未验证 提交 98ae15c0 编写于 作者: Q qizhaoaoe 提交者: GitHub

Fluid clean parallel (#50626)

* fluid clean: remove parallel and parallel_helper api

* fix: fix the import path.

* fix DataParallel imports issue
上级 bbca66f2
......@@ -345,7 +345,7 @@ from .autograd import set_grad_enabled # noqa: F401
from .autograd import is_grad_enabled # noqa: F401
from .framework import save # noqa: F401
from .framework import load # noqa: F401
from .framework import DataParallel # noqa: F401
from .distributed import DataParallel # noqa: F401
from .framework import set_default_dtype # noqa: F401
from .framework import get_default_dtype # noqa: F401
......
......@@ -20,7 +20,7 @@ from .parallel import init_parallel_env # noqa: F401
from .parallel import get_rank # noqa: F401
from .parallel import get_world_size # noqa: F401
from .parallel import ParallelEnv # noqa: F401
from .parallel import DataParallel
from .parallel_with_gloo import gloo_init_parallel_env
from .parallel_with_gloo import gloo_barrier
from .parallel_with_gloo import gloo_release
......
......@@ -17,7 +17,6 @@ import os
import paddle
from paddle.fluid import compiler
from paddle.fluid.dygraph import parallel_helper
from paddle.fluid.framework import in_dygraph_mode
from paddle.fluid.ir import apply_build_strategy
from paddle.fluid.wrapped_decorator import wrap_decorator
......@@ -236,6 +235,7 @@ class Fleet:
fleet.init(log_level = "DEBUG")
"""
from paddle.distributed import parallel_helper
set_log_level(log_level)
......
......@@ -14,16 +14,16 @@
import paddle
from paddle import framework
# (TODO: GhostScreaming) It will be removed later.
from paddle.fluid import core
from paddle.framework import (
from paddle.distributed.parallel import (
_split_tensors,
build_groups,
in_dygraph_mode,
sync_params_buffers,
)
# (TODO: GhostScreaming) It will be removed later.
from paddle.fluid import core
from .log_util import logger
__all__ = []
......
......@@ -12,13 +12,19 @@
# See the License for the specific language governing permissions and
# limitations under the License.
import itertools
import os
import time
import warnings
from collections import OrderedDict
from contextlib import contextmanager
from multiprocessing import Manager # noqa: F401
from multiprocessing import Process # noqa: F401
import numpy as np
import paddle
from paddle import _legacy_C_ops, framework
from paddle.distributed.collective import (
Group,
_default_group_name,
......@@ -37,21 +43,616 @@ from paddle.distributed.fleet.base.private_helper_function import ( # noqa: F40
)
from paddle.distributed.fleet.launch_utils import check_backend
# deprecated module import
# (TODO: GhostScreaming) It will be removed later.
from paddle.fluid import core
from paddle.framework import ParamBase, _set_expected_place
from paddle.framework import base as imperative_base
from paddle.framework import core, in_dygraph_mode, layers, to_variable
from paddle.utils import deprecated
# (TODO: GhostScreaming) It will be removed later.
from paddle.framework import (
_set_expected_place,
in_dygraph_mode,
parallel_helper,
)
from . import parallel_helper
__all__ = []
ParallelStrategy = core.ParallelStrategy
def _build_default_parallel_strategy():
strategy = ParallelStrategy()
strategy.nranks = paddle.distributed.ParallelEnv().nranks
strategy.local_rank = paddle.distributed.ParallelEnv().local_rank
strategy.trainer_endpoints = (
paddle.distributed.ParallelEnv().trainer_endpoints
)
strategy.current_endpoint = (
paddle.distributed.ParallelEnv().current_endpoint
)
return strategy
def _coalesce_tensors(var_groups):
coalesced_grads_and_grad_vars = []
for group_id, grad_vars in var_groups.items():
flattened_vars = []
g_var_shapes = []
for g_var in grad_vars:
g_var_shapes.append(g_var.shape)
flattened_vars.append(
paddle.reshape(x=g_var, shape=[np.prod(g_var.shape)])
)
coalesced_grad = paddle.concat(flattened_vars)
coalesced_grads_and_grad_vars.append(
[coalesced_grad, grad_vars, g_var_shapes]
)
return coalesced_grads_and_grad_vars
@framework.dygraph_only
def _reshape_inplace(x, shape):
x_shape = framework._varbase_creator(dtype=x.dtype)
framework._dygraph_tracer().trace_op(
type="reshape2",
inputs={'X': x},
outputs={'Out': x, 'XShape': x_shape},
attrs={'shape': shape},
)
@framework.dygraph_only
def _split_tensors(coalesced_grads_and_grad_vars):
if in_dygraph_mode():
for (
coalesced_grad,
origin_grad_vars,
grad_shapes,
) in coalesced_grads_and_grad_vars:
grad_var_len = [np.prod(g_shape) for g_shape in grad_shapes]
attrs = ()
attrs += ('sections', grad_var_len)
attrs += ('axis', 0)
_legacy_C_ops.split(coalesced_grad, origin_grad_vars, *attrs)
for g_var, g_shape in zip(origin_grad_vars, grad_shapes):
g_var.reshape_(shape=g_shape)
assert g_var.shape == g_shape
def scale_loss(loss):
