Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
98c3294b
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
98c3294b
编写于
10月 16, 2018
作者:
J
jerrywgz
浏览文件
操作
浏览文件
下载
差异文件
Merge branch 'roialign' of
https://github.com/jerrywgz/Paddle
into roialign
上级
8c79071d
c9d2046f
变更
3
展开全部
显示空白变更内容
内联
并排
Showing
3 changed file
with
36 addition
and
440 deletion
+36
-440
API.spec
API.spec
+0
-392
paddle/fluid/operators/roi_align_op.cc
paddle/fluid/operators/roi_align_op.cc
+0
-1
paddle/fluid/operators/roi_align_op.cu
paddle/fluid/operators/roi_align_op.cu
+36
-47
未找到文件。
API.spec
已删除
100644 → 0
浏览文件 @
8c79071d
此差异已折叠。
点击以展开。
paddle/fluid/operators/roi_align_op.cc
浏览文件 @
98c3294b
...
...
@@ -10,7 +10,6 @@ See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/roi_align_op.h"
#include "paddle/fluid/platform/cuda_primitives.h"
namespace
paddle
{
namespace
operators
{
...
...
paddle/fluid/operators/roi_align_op.cu
浏览文件 @
98c3294b
...
...
@@ -33,16 +33,9 @@ static inline int NumBlocks(const int N) {
for (int i = blockIdx.x * blockDim.x + threadIdx.x; i < (n); \
i += blockDim.x * gridDim.x)
/*
template <class T>
inline __device__ T gpu_atomic_add(const T val, T* address) {
return atomicAdd(address, val);
}
*/
template
<
class
T
>
__device__
T
bilinear_interpolate
(
const
T
*
input_data
,
const
int
height
,
const
int
width
,
T
y
,
T
x
,
)
{
const
int
width
,
T
y
,
T
x
)
{
if
(
y
<
-
1.0
||
y
>
height
||
x
<
-
1.0
||
x
>
width
)
{
return
0
;
}
...
...
@@ -82,15 +75,11 @@ __device__ T bilinear_interpolate(const T* input_data, const int height,
}
template
<
class
T
>
__device__
T
bilinear_interpolate_gradient
(
const
int
height
,
const
int
width
,
T
y
,
T
x
,
const
T
&
w1
,
const
T
&
w2
,
const
T
&
w3
,
const
T
&
w4
,
const
int
&
x_low
,
const
int
&
x_high
,
const
int
&
y_low
,
const
int
&
y_high
)
{
__device__
void
bilinear_interpolate_gradient
(
const
int
height
,
const
int
width
,
T
y
,
T
x
,
T
*
w1
,
T
*
w2
,
T
*
w3
,
T
*
w4
,
int
*
x_low
,
int
*
x_high
,
int
*
y_low
,
int
*
y_high
)
{
if
(
y
<
-
1.0
||
y
>
height
||
x
<
-
1.0
||
x
>
width
)
{
w1
=
w2
=
w3
=
w4
=
0.
;
x_low
=
x_high
=
y_low
=
y_high
=
-
1
;
return
;
}
...
...
@@ -100,23 +89,23 @@ __device__ T bilinear_interpolate_gradient(const int height, const int width,
if
(
x
<=
0
)
{
x
=
0
;
}
y_low
=
static_cast
<
int
>
(
y
);
x_low
=
static_cast
<
int
>
(
x
);
if
(
y_low
>=
height
-
1
)
{
y_high
=
y_low
=
height
-
1
;
y
=
static_cast
<
T
>
(
y_low
);
*
y_low
=
static_cast
<
int
>
(
y
);
*
x_low
=
static_cast
<
int
>
(
x
);
if
(
*
y_low
>=
height
-
1
)
{
*
y_high
=
*
y_low
=
height
-
1
;
y
=
static_cast
<
T
>
(
*
y_low
);
}
else
{
y_high
=
y_low
+
1
;
*
y_high
=
*
y_low
+
1
;
}
if
(
x_low
>=
width
-
1
)
{
x_high
=
x_low
=
width
-
1
;
x
=
static_cast
<
T
>
(
x_low
);
if
(
*
x_low
>=
width
-
1
)
{
*
x_high
=
*
x_low
=
width
-
1
;
x
=
static_cast
<
T
>
(
*
x_low
);
}
else
{
x_high
=
x_low
+
1
;
*
x_high
=
*
x_low
+
1
;
}
T
ly
=
y
-
y_low
,
lx
=
x
-
x_low
;
T
ly
=
y
-
*
y_low
,
lx
=
x
-
*
x_low
;
T
hy
=
1.
