc
(
conv_bwd_weights_pd
.
diff_dst_primitive_desc
())
!=
user_diff_dst_memory
.
get_primitive_desc
())
{
diff_dst_memory_4filter
=
memory
(
conv_bwd_weights_pd
.
diff_dst_primitive_desc
());
reorder_diff_dst_4filter
=
reorder
(
user_diff_dst_memory
,
diff_dst_memory_4filter
);
is_diff_dst_reordered_4filter
=
true
;
}
// create mkldnn memory for output (i.e. diff weights)
auto
diff_weights_memory
=
auto
diff_weights_memory
=
mkldnn
::
memory
({
diff_weights_md
,
mkldnn_engine
},
memory
(
conv_bwd_weights_pd
.
diff_weights_primitive_desc
(),
reinterpret_cast
<
void
*>
(
filter_grad_data
));
reinterpret_cast
<
void
*>
(
filter_grad_data
));
auto
src_memory
=
mkldnn
::
memory
({
src_md
,
mkldnn_engine
},
reinterpret_cast
<
void
*>
(
const_cast
<
T
*>
(
input_data
)));
// create backward conv primitive for weights
// create backward conv primitive for weights
auto
conv_bwd_weights_prim
=
mkldnn
::
convolution_backward_weights
(
auto
conv_bwd_weights_prim
=
conv_bwd_weights
_pd
,
src_memory
,
diff_dst
_memory
,
conv_bwd_weights
(
conv_bwd_weights_pd
,
src
_memory
,
diff_weights_memory
);
diff_dst_memory_4filter
,
diff_weights_memory
);
// push primitive and execute it
// push primitive and execute it
std
::
vector
<
mkldnn
::
primitive
>
pipeline
{
conv_bwd_weights_prim
};
std
::
vector
<
primitive
>
pipeline
;
mkldnn
::
stream
(
mkldnn
::
stream
::
kind
::
eager
).
submit
(
pipeline
).
wait
();
if
(
is_src_reordered
)
pipeline
.
push_back
(
reorder_src
);
if
(
is_diff_dst_reordered_4filter
)
pipeline
.
push_back
(
reorder_diff_dst_4filter
);
pipeline
.
push_back
(
conv_bwd_weights_prim
);
stream
(
stream
::
kind
::
eager
).
submit
(
pipeline
).
wait
();
filter_grad
->
set_layout
(
DataLayout
::
kMKLDNN
);
filter_grad
->
set_format
(
GetMKLDNNFormat
(
diff_weights_memory
));
}
}
if
(
input_grad
)
{
if
(
input_grad
)
{
// create primitive descriptor
// create backward convolution primitive descriptor
mkldnn
::
convolution_backward_data
::
primitive_desc
conv_bwd_data_pd
=
auto
conv_bwd_data_desc
=
conv_bwd_data
::
desc
(
ConvBwdDataPrimitiveDesc
(
diff_src_md
,
weights_md
,
diff_dst_md
,
mkldnn
::
convolution_direct
,
diff_src_md
,
weights_md
,
diff_dst_md
,
strides
,
paddings
,
*
conv_pd
,
mkldnn_engine
);
strides
,
paddings
,
paddings
,
mkldnn
::
padding_kind
::
zero
);
auto
conv_bwd_data_pd
=
conv_bwd_data
::
primitive_desc
(
// create memory
conv_bwd_data_desc
,
mkldnn_engine
,
*
conv_pd
);
auto
diff_src_memory
=
mkldnn
::
memory
(
{
diff_src_md
,
mkldnn_engine
},
// create reorder primitive if the input format is not the preferred one
reinterpret_cast
<
void
*>
(
const_cast
<
T
*>
(
input_grad_data
)));
auto
weights_memory
=
user_weights_memory
;
auto
weights_memory
=
primitive
reorder_weights
;
mkldnn
::
memory
({
weights_md
,
mkldnn_engine
},
bool
is_weights_reordered
=
false
;
reinterpret_cast
<
void
*>
(
const_cast
<
T
*>
(
filter_data
)));
if
(
memory
::
primitive_desc
(
conv_bwd_data_pd
.
weights_primitive_desc
())
!=
user_weights_memory
.
get_primitive_desc
())
{
weights_memory
=
memory
(
conv_bwd_data_pd
.
weights_primitive_desc
());
reorder_weights
=
reorder
(
user_weights_memory
,
weights_memory
);
is_weights_reordered
=
true
;
}
auto
diff_dst_memory_4data
=
user_diff_dst_memory
;
primitive
reorder_diff_dst_4data
;
bool
is_diff_dst_reordered_4data
=
false
;
if
(
memory
::
primitive_desc
(
conv_bwd_data_pd
.
diff_dst_primitive_desc
())
!=
user_diff_dst_memory
.
get_primitive_desc
())
{
diff_dst_memory_4data
=
memory
(
conv_bwd_data_pd
.
diff_dst_primitive_desc
());
reorder_diff_dst_4data
=
reorder
(
user_diff_dst_memory
,
diff_dst_memory_4data
);
is_diff_dst_reordered_4data
=
true
;
}
// create mkldnn memory for output (i.e. diff src)
auto
diff_src_memory
=
memory
(
conv_bwd_data_pd
.