# TODO(liuyuhui) Currently only for xpu. Will be removed in the future.
if not paddle.distributed.ParallelEnv().world_size > 1:
return loss
loss_scale = to_variable(
np.array([paddle.distributed.ParallelEnv().world_size]).astype(
"float32"
)
)
loss_scale.stop_gradient = True
scaled_loss = loss / loss_scale
return scaled_loss
@imperative_base.no_grad
@framework.dygraph_only
def build_groups(vars, group_size):
group_idx = 0
memory_counter = 0
var_groups = OrderedDict()
dtype = vars[0].dtype
for var in vars:
bytes = np.prod(var.shape) * core.size_of_dtype(var.dtype)
if memory_counter < group_size and dtype == var.dtype:
memory_counter += bytes
else:
memory_counter = bytes
dtype = var.dtype
group_idx += 1
var_groups.setdefault(group_idx, []).append(var)
return _coalesce_tensors(var_groups)
@imperative_base.no_grad
@framework.dygraph_only
def sync_params_buffers(
model, comm_group=None, src_rank=0, is_model_parallel=False
):
model_vars = []
for _, param in model._obtain_parameters_buffers().items():
if not isinstance(param, (core.VarBase, core.eager.Tensor)):
raise TypeError(
"The data type of '%s' must be Varbase or eager.Tensor"
% param.name
)
# is_distributed param not need to sync when in mp mode
if isinstance(param, (ParamBase, core.eager.Tensor)):
if is_model_parallel and param.is_distributed:
continue
# NOTE(shenliang03): Support situations that do not require synchronization parameters,
# such as moe's expert parameters
if getattr(param, "no_sync", False):
continue
if param.type == core.VarDesc.VarType.VOCAB:
continue
model_vars.append(param.detach())
if len(model_vars) == 0:
return
# group size is 128M
coalesced_vars = build_groups(model_vars, 128 * 1024 * 1024)
for coalesced_var, _, _ in coalesced_vars:
paddle.distributed.broadcast(
coalesced_var, src=src_rank, group=comm_group, sync_op=True
)
for coalesced_var, origin_vars, var_shapes in coalesced_vars:
var_len = [np.prod(v_shape) for v_shape in var_shapes]
paddle.fluid.framework._dygraph_tracer().trace_op(
type='split',
inputs={'X': coalesced_var},
outputs={'Out': origin_vars},
attrs={'sections': var_len, 'axis': 0},
)
class DataParallel(layers.Layer):
"""
Run the dygraph module with data parallelism.
Currently, DataParallel class only supports to run the dynamic graph
with multi-process.
Now supports two ways to start training:
1. start by ``paddle.distributed.spawn`` method, for example:
``python demo.py`` (spawn need to be called in ``__main__`` method)
2. start by ``paddle.distributed.launch`` module, for example:
``python -m paddle.distributed.launch --gpus=0,1 demo.py`` .
And the content of `demo.py` is the code of examples.
Args:
layers(Layer): The module that should be executed by data parallel.
strategy(ParallelStrategy, optional): (deprecated) The strategy of data parallelism,
contains environment configuration related to parallel execution. Default: None.
comm_buffer_size(int, optional): It limits the memory size(MB) of one buffer
parameters' gradient which is the input of communication
calling(e.g NCCLAllReduce). Default: 25.
last_comm_buffer_size(float, optional): It limits memory size(MB) of last buffer in communication
calling. Making the last communication buffer size small is useful to
improve performance. Default: 1.
find_unused_parameters(bool, optional): Whether to traverse the entire backward graph from the
all tensors in the return value of the wrapped model's
forward function. For parameters not involved in loss
calculation, their gradients will be marked as ready in
advance to prepare reduce. Please note that all forward
outputs derived from the wrapped model parameters must
participate in the calculation of loss and subsequent
gradient calculations. If not, serious error will occur.
Note that setting the find_unused_parameters to True
will affect computing performance. Therefore, if all parameters
are sure to participate in the loss calculation and the
autograd graph construction, please set it False. Default: False.
Returns:
Layer: The data paralleled module.
Examples:
.. code-block:: python
:name: dp-example
# required: distributed
import paddle
import paddle.nn as nn
import paddle.optimizer as opt
import paddle.distributed as dist
class LinearNet(nn.Layer):
def __init__(self):
super().__init__()
self._linear1 = nn.Linear(10, 10)
self._linear2 = nn.Linear(10, 1)
def forward(self, x):
return self._linear2(self._linear1(x))
def train():
# 1. initialize parallel environment
dist.init_parallel_env()
# 2. create data parallel layer & optimizer
layer = LinearNet()
dp_layer = paddle.DataParallel(layer)
loss_fn = nn.MSELoss()
adam = opt.Adam(
learning_rate=0.001, parameters=dp_layer.parameters())
# 3. run layer
inputs = paddle.randn([10, 10], 'float32')
outputs = dp_layer(inputs)
labels = paddle.randn([10, 1], 'float32')
loss = loss_fn(outputs, labels)
loss.backward()
adam.step()
adam.clear_grad()
if __name__ == '__main__':
# 1. start by ``paddle.distributed.spawn`` (default)
dist.spawn(train, nprocs=2)
# 2. start by ``paddle.distributed.launch``
# train()
.. note::
``PyLayer`` is not supported in DataParallel. To solve problems of this kind,
it's recommended to skip gradient synchronization among multiple cards by 'no_sync',
and manually implement 'all_reduce' before model optimization. There is an example
showing specific implemetation processing.
Examples:
.. code-block:: python
:name: dp-pylayer-example
# required: distributed
import numpy
import paddle
import paddle.distributed as dist
from paddle.autograd import PyLayer
from paddle.distributed.fleet.utils.hybrid_parallel_util import fused_allreduce_gradients
class cus_tanh(PyLayer):
@staticmethod
def forward(ctx, x):
y = paddle.tanh(x)
ctx.save_for_backward(y)
return y
@staticmethod
def backward(ctx, dy):
y, = ctx.saved_tensor()
grad = dy * (1 - paddle.square(y))
return grad
class SimpleNet(paddle.nn.Layer):
def __init__(self):
super().__init__()
self.linear = paddle.nn.Linear(2, 2)
def forward(self, inputs):
inputs = cus_tanh.apply(inputs)
return self.linear(inputs)
if __name__ == '__main__':
dist.init_parallel_env()
model = SimpleNet()
model = paddle.DataParallel(model)
opt = paddle.optimizer.SGD(learning_rate=0.01, parameters=model.parameters())
for step in range(10):
x_data = numpy.random.randn(2, 2).astype(numpy.float32)
x = paddle.to_tensor(x_data)
x.stop_gradient = False
# step 1 : skip gradient synchronization by 'no_sync'
with model.no_sync():
y_pred = model(x)
loss = y_pred.mean()
loss.backward()
# step 2 : fuse + allreduce manually before optimization
fused_allreduce_gradients(list(model.parameters()), None)
opt.step()
opt.clear_grad()
"""
def __init__(
self,
layers,
strategy=None,
comm_buffer_size=25,
last_comm_buffer_size=1,
find_unused_parameters=False,
group=None,
):
super().__init__(layers.full_name() + "_data_parallel")
assert (
in_dygraph_mode()
), "It's not supported to construct DataParallel in static graph mode."