-
ly
,
hx
=
1.
-
lx
;
w1
=
hy
*
hx
,
w2
=
hy
*
lx
,
w3
=
ly
*
hx
,
w4
=
ly
*
lx
;
*
w1
=
hy
*
hx
,
*
w2
=
hy
*
lx
,
*
w3
=
ly
*
hx
,
*
w4
=
ly
*
lx
;
return
;
}
...
...
@@ -126,7 +115,7 @@ __global__ void GPUROIAlignForward(
const
int
nthreads
,
const
T
*
input_data
,
const
T
*
input_rois
,
const
float
spatial_scale
,
const
int
channels
,
const
int
height
,
const
int
width
,
const
int
pooled_height
,
const
int
pooled_width
,
const
int
sampling_ratio
int
*
roi_batch_id_data
,
T
*
output_data
)
{
const
int
sampling_ratio
,
int
*
roi_batch_id_data
,
T
*
output_data
)
{
CUDA_1D_KERNEL_LOOP
(
i
,
nthreads
)
{
int
pw
=
i
%
pooled_width
;
int
ph
=
(
i
/
pooled_width
)
%
pooled_height
;
...
...
@@ -141,8 +130,8 @@ __global__ void GPUROIAlignForward(
T
roi_xmax
=
offset_input_rois
[
2
]
*
spatial_scale
;
T
roi_ymax
=
offset_input_rois
[
3
]
*
spatial_scale
;
T
roi_width
=
std
::
max
(
roi_xmax
-
roi_xmin
,
static_cast
<
T
>
(
1.
));
T
roi_height
=
std
::
max
(
roi_ymax
-
roi_ymin
,
static_cast
<
T
>
(
1.
));
T
roi_width
=
max
(
roi_xmax
-
roi_xmin
,
static_cast
<
T
>
(
1.
));
T
roi_height
=
max
(
roi_ymax
-
roi_ymin
,
static_cast
<
T
>
(
1.
));
T
bin_size_h
=
static_cast
<
T
>
(
roi_height
)
/
static_cast
<
T
>
(
pooled_height
);
T
bin_size_w
=
static_cast
<
T
>
(
roi_width
)
/
static_cast
<
T
>
(
pooled_width
);
...
...
@@ -175,7 +164,7 @@ __global__ void GPUROIAlignForward(
template
<
typename
T
>
__global__
void
GPUROIAlignBackward
(
const
int
nthreads
,
const
T
*
input_rois
,
const
T
*
out
put
_grad
,
const
int
num_rois
,
const
T
*
out_grad
,
const
int
num_rois
,
const
float
spatial_scale
,
const
int
channels
,
const
int
height
,
const
int
width
,
const
int
pooled_height
,
...
...
@@ -185,7 +174,7 @@ __global__ void GPUROIAlignBackward(const int nthreads, const T* input_rois,
CUDA_1D_KERNEL_LOOP
(
i
,
nthreads
)
{
int
pw
=
i
%
pooled_width
;
int
ph
=
(
i
/
pooled_width
)
%
pooled_height
;
int
c
=
(
i
c
/
pooled_width
/
pooled_height
)
%
channels
;
int
c
=
(
i
/
pooled_width
/
pooled_height
)
%
channels
;
int
n
=
i
/
pooled_width
/
pooled_height
/
channels
;
const
T
*
offset_input_rois
=
input_rois
+
n
*
kROISize
;
int
roi_batch_ind
=
roi_batch_id_data
[
n
];
...
...
@@ -195,12 +184,12 @@ __global__ void GPUROIAlignBackward(const int nthreads, const T* input_rois,
T
roi_xmax
=
offset_input_rois
[
2
]
*
spatial_scale
;
T
roi_ymax
=
offset_input_rois
[
3
]
*
spatial_scale
;
T
roi_width
=
std
::
max
(
roi_xmax
-
roi_xmin
,
static_cast
<
T
>
(
1.
));
T
roi_height
=
std
::
max
(
roi_ymax
-
roi_ymin
,
static_cast
<
T
>
(
1.
));
T
roi_width
=
max
(
roi_xmax
-
roi_xmin
,
static_cast
<
T
>
(
1.
));
T
roi_height
=
max
(
roi_ymax
-
roi_ymin
,
static_cast
<
T
>
(
1.
));
T
bin_size_h
=
static_cast
<
T
>
(
roi_height
)
/
static_cast
<
T
>
(
pooled_height
);
T
bin_size_w
=
static_cast
<
T
>
(
roi_width
)
/
static_cast
<
T
>
(
pooled_width
);
const
T
*
offset_input_grad
=
T
*
offset_input_grad
=
input_grad
+
(
roi_batch_ind
*
channels
+
c
)
*
height
*
width
;
const
T
*
offset_out_grad
=
...
