未验证 提交 98ec9927 编写于 作者: H huzhiqiang 提交者: GitHub

modify WeightNormParamAttr English doc test=develop (#20218)

* modify WeightNormParamAttr English doc test=develop
上级 5fc2cfba
......@@ -1103,7 +1103,7 @@ paddle.fluid.CUDAPinnedPlace ('paddle.fluid.core_avx.CUDAPinnedPlace', ('documen
paddle.fluid.CUDAPinnedPlace.__init__ __init__(self: paddle.fluid.core_avx.CUDAPinnedPlace) -> None
paddle.fluid.ParamAttr ('paddle.fluid.param_attr.ParamAttr', ('document', '7b5bfe856689036b8fffb71af1558e5c'))
paddle.fluid.ParamAttr.__init__ (ArgSpec(args=['self', 'name', 'initializer', 'learning_rate', 'regularizer', 'trainable', 'gradient_clip', 'do_model_average'], varargs=None, keywords=None, defaults=(None, None, 1.0, None, True, None, True)), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
paddle.fluid.WeightNormParamAttr ('paddle.fluid.param_attr.WeightNormParamAttr', ('document', 'b5ae1698ea72d5a9428000b916a67379'))
paddle.fluid.WeightNormParamAttr ('paddle.fluid.param_attr.WeightNormParamAttr', ('document', 'ea029ec9e0dea75f136211c433154f25'))
paddle.fluid.WeightNormParamAttr.__init__ (ArgSpec(args=['self', 'dim', 'name', 'initializer', 'learning_rate', 'regularizer', 'trainable', 'gradient_clip', 'do_model_average'], varargs=None, keywords=None, defaults=(None, None, None, 1.0, None, True, None, False)), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
paddle.fluid.DataFeeder ('paddle.fluid.data_feeder.DataFeeder', ('document', 'd9e64be617bd5f49dbb08ac2bc8665e6'))
paddle.fluid.DataFeeder.__init__ (ArgSpec(args=['self', 'feed_list', 'place', 'program'], varargs=None, keywords=None, defaults=(None,)), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
......
......@@ -183,7 +183,7 @@ class ParamAttr(object):
class WeightNormParamAttr(ParamAttr):
"""
Used for weight Norm. Weight Norm is a reparameterization of the weight vectors
Parameter of weight Norm. Weight Norm is a reparameterization of the weight vectors
in a neural network that decouples the magnitude of those weight vectors from
their direction. Weight Norm has been implemented as discussed in this
paper: `Weight Normalization: A Simple Reparameterization to Accelerate
......@@ -191,17 +191,27 @@ class WeightNormParamAttr(ParamAttr):
<https://arxiv.org/pdf/1602.07868.pdf>`_.
Args:
dim(int): Dimension over which to compute the norm. Default None.
name(str): The parameter's name. Default None.
initializer(Initializer): The method to initial this parameter. Default None.
learning_rate(float): The parameter's learning rate. The learning rate when
optimize is :math:`global\_lr * parameter\_lr * scheduler\_factor`.
dim(int): Dimension over which to compute the norm. Dim is a non-negative
number which is less than the rank of weight Tensor. For Example, dim can
be choosed from 0, 1, 2, 3 for convolution whose weight shape is [cout, cin, kh, kw]
and rank is 4. Default None, meaning that all elements will be normalized.
name(str, optional): The parameter's name. Default None, meaning that the name would
be created automatically. Please refer to :ref:`api_guide_Name` for more details.
initializer(Initializer): The method to initialize this parameter, such as
``initializer = fluid.initializer.ConstantInitializer(1.0)``. Default None,
meaning that the weight parameter is initialized by Xavier initializer, and
the bias parameter is initialized by 0.
learning_rate(float32): The parameter's learning rate when
optimizer is :math:`global\_lr * parameter\_lr * scheduler\_factor`.
Default 1.0.
regularizer(WeightDecayRegularizer): Regularization factor. Default None.
trainable(bool): Whether this parameter is trainable. Default True.
gradient_clip(BaseGradientClipAttr): The method to clip this parameter's
gradient. Default None.
do_model_average(bool): Whether this parameter should do model average.
regularizer(WeightDecayRegularizer): Regularization factor, such as
``regularizer = fluid.regularizer.L2DecayRegularizer(regularization_coeff=0.1)``.
Default None, meaning that there is no regularization.
trainable(bool, optional): Whether this parameter is trainable. Default True.
gradient_clip: The method to clip this parameter's gradient, such as
``gradient_clip = fluid.clip.GradientClipByNorm(clip_norm=2.0))`` .
Default None, meaning that there is no gradient clip.
do_model_average(bool, optional): Whether this parameter should do model average.
Default False.
Examples:
......@@ -213,7 +223,13 @@ class WeightNormParamAttr(ParamAttr):
size=1000,
param_attr=fluid.WeightNormParamAttr(
dim=None,
name='weight_norm_param'))
name='weight_norm_param',
initializer=fluid.initializer.ConstantInitializer(1.0),
learning_rate=1.0,
regularizer=fluid.regularizer.L2DecayRegularizer(regularization_coeff=0.1),
trainable=True,
gradient_clip=fluid.clip.GradientClipByNorm(clip_norm=2.0),
do_model_average=False))
"""
# List to record the parameters reparameterized by weight normalization.
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册