self._layers = layers
self.find_unused_parameters = find_unused_parameters
self.grad_need_sync = True
self.group = group
self.var_dtype = (
core.eager.Tensor if in_dygraph_mode() else core.VarBase
)
# NOTE(chenweihang): The ParallelStrategy here is not strictly a strategy.
# It just stores some environment variables, which can be constructed by
# ParallelEnv. Here it is set as an optional argument.
# This parameter is not removed because of compatibility with 1.x writing.
if strategy is not None:
self._strategy = strategy
else:
self._strategy = _build_default_parallel_strategy()
if self._strategy.nranks > 1:
# check the environment
assert parallel_helper.__parallel_ctx__clz__ is not None, (
"ParallelContext must be initialized before. You should use init_parallel_env() before"
"constructing the DataParallel."
)
if in_dygraph_mode():
self.group = (
paddle.distributed.collective._get_default_group()
if self.group is None
else self.group
)
assert isinstance(
self.group, paddle.distributed.collective.Group
), "ProcessGroup must be an instance of Group in DataParallel."
# sync buffer and params
# TODO(liuyuhui) Currently not support xpu. xpu is
# still broadcasting parameters when calling layer
if not paddle.is_compiled_with_xpu():
sync_params_buffers(self._layers)
self.comm_buffer_size = int(comm_buffer_size * 1024 * 1024)
# NOTE(shenliang03): We can set environment variables to control
# the size of the group, Default: 1MB. The role of this small group is:
# when the last group allreduce, the overlap cannot work. Making the
# the last group small is useful to improve performance.
self.last_comm_buffer_size = int(
last_comm_buffer_size * 1024 * 1024
)
self.init_reducer()
else:
warnings.warn(
"The program will return to single-card operation. "
"Please check 1, whether you use spawn or fleetrun "
"to start the program. 2, Whether it is a multi-card "
"program. 3, Is the current environment multi-card."
)
def init_reducer(self):
layers_param = []
params_set = set()
for sublayer in self.sublayers():
for _, param in sublayer.named_parameters(include_sublayers=False):
if param is None or param in params_set:
continue
params_set.add(param)
if not isinstance(param, self.var_dtype):
raise TypeError(
"The data type of '%s' must be '%s'"
% (param.name, self.var_dtype)
)
if param.trainable:
layers_param.append((sublayer, param))
trainable_parameters = list(
filter(
lambda x: not getattr(x, "no_sync", False),
[param for _, param in layers_param],
)
)
assert len(trainable_parameters) > 0, (
"This model does not have any parameters to train, and "
"does not need to use DataParallel"
)
# NOTE(shenliang03): Here we can only use the attributes to judge whether
# parameter is sparse(or SelectedRows). The reason is that the sparse message
# can't be obtained when bp hasn't happened yet. So if layer supports sparse parameter,
# we should add the layer here like "paddle.nn.layer.common.Embedding".
def check_layer_sparse(sublayer):
if isinstance(sublayer, paddle.nn.layer.common.Embedding):
return sublayer._sparse
return False
is_sparse_gradient = [
check_layer_sparse(sublayer) for sublayer, _ in layers_param
]
if in_dygraph_mode():
self.group_indices = core.eager_assign_group_by_size(
trainable_parameters,
is_sparse_gradient,
[self.last_comm_buffer_size, self.comm_buffer_size],
)
self._reducer = core.EagerReducer(
trainable_parameters,
list(reversed(self.group_indices)),
is_sparse_gradient,
self.group.process_group,
[self.last_comm_buffer_size, self.comm_buffer_size],
self.find_unused_parameters,
)
def _find_varbase(self, obj):
var_type = core.eager.Tensor if in_dygraph_mode() else core.VarBase
if isinstance(obj, var_type):
return [obj]
if isinstance(obj, (list, tuple)):
return itertools.chain(*map(self._find_varbase, obj))
if isinstance(obj, dict):
return itertools.chain(*map(self._find_varbase, obj.values()))
return []
@contextmanager
def no_sync(self):
"""
A context manager to stop gradient synchronization. Within no_sync(),
gradients of parameters will only be accumulated on model and not
synchronized util the first forward-backward out of this context.
Examples:
.. code-block:: python
# required: distributed
import paddle
import paddle.nn as nn
import paddle.distributed as dist
class SimpleNet(nn.Layer):
def __init__(self):
super().__init__()
self._linear = nn.Linear(10, 1)
def forward(self, x):
return self._linear(x)
dist.init_parallel_env()
model = SimpleNet()
dp_model = paddle.DataParallel(model)
inputs_1 = paddle.randn([10, 10], 'float32')
inputs_2 = paddle.ones([10, 10], 'float32')
with dp_model.no_sync():
# gradients will not be synchronized
dp_model(inputs_1).backward()
# synchronization happens here
dp_model(inputs_2).backward()
"""
tmp_grad_need_sync = self.grad_need_sync
self.grad_need_sync = False
try:
yield
finally:
self.grad_need_sync = tmp_grad_need_sync
def forward(self, *inputs, **kwargs):
outputs = self._layers(*inputs, **kwargs)
if (
self._strategy.nranks > 1
and framework._dygraph_tracer()._has_grad
and self.grad_need_sync
):
self._reducer.prepare_for_backward(
list(self._find_varbase(outputs))
)
return outputs
@deprecated(
since="2.0.0", reason="This method does not need to be called anymore."
)
def scale_loss(self, loss):
"""
Deprecated method, now ``scale_loss`` is an empty method,
keep this method just for compatibility.
"""
return loss
@deprecated(
since="2.0.0", reason="This method does not need to be called anymore."
)
def apply_collective_grads(self):
"""
Deprecated method, now ``apply_collective_grads`` is an empty method,
keep this method just for compatibility.