diff_src_primitive_desc
(),
reinterpret_cast
<
void
*>
(
input_grad_data
));
// create backward conv primitive for data
// create backward conv primitive for data
auto
conv_bwd_data_prim
=
mkldnn
::
convolution_backward_data
(
auto
conv_bwd_data_prim
=
conv_bwd_data_pd
,
diff_dst_memory
,
weights_memory
,
diff_src_memory
);
conv_bwd_data
(
conv_bwd_data_pd
,
diff_dst_memory_4data
,
weights_memory
,
diff_src_memory
);
// push primitive to stream and wait until it's executed
// push primitive and execute it
std
::
vector
<
mkldnn
::
primitive
>
pipeline
{
conv_bwd_data_prim
};
std
::
vector
<
primitive
>
pipeline
;
mkldnn
::
stream
(
mkldnn
::
stream
::
kind
::
eager
).
submit
(
pipeline
).
wait
();
if
(
is_weights_reordered
)
pipeline
.
push_back
(
reorder_weights
);
if
(
is_diff_dst_reordered_4data
)
pipeline
.
push_back
(
reorder_diff_dst_4data
);
pipeline
.
push_back
(
conv_bwd_data_prim
);
stream
(
stream
::
kind
::
eager
).
submit
(
pipeline
).
wait
();
input_grad
->
set_layout
(
DataLayout
::
kMKLDNN
);
input_grad
->
set_format
(
GetMKLDNNFormat
(
diff_src_memory
));
}
}
}
// Compute()
}
// Compute()
private:
mkldnn
::
convolution_backward_weights
::
primitive_desc
ConvBwdWeightsPrimitiveDesc
(
const
mkldnn
::
memory
::
desc
&
src
,
const
mkldnn
::
memory
::
desc
&
diff_weights
,
const
mkldnn
::
memory
::
desc
&
diff_dst
,
const
std
::
vector
<
int
>&
strides
,
const
std
::
vector
<
int
>&
paddings
,
const
mkldnn
::
convolution_forward
::
primitive_desc
&
conv_pd
,
const
mkldnn
::
engine
&
engine
)
const
{
auto
conv_bwd_weights_desc
=
mkldnn
::
convolution_backward_weights
::
desc
(
mkldnn
::
convolution_direct
,
src
,
diff_weights
,
diff_dst
,
strides
,
paddings
,
paddings
,
mkldnn
::
padding_kind
::
zero
);
return
mkldnn
::
convolution_backward_weights
::
primitive_desc
(
conv_bwd_weights_desc
,
engine
,
conv_pd
);
}
mkldnn
::
convolution_backward_data
::
primitive_desc
ConvBwdDataPrimitiveDesc
(
const
mkldnn
::
memory
::
desc
&
diff_src
,
const
mkldnn
::
memory
::
desc
&
weights
,
const
mkldnn
::
memory
::
desc
&
diff_dst
,
const
std
::
vector
<
int
>&
strides
,
const
std
::
vector
<
int
>&
paddings
,
const
mkldnn
::
convolution_forward
::
primitive_desc
&
conv_pd
,
const
mkldnn
::
engine
&
engine
)
const
{
auto
conv_bwd_data_desc
=
mkldnn
::
convolution_backward_data
::
desc
(
mkldnn
::
convolution_direct
,
diff_src
,
weights
,
diff_dst
,
strides
,
paddings
,
paddings
,
mkldnn
::
padding_kind
::
zero
);
return
mkldnn
::
convolution_backward_data
::
primitive_desc
(
conv_bwd_data_desc
,
engine
,
conv_pd
);
}
};
};
}
// namespace operators
}
// namespace operators
...
...
paddle/fluid/operators/conv_op.cc
浏览文件 @
9908d3cf
...
@@ -75,9 +75,8 @@ void ConvOp::InferShape(framework::InferShapeContext* ctx) const {
...
@@ -75,9 +75,8 @@ void ConvOp::InferShape(framework::InferShapeContext* ctx) const {
framework
::
OpKernelType
ConvOp
::
GetExpectedKernelType
(
framework
::
OpKernelType
ConvOp
::
GetExpectedKernelType
(
const
framework
::
ExecutionContext
&
ctx
)
const
{
const
framework
::
ExecutionContext
&
ctx
)
const
{
framework
::
LibraryType
library
{
framework
::
LibraryType
::
kPlain
};
framework
::
LibraryType
library
{
framework
::
LibraryType
::
kPlain
};
std
::
string
data_format
=
ctx
.
Attr
<
std
::
string
>
(
"data_format"
);
// TODO(pzelazko-intel): enable MKLDNN layout when it's ready
// TODO(pzelazko-intel): enable MKLDNN layout when it's ready
std
::
string
data_format
=
ctx
.
Attr
<
std
::
string
>
(
"data_format"
);
framework
::
DataLayout
layout
=
framework
::
StringToDataLayout
(
data_format
);
framework
::
DataLayout
layout
=
framework
::
StringToDataLayout
(
data_format
);
#ifdef PADDLE_WITH_CUDA
#ifdef PADDLE_WITH_CUDA
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录