...
@@ -215,17 +204,17 @@ __global__ void GPUROIAlignBackward(const int nthreads, const T* input_rois,
const
T
count
=
roi_bin_grid_h
*
roi_bin_grid_w
;
for
(
int
iy
=
0
;
iy
<
roi_bin_grid_h
;
iy
++
)
{
const
T
y
=
roi_
start_h
+
ph
*
bin_size_h
+
const
T
y
=
roi_
ymin
+
ph
*
bin_size_h
+
static_cast
<
T
>
(
iy
+
.5
f
)
*
bin_size_h
/
static_cast
<
T
>
(
roi_bin_grid_h
);
for
(
int
ix
=
0
;
ix
<
roi_bin_grid_w
;
ix
++
)
{
const
T
x
=
roi_
start_w
+
pw
*
bin_size_w
+
const
T
x
=
roi_
xmin
+
pw
*
bin_size_w
+
static_cast
<
T
>
(
ix
+
.5
f
)
*
bin_size_w
/
static_cast
<
T
>
(
roi_bin_grid_w
);
T
w1
,
w2
,
w3
,
w4
;
int
x_low
,
x_high
,
y_low
,
y_high
;
bilinear_interpolate_gradient
(
height
,
width
,
y
,
x
,
w1
,
w2
,
w3
,
w4
,
x_low
,
x_high
,
y_low
,
y_high
);
T
w1
=
0
,
w2
=
0
,
w3
=
0
,
w4
=
0
;
int
x_low
=
-
1
,
x_high
=
-
1
,
y_low
=
-
1
,
y_high
=
-
1
;
bilinear_interpolate_gradient
(
height
,
width
,
y
,
x
,
&
w1
,
&
w2
,
&
w3
,
&
w4
,
&
x_low
,
&
x_high
,
&
y_low
,
&
y_high
);
T
diff1
=
out_grad_this_bin
*
w1
/
count
;
T
diff2
=
out_grad_this_bin
*
w2
/
count
;
T
diff3
=
out_grad_this_bin
*
w3
/
count
;
...
...
@@ -238,7 +227,7 @@ __global__ void GPUROIAlignBackward(const int nthreads, const T* input_rois,
platform
::
CudaAtomicAdd
(
offset_input_grad
+
y_high
*
width
+
x_low
,
diff3
);
platform
::
CudaAtomicAdd
(
offset_input_grad
+
y_high
*
width
+
x_high
,
diff
3
);
diff
4
);
}
}
}
...
...
@@ -249,7 +238,7 @@ template <typename Place, typename T>
class
GPUROIAlignOpKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
i
auto
*
in
=
ctx
.
Input
<
Tensor
>
(
"X"
);
auto
*
in
=
ctx
.
Input
<
Tensor
>
(
"X"
);
auto
*
rois
=
ctx
.
Input
<
LoDTensor
>
(
"ROIs"
);
auto
*
out
=
ctx
.
Output
<
Tensor
>
(
"Out"
);
...
...
@@ -337,9 +326,9 @@ class GPUROIAlignGradOpKernel : public framework::OpKernel<T> {
framework
::
TensorCopy
(
roi_batch_id_list
,
ctx
.
GetPlace
(),
ctx
.
device_context
(),
&
roi_batch_id_list_gpu
);
x
_grad
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
in
_grad
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
math
::
SetConstant
<
Place
,
T
>
set_zero
;
set_zero
(
ctx
.
cuda_device_context
(),
x
_grad
,
static_cast
<
T
>
(
0
));
set_zero
(
ctx
.
cuda_device_context
(),
in
_grad
,
static_cast
<
T
>
(
0
));
int
output_grad_size
=
out_grad
->
numel
();
int
blocks
=
NumBlocks
(
output_grad_size
);
...
...
@@ -351,7 +340,7 @@ class GPUROIAlignGradOpKernel : public framework::OpKernel<T> {
output_grad_size
,
rois
->
data
<
T
>
(),
out_grad
->
data
<
T
>
(),
rois_num
,
spatial_scale
,
channels
,
height
,
width
,
pooled_height
,
pooled_width
,
sampling_ratio
,
roi_batch_id_list_gpu
.
data
<
int
>
(),
x
_grad
->
mutable_data
<
T
>
(
ctx
.
GetPlace
()));
in
_grad
->
mutable_data
<
T
>
(
ctx
.
GetPlace
()));
}
}
}
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录