"""
return
def state_dict(
self,
destination=None,
include_sublayers=True,
structured_name_prefix="",
):
'''
Get all parameters and persistable buffers of current layer and its sub-layers. And set them into a dict
Parameters:
destination(dict, optional) : If provide, all the parameters and persistable buffers will be set to this dict . Default: None
include_sublayers(bool, optional) : If true, also include the parameters and persistable buffers from sublayers. Default: True
Retruns:
dict: a dict contains all the parameters and persistable buffers.
Examples:
.. code-block:: python
import paddle
import paddle.distributed as dist
dist.init_parallel_env()
emb = paddle.nn.Embedding(10, 10)
emb = paddle.DataParallel(emb)
state_dict = emb.state_dict()
paddle.save(state_dict, "paddle_dy.pdparams")
'''
return self._layers.state_dict(
destination=destination,
include_sublayers=include_sublayers,
structured_name_prefix=structured_name_prefix,
)
@framework.deprecate_stat_dict
def set_state_dict(self, state_dict, use_structured_name=True):
'''
Set parameters and persistable buffers from state_dict. All the parameters and buffers will be reset by the tensor in the state_dict
Parameters:
state_dict(dict) : Dict contains all the parameters and persistable buffers.
use_structured_name(bool, optional) : If true, use structured name as key, otherwise, use parameter or buffer name as key.
Default: True
Returns:
None
Examples:
.. code-block:: python
import paddle
import paddle.distributed as dist
dist.init_parallel_env()
emb = paddle.nn.Embedding(10, 10)
emb = paddle.DataParallel(emb)
state_dict = emb.state_dict()
paddle.save(state_dict, "paddle_dy.pdparams")
para_state_dict = paddle.load("paddle_dy.pdparams")
emb.set_state_dict(para_state_dict)
'''
self._layers.set_state_dict(
state_dict, use_structured_name=use_structured_name
)
# [aliases] Compatible with old method names
set_dict = set_state_dict
load_dict = set_state_dict
# NOTE(chenweihang): Maintain a global parallel env to avoid
# initializing ParallelEnv every time and improve performance
_global_parallel_env = None
......
......@@ -12,7 +12,7 @@
# See the License for the specific language governing permissions and
# limitations under the License.
import os
from ..layers import collective
from ..framework import Parameter
__parallel_ctx__clz__ = None
......@@ -48,11 +48,12 @@ def _init_parallel_ctx():
def _broadcast_parameters(parameters):
from ..distributed import broadcast
for param in parameters:
# In model parallel, some parameters are split into multiple devices,
# so we could not broadcast these parameters.
if param.is_distributed:
continue
if isinstance(param, Parameter) and param.trainable:
collective._broadcast(param, 0, sync_mode=True)
broadcast(param, 0, sync_op=True)
......@@ -21,10 +21,6 @@ from .layers import *
from . import tracer
from .tracer import *
from . import parallel
from .parallel import *
from . import learning_rate_scheduler
from .learning_rate_scheduler import *
......@@ -33,5 +29,4 @@ from .math_op_patch import monkey_patch_math_varbase
__all__ = []
__all__ += layers.__all__
__all__ += base.__all__
__all__ += parallel.__all__
__all__ += learning_rate_scheduler.__all__
......@@ -13,21 +13,17 @@
# limitations under the License.
import collections
import contextlib
import sys
import numpy as np
import re
import copy
import weakref
import warnings
from copy import deepcopy
import inspect
import paddle
import paddle.profiler as profiler
from paddle.profiler.utils import in_profiler_mode
from . import parallel_helper
from .. import unique_name
from paddle.fluid import core
from .layer_object_helper import LayerObjectHelper
......@@ -38,18 +34,16 @@ from .layer_hooks import (
)
from .base import (
program_desc_tracing_guard,
param_guard,
in_declarative_mode,
_convert_into_variable,
)
from paddle.fluid import framework
from ..param_attr import ParamAttr
from paddle.fluid.executor import Executor, global_scope
from paddle.fluid.framework import (
convert_np_dtype_to_dtype_,
in_dygraph_mode,
)
from paddle.fluid.framework import Program, program_guard
from paddle.fluid.framework import Program
from paddle.fluid.framework import _current_expected_place as _get_device
from paddle.fluid.core import VarDesc
from paddle.fluid.dygraph import no_grad
......@@ -968,6 +962,8 @@ class Layer:
pass
def _dygraph_call_func(self, *inputs, **kwargs):
from paddle.distributed import parallel_helper
for forward_pre_hook in self._forward_pre_hooks.values():
hook_result = forward_pre_hook(self, inputs)
if hook_result is not None:
......
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except jin compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import numpy as np
import warnings
from collections import OrderedDict
import itertools
import warnings
from contextlib import contextmanager
import paddle
from paddle import _C_ops, _legacy_C_ops
from paddle.fluid import core
from paddle.fluid import framework
from paddle.fluid.dygraph import layers
from paddle.fluid.dygraph import parallel_helper
from paddle.fluid.dygraph import to_variable, no_grad
from paddle.utils import deprecated
from ..layers import collective
from paddle.fluid.dygraph import base as imperative_base
from paddle.fluid.framework import (
ParamBase,
in_dygraph_mode,
)
__all__ = ["DataParallel"]
ParallelStrategy = core.ParallelStrategy
def _build_default_parallel_strategy():
strategy = ParallelStrategy()
strategy.nranks = paddle.distributed.ParallelEnv().nranks
strategy.local_rank = paddle.distributed.ParallelEnv().local_rank
strategy.trainer_endpoints = (
paddle.distributed.ParallelEnv().trainer_endpoints
)
strategy.current_endpoint = (
paddle.distributed.ParallelEnv().current_endpoint
)
return strategy
def _coalesce_tensors(var_groups):
from ..layers import nn
coalesced_grads_and_grad_vars = []
for group_id, grad_vars in var_groups.items():
flattened_vars = []
g_var_shapes = []
for g_var in grad_vars:
g_var_shapes.append(g_var.shape)
flattened_vars.append(
paddle.reshape(x=g_var, shape=[np.prod(g_var.shape)])
)
coalesced_grad = paddle.concat(flattened_vars)
coalesced_grads_and_grad_vars.append(
[coalesced_grad, grad_vars, g_var_shapes]
)
return coalesced_grads_and_grad_vars
@framework.dygraph_only
def _reshape_inplace(x, shape):
x_shape = framework._varbase_creator(dtype=x.dtype)
framework._dygraph_tracer().trace_op(
type="reshape2",
inputs={'X': x},
outputs={'Out': x, 'XShape': x_shape},
attrs={'shape': shape},
)
@framework.dygraph_only
def _split_tensors(coalesced_grads_and_grad_vars):
if in_dygraph_mode():
for (
coalesced_grad,
origin_grad_vars,
grad_shapes,
) in coalesced_grads_and_grad_vars:
grad_var_len = [np.prod(g_shape) for g_shape in grad_shapes]
attrs = ()
attrs += ('sections', grad_var_len)
attrs += ('axis', 0)
_legacy_C_ops.split(coalesced_grad, origin_grad_vars, *attrs)
for g_var, g_shape in zip(origin_grad_vars, grad_shapes):
g_var.reshape_(shape=g_shape)
assert g_var.shape == g_shape
def scale_loss(loss):
# TODO(liuyuhui) Currently only for xpu. Will be removed in the future.
if not paddle.distributed.ParallelEnv().world_size > 1:
return loss
loss_scale = to_variable(
np.array([paddle.distributed.ParallelEnv().world_size]).astype(
"float32"
)
)
loss_scale.stop_gradient = True
scaled_loss = loss / loss_scale
return scaled_loss
@imperative_base.no_grad
@framework.dygraph_only
def build_groups(vars, group_size):
group_idx = 0
memory_counter = 0
var_groups = OrderedDict()
dtype = vars[0].dtype
for var in vars:
bytes = np.prod(var.shape) * core.size_of_dtype(var.dtype)
if memory_counter < group_size and dtype == var.dtype:
memory_counter += bytes
else:
memory_counter = bytes
dtype = var.dtype
group_idx += 1
var_groups.setdefault(group_idx, []).append(var)
return _coalesce_tensors(var_groups)
@imperative_base.no_grad
@framework.dygraph_only
def sync_params_buffers(
model, comm_group=None, src_rank=0, is_model_parallel=False
):
model_vars = []
for _, param in model._obtain_parameters_buffers().items():
if not isinstance(param, (core.VarBase, core.eager.Tensor)):
raise TypeError(
"The data type of '%s' must be Varbase or eager.Tensor"
% param.name
)
# is_distributed param not need to sync when in mp mode
if isinstance(param, (ParamBase, core.eager.Tensor)):
if is_model_parallel and param.is_distributed:
continue
# NOTE(shenliang03): Support situations that do not require synchronization parameters,
# such as moe's expert parameters
if getattr(param, "no_sync", False):
continue
if param.type == core.VarDesc.VarType.VOCAB:
continue
model_vars.append(param.detach())
if len(model_vars) == 0:
return
# group size is 128M
coalesced_vars = build_groups(model_vars, 128 * 1024 * 1024)
for coalesced_var, _, _ in coalesced_vars:
paddle.distributed.broadcast(
coalesced_var, src=src_rank, group=comm_group, sync_op=True
)
for coalesced_var, origin_vars, var_shapes in coalesced_vars:
var_len = [np.prod(v_shape) for v_shape in var_shapes]
paddle.fluid.framework._dygraph_tracer().trace_op(
type='split',
inputs={'X': coalesced_var},
outputs={'Out': origin_vars},
attrs={'sections': var_len, 'axis': 0},
)
class DataParallel(layers.Layer):
"""
Run the dygraph module with data parallelism.
Currently, DataParallel class only supports to run the dynamic graph
with multi-process.
Now supports two ways to start training:
1. start by ``paddle.distributed.spawn`` method, for example:
``python demo.py`` (spawn need to be called in ``__main__`` method)
2. start by ``paddle.distributed.launch`` module, for example:
``python -m paddle.distributed.launch --gpus=0,1 demo.py`` .
And the content of `demo.py` is the code of examples.
Args:
layers(Layer): The module that should be executed by data parallel.
strategy(ParallelStrategy, optional): (deprecated) The strategy of data parallelism,
contains environment configuration related to parallel execution. Default: None.
comm_buffer_size(int, optional): It limits the memory size(MB) of one buffer
parameters' gradient which is the input of communication
calling(e.g NCCLAllReduce). Default: 25.
last_comm_buffer_size(float, optional): It limits memory size(MB) of last buffer in communication
calling. Making the last communication buffer size small is useful to
improve performance. Default: 1.
find_unused_parameters(bool, optional): Whether to traverse the entire backward graph from the
all tensors in the return value of the wrapped model's
forward function. For parameters not involved in loss
calculation, their gradients will be marked as ready in
advance to prepare reduce. Please note that all forward
outputs derived from the wrapped model parameters must
participate in the calculation of loss and subsequent
gradient calculations. If not, serious error will occur.
Note that setting the find_unused_parameters to True
will affect computing performance. Therefore, if all parameters
are sure to participate in the loss calculation and the
autograd graph construction, please set it False. Default: False.
Returns:
Layer: The data paralleled module.
Examples:
.. code-block:: python
:name: dp-example
# required: distributed
import paddle
import paddle.nn as nn
import paddle.optimizer as opt
import paddle.distributed as dist
class LinearNet(nn.Layer):
def __init__(self):
super().__init__()
self._linear1 = nn.Linear(10, 10)
self._linear2 = nn.Linear(10, 1)
def forward(self, x):
return self._linear2(self._linear1(x))
def train():
# 1. initialize parallel environment
dist.init_parallel_env()
# 2. create data parallel layer & optimizer
layer = LinearNet()
dp_layer = paddle.DataParallel(layer)
loss_fn = nn.MSELoss()
adam = opt.Adam(
learning_rate=0.001, parameters=dp_layer.parameters())
# 3. run layer
inputs = paddle.randn([10, 10], 'float32')
outputs = dp_layer(inputs)
labels = paddle.randn([10, 1], 'float32')
loss = loss_fn(outputs, labels)
loss.backward()
adam.step()
adam.clear_grad()
if __name__ == '__main__':
# 1. start by ``paddle.distributed.spawn`` (default)
dist.spawn(train, nprocs=2)
# 2. start by ``paddle.distributed.launch``
# train()
.. note::
``PyLayer`` is not supported in DataParallel. To solve problems of this kind,
it's recommended to skip gradient synchronization among multiple cards by 'no_sync',
and manually implement 'all_reduce' before model optimization. There is an example
showing specific implemetation processing.
Examples:
.. code-block:: python
:name: dp-pylayer-example
# required: distributed
import numpy
import paddle
import paddle.distributed as dist
from paddle.autograd import PyLayer
from paddle.distributed.fleet.utils.hybrid_parallel_util import fused_allreduce_gradients
class cus_tanh(PyLayer):
@staticmethod
def forward(ctx, x):
y = paddle.tanh(x)
ctx.save_for_backward(y)
return y
@staticmethod
def backward(ctx, dy):
y, = ctx.saved_tensor()
grad = dy * (1 - paddle.square(y))
return grad
class SimpleNet(paddle.nn.Layer):
def __init__(self):
super().__init__()
self.linear = paddle.nn.Linear(2, 2)
def forward(self, inputs):
inputs = cus_tanh.apply(inputs)
return self.linear(inputs)
if __name__ == '__main__':
dist.init_parallel_env()
model = SimpleNet()
model = paddle.DataParallel(model)
opt = paddle.optimizer.SGD(learning_rate=0.01, parameters=model.parameters())
for step in range(10):
x_data = numpy.random.randn(2, 2).astype(numpy.float32)
x = paddle.to_tensor(x_data)
x.stop_gradient = False
# step 1 : skip gradient synchronization by 'no_sync'
with model.no_sync():
y_pred = model(x)
loss = y_pred.mean()
loss.backward()
# step 2 : fuse + allreduce manually before optimization
fused_allreduce_gradients(list(model.parameters()), None)
opt.step()
opt.clear_grad()
"""
def __init__(
self,
layers,
strategy=None,
comm_buffer_size=25,
last_comm_buffer_size=1,
find_unused_parameters=False,
group=None,
):
super().__init__(layers.full_name() + "_data_parallel")
assert (
in_dygraph_mode()
), "It's not supported to construct DataParallel in static graph mode."
self._layers = layers
self.find_unused_parameters = find_unused_parameters
self.grad_need_sync = True
self.group = group
self.var_dtype = (
core.eager.Tensor if in_dygraph_mode() else core.VarBase
)
# NOTE(chenweihang): The ParallelStrategy here is not strictly a strategy.
# It just stores some environment variables, which can be constructed by
# ParallelEnv. Here it is set as an optional argument.
# This parameter is not removed because of compatibility with 1.x writing.
if strategy is not None:
self._strategy = strategy
else:
self._strategy = _build_default_parallel_strategy()
if self._strategy.nranks > 1:
# check the environment
assert parallel_helper.__parallel_ctx__clz__ is not None, (
"ParallelContext must be initialized before. You should use init_parallel_env() before"
"constructing the DataParallel."
)
if in_dygraph_mode():
self.group = (
paddle.distributed.collective._get_default_group()
if self.group is None
else self.group
)
assert isinstance(
self.group, paddle.distributed.collective.Group
), "ProcessGroup must be an instance of Group in DataParallel."
# sync buffer and params
# TODO(liuyuhui) Currently not support xpu. xpu is
# still broadcasting parameters when calling layer
if not paddle.is_compiled_with_xpu():
sync_params_buffers(self._layers)
self.comm_buffer_size = int(comm_buffer_size * 1024 * 1024)
# NOTE(shenliang03): We can set environment variables to control
# the size of the group, Default: 1MB. The role of this small group is:
# when the last group allreduce, the overlap cannot work. Making the
# the last group small is useful to improve performance.
self.last_comm_buffer_size = int(
last_comm_buffer_size * 1024 * 1024
)
self.init_reducer()
else:
warnings.warn(
"The program will return to single-card operation. "
"Please check 1, whether you use spawn or fleetrun "
"to start the program. 2, Whether it is a multi-card "
"program. 3, Is the current environment multi-card."
)
def init_reducer(self):
layers_param = []
params_set = set()
for sublayer in self.sublayers():
for _, param in sublayer.named_parameters(include_sublayers=False):
if param is None or param in params_set:
continue
params_set.add(param)
if not isinstance(param, self.var_dtype):
raise TypeError(
"The data type of '%s' must be '%s'"
% (param.name, self.var_dtype)
)
if param.trainable:
layers_param.append((sublayer, param))
trainable_parameters = list(
filter(
lambda x: not getattr(x, "no_sync", False),
[param for _, param in layers_param],
)
)
assert len(trainable_parameters) > 0, (
"This model does not have any parameters to train, and "
"does not need to use DataParallel"
)
# NOTE(shenliang03): Here we can only use the attributes to judge whether
# parameter is sparse(or SelectedRows). The reason is that the sparse message
# can't be obtained when bp hasn't happened yet. So if layer supports sparse parameter,
# we should add the layer here like "paddle.nn.layer.common.Embedding".
def check_layer_sparse(sublayer):
if isinstance(sublayer, paddle.nn.layer.common.Embedding):
return sublayer._sparse
return False
is_sparse_gradient = [
check_layer_sparse(sublayer) for sublayer, _ in layers_param
]
if in_dygraph_mode():
self.group_indices = core.eager_assign_group_by_size(
trainable_parameters,
is_sparse_gradient,
[self.last_comm_buffer_size, self.comm_buffer_size],
)
self._reducer = core.EagerReducer(
trainable_parameters,
list(reversed(self.group_indices)),
is_sparse_gradient,
self.group.process_group,
[self.last_comm_buffer_size, self.comm_buffer_size],
self.find_unused_parameters,
)
def _find_varbase(self, obj):
var_type = core.eager.Tensor if in_dygraph_mode() else core.VarBase
if isinstance(obj, var_type):
return [obj]
if isinstance(obj, (list, tuple)):
return itertools.chain(*map(self._find_varbase, obj))
if isinstance(obj, dict):
return itertools.chain(*map(self._find_varbase, obj.values()))
return []
@contextmanager
def no_sync(self):
"""
A context manager to stop gradient synchronization. Within no_sync(),
gradients of parameters will only be accumulated on model and not
synchronized util the first forward-backward out of this context.
Examples:
.. code-block:: python
# required: distributed
import paddle
import paddle.nn as nn
import paddle.distributed as dist
class SimpleNet(nn.Layer):
def __init__(self):
super().__init__()
self._linear = nn.Linear(10, 1)
def forward(self, x):
return self._linear(x)
dist.init_parallel_env()
model = SimpleNet()
dp_model = paddle.DataParallel(model)
inputs_1 = paddle.randn([10, 10], 'float32')
inputs_2 = paddle.ones([10, 10], 'float32')
with dp_model.no_sync():
# gradients will not be synchronized
dp_model(inputs_1).backward()
# synchronization happens here
dp_model(inputs_2).backward()
"""
tmp_grad_need_sync = self.grad_need_sync
self.grad_need_sync = False
try:
yield
finally:
self.grad_need_sync = tmp_grad_need_sync
def forward(self, *inputs, **kwargs):
outputs = self._layers(*inputs, **kwargs)
if (
self._strategy.nranks > 1
and framework._dygraph_tracer()._has_grad
and self.grad_need_sync
):
self._reducer.prepare_for_backward(
list(self._find_varbase(outputs))
)
return outputs
@deprecated(
since="2.0.0", reason="This method does not need to be called anymore."
)
def scale_loss(self, loss):
"""
Deprecated method, now ``scale_loss`` is an empty method,
keep this method just for compatibility.
"""
return loss
@deprecated(
since="2.0.0", reason="This method does not need to be called anymore."
)
def apply_collective_grads(self):
"""
Deprecated method, now ``apply_collective_grads`` is an empty method,
keep this method just for compatibility.
"""
return
def state_dict(
self,
destination=None,
include_sublayers=True,
structured_name_prefix="",
):
'''
Get all parameters and persistable buffers of current layer and its sub-layers. And set them into a dict
Parameters:
destination(dict, optional) : If provide, all the parameters and persistable buffers will be set to this dict . Default: None
include_sublayers(bool, optional) : If true, also include the parameters and persistable buffers from sublayers. Default: True
Retruns:
dict: a dict contains all the parameters and persistable buffers.
Examples:
.. code-block:: python
import paddle
import paddle.distributed as dist
dist.init_parallel_env()
emb = paddle.nn.Embedding(10, 10)
emb = paddle.fluid.dygraph.DataParallel(emb)
state_dict = emb.state_dict()
paddle.save(state_dict, "paddle_dy.pdparams")
'''
return self._layers.state_dict(
destination=destination,
include_sublayers=include_sublayers,
structured_name_prefix=structured_name_prefix,
)
@framework.deprecate_stat_dict
def set_state_dict(self, state_dict, use_structured_name=True):
'''
Set parameters and persistable buffers from state_dict. All the parameters and buffers will be reset by the tensor in the state_dict
Parameters:
state_dict(dict) : Dict contains all the parameters and persistable buffers.
use_structured_name(bool, optional) : If true, use structured name as key, otherwise, use parameter or buffer name as key.
Default: True
Returns:
None
Examples:
.. code-block:: python
import paddle
import paddle.distributed as dist
dist.init_parallel_env()
emb = paddle.nn.Embedding(10, 10)
emb = paddle.fluid.dygraph.DataParallel(emb)
state_dict = emb.state_dict()
paddle.save(state_dict, "paddle_dy.pdparams")
para_state_dict = paddle.load("paddle_dy.pdparams")
emb.set_state_dict(para_state_dict)
'''
self._layers.set_state_dict(
state_dict, use_structured_name=use_structured_name
)
# [aliases] Compatible with old method names
set_dict = set_state_dict
load_dict = set_state_dict
......@@ -34,7 +34,6 @@ from ..framework import (
)
from .base import switch_to_static_graph
from .math_op_patch import monkey_patch_math_varbase
from .parallel import scale_loss
from paddle.fluid.data_feeder import convert_dtype, _PADDLE_DTYPE_2_NUMPY_DTYPE
import paddle.utils.deprecated as deprecated
import paddle.profiler as profiler
......@@ -281,6 +280,8 @@ def monkey_patch_varbase():
# 4: [5000.]
"""
from paddle.distributed.parallel import scale_loss
if framework._non_static_mode():
if in_profiler_mode():
record_event = profiler.RecordEvent(
......
......@@ -27,7 +27,6 @@ import numpy as np
import paddle
import paddle.fluid as fluid
import paddle.fluid.dygraph as dygraph
import paddle.incubate.distributed.fleet.role_maker as role_maker
from paddle.fluid import compiler
from paddle.incubate.distributed.fleet.collective import (
......@@ -671,7 +670,7 @@ class TestParallelDyGraphRunnerBase:
or args.update_method == "hccl"
or args.update_method == "cncl"
):
strategy = dygraph.parallel.ParallelStrategy()
strategy = paddle.distributed.parallel.ParallelStrategy()
strategy.nranks = nranks
strategy.local_rank = args.trainer_id
strategy.trainer_endpoints = args.endpoints.split(",")
......@@ -682,11 +681,11 @@ class TestParallelDyGraphRunnerBase:
"begin to prepare context in dygraph with nccl2",
)
if not args.find_unused_parameters:
model = dygraph.parallel.DataParallel(
model = paddle.DataParallel(
model, strategy, find_unused_parameters=False
)
else:
model = dygraph.parallel.DataParallel(
model = paddle.DataParallel(
model, strategy, find_unused_parameters=True
)
print_to_err(type(self).__name__, "model built in dygraph")
......@@ -694,11 +693,11 @@ class TestParallelDyGraphRunnerBase:
elif args.update_method == "gloo":
paddle.distributed.init_parallel_env()
if not args.find_unused_parameters:
model = dygraph.parallel.DataParallel(
model = paddle.DataParallel(
model, find_unused_parameters=False
)
else:
model = dygraph.parallel.DataParallel(
model = paddle.DataParallel(
model, find_unused_parameters=True
)
......
......@@ -16,10 +16,9 @@ import unittest
import numpy as np
import paddle
import paddle.fluid as fluid
import paddle.fluid.core as core
import paddle.fluid.dygraph as dygraph
from paddle.distributed import init_parallel_env
from paddle.nn import Linear
......@@ -39,9 +38,9 @@ class MLP(fluid.Layer):
class TestDataParallelStateDict(unittest.TestCase):
def test_data_parallel_state_dict(self):
with fluid.dygraph.guard():
init_parallel_env()
paddle.distributed.init_parallel_env()
mlp = MLP()
parallel_mlp = dygraph.parallel.DataParallel(mlp)
parallel_mlp = paddle.DataParallel(mlp)
single_state = mlp.state_dict()
parallel_state = parallel_mlp.state_dict()
......
......@@ -22,12 +22,6 @@ import paddle.fluid as fluid
import paddle.nn.functional as F
from paddle.fluid import core
from paddle.fluid.dygraph.base import to_variable
from paddle.fluid.dygraph.parallel import (
DataParallel,
_coalesce_tensors,
_reshape_inplace,
_split_tensors,
)
class MyLayer(fluid.Layer):
......@@ -43,10 +37,15 @@ class MyLayer(fluid.Layer):
class TestImperativeParallelCoalesceSplit(unittest.TestCase):
def test_coalesce_split(self):
from paddle.distributed.parallel import (
_coalesce_tensors,
_split_tensors,
)
with fluid.dygraph.guard():
test_layer = MyLayer("test_layer")
strategy = core.ParallelStrategy()
test_layer = DataParallel(test_layer, strategy)
test_layer = paddle.DataParallel(test_layer, strategy)
# test variables prepare
vars = []
......@@ -72,10 +71,12 @@ class TestImperativeParallelCoalesceSplit(unittest.TestCase):
self.assertEqual(orig_var_shape, var.shape)
def test_reshape_inplace(self):
from paddle.distributed.parallel import _reshape_inplace
with fluid.dygraph.guard():
test_layer = MyLayer("test_layer")
strategy = core.ParallelStrategy()
test_layer = DataParallel(test_layer, strategy)
test_layer = paddle.DataParallel(test_layer, strategy)
ori_shape = [2, 25]
new_shape = [5, 10]
......
......@@ -24,7 +24,6 @@ from paddle.distributed.spawn import (
_options_valid_check,
)
from paddle.fluid import core
from paddle.fluid.dygraph import parallel_helper
# NOTE(chenweihang): Coverage CI is currently not able to count python3
# unittest, so the unittests here covers some cases that will only be
......@@ -44,6 +43,8 @@ class TestInitParallelEnv(unittest.TestCase):
dist.init_parallel_env()
def test_init_parallel_env_break(self):
from paddle.distributed import parallel_helper
os.environ['FLAGS_selected_gpus'] = '0'
os.environ['PADDLE_TRAINER_ID'] = '0'
os.environ['PADDLE_CURRENT_ENDPOINT'] = '127.0.0.1:6170'
......
......@@ -30,17 +30,18 @@ from ..fluid.core import CustomPlace # noqa: F401
from ..fluid.core import VarBase # noqa: F401
from ..fluid import core # noqa: F401
from ..fluid.dygraph import base, layers, to_variable
from ..fluid.dygraph.base import no_grad_ as no_grad # noqa: F401
from ..fluid.dygraph.base import grad # noqa: F401
from .io import save # noqa: F401
from .io import load # noqa: F401
from ..fluid.dygraph.parallel import DataParallel # noqa: F401
from ..fluid import monkey_patch_variable
from ..fluid.dygraph import monkey_patch_math_varbase
from ..fluid.framework import disable_signal_handler # noqa: F401
from ..fluid.framework import get_flags # noqa: F401
from ..fluid.framework import set_flags # noqa: F401
from ..fluid.framework import Parameter, ParamBase
from ..fluid.dygraph.base import enable_dygraph as disable_static # noqa: F401
from ..fluid.dygraph.base import disable_dygraph as enable_static # noqa: F401
from ..fluid.framework import _non_static_mode as in_dynamic_mode # noqa: F401
......@@ -70,11 +71,6 @@ from ..fluid.framework import switch_startup_program
from ..fluid.framework import _set_expected_place # noqa: F401
from ..fluid.framework import Block, Program # noqa: F401
from ..fluid.framework import IrGraph # noqa: F401
from ..fluid.dygraph import parallel_helper # noqa: F401
from ..fluid.dygraph.parallel import (
_split_tensors,
build_groups,
sync_params_buffers,
)
from ..fluid.framework import deprecate_stat_dict
__all__ = []
......@@ -223,7 +223,7 @@ def prepare_distributed_context(place=None):
)
place = _get_paddle_place(place)
strategy = fluid.dygraph.parallel.ParallelStrategy()
strategy = paddle.distributed.parallel.ParallelStrategy()
strategy.nranks = paddle.distributed.ParallelEnv().nranks
strategy.local_rank = paddle.distributed.ParallelEnv().local_rank
strategy.trainer_endpoints = (
......@@ -781,7 +781,7 @@ class DynamicGraphAdapter:
if self._nranks > 1:
dist.init_parallel_env()
stradegy = fluid.dygraph.parallel.ParallelStrategy()
stradegy = paddle.distributed.parallel.ParallelStrategy()
stradegy.nranks = paddle.distributed.ParallelEnv().nranks
stradegy.local_rank = paddle.distributed.ParallelEnv().local_rank
stradegy.trainer_endpoints = (
......@@ -790,9 +790,7 @@ class DynamicGraphAdapter:
stradegy.current_endpoint = (
paddle.distributed.ParallelEnv().current_endpoint
)
self.ddp_model = fluid.dygraph.parallel.DataParallel(
self.model.network, stradegy
)
self.ddp_model = paddle.DataParallel(self.model.network, stradegy)
@property
def mode(self):
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册