Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
973dab86
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2299
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
973dab86
编写于
3月 08, 2023
作者:
W
whs
提交者:
GitHub
3月 08, 2023
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Enhance the quantization API with some new features (#50816)
上级
262358e8
变更
5
显示空白变更内容
内联
并排
Showing
5 changed file
with
162 addition
and
25 deletion
+162
-25
python/paddle/nn/quant/format.py
python/paddle/nn/quant/format.py
+7
-3
python/paddle/quantization/config.py
python/paddle/quantization/config.py
+17
-15
python/paddle/quantization/quanters/abs_max.py
python/paddle/quantization/quanters/abs_max.py
+44
-2
python/paddle/quantization/quantize.py
python/paddle/quantization/quantize.py
+7
-5
python/paddle/tests/quantization/test_trace_quanter.py
python/paddle/tests/quantization/test_trace_quanter.py
+87
-0
未找到文件。
python/paddle/nn/quant/format.py
浏览文件 @
973dab86
...
@@ -37,6 +37,7 @@ class LinearQuanterDequanter(Layer):
...
@@ -37,6 +37,7 @@ class LinearQuanterDequanter(Layer):
@
staticmethod
@
staticmethod
def
from_quanter
(
quanter
):
def
from_quanter
(
quanter
):
assert
quanter
is
not
None
return
LinearQuanterDequanter
(
return
LinearQuanterDequanter
(
LinearQuanter
.
from_quanter
(
quanter
),
LinearQuanter
.
from_quanter
(
quanter
),
LinearDequanter
.
from_quanter
(
quanter
),
LinearDequanter
.
from_quanter
(
quanter
),
...
@@ -208,6 +209,8 @@ class ConvertibleQuantedLayer(Layer, metaclass=abc.ABCMeta):
...
@@ -208,6 +209,8 @@ class ConvertibleQuantedLayer(Layer, metaclass=abc.ABCMeta):
self
,
quanter_name
self
,
quanter_name
),
f
"
{
quanter_name
}
is not attribute of current layer."
),
f
"
{
quanter_name
}
is not attribute of current layer."
quanter
=
getattr
(
self
,
quanter_name
)
quanter
=
getattr
(
self
,
quanter_name
)
if
quanter
is
None
:
return
None
quanter
=
LinearQuanterDequanter
.
from_quanter
(
quanter
)
quanter
=
LinearQuanterDequanter
.
from_quanter
(
quanter
)
setattr
(
self
,
quanter_name
,
quanter
)
setattr
(
self
,
quanter_name
,
quanter
)
self
.
_sub_layers
[
quanter_name
]
=
quanter
self
.
_sub_layers
[
quanter_name
]
=
quanter
...
@@ -224,6 +227,7 @@ class ConvertibleQuantedLayer(Layer, metaclass=abc.ABCMeta):
...
@@ -224,6 +227,7 @@ class ConvertibleQuantedLayer(Layer, metaclass=abc.ABCMeta):
assert
not
self
.
converted
,
"The model should be converted only once."
assert
not
self
.
converted
,
"The model should be converted only once."
for
weight_name
,
quanter_name
in
self
.
weights_to_quanters
():
for
weight_name
,
quanter_name
in
self
.
weights_to_quanters
():
qdq
=
self
.
_convert_quanter_to_qdq
(
quanter_name
)
qdq
=
self
.
_convert_quanter_to_qdq
(
quanter_name
)
if
qdq
is
not
None
:
self
.
_quant_weights
(
weight_name
,
qdq
.
_quanter
)
self
.
_quant_weights
(
weight_name
,
qdq
.
_quanter
)
qdq
.
_quanter
=
None
qdq
.
_quanter
=
None
qdq
.
_sub_layers
[
'_quanter'
]
=
None
qdq
.
_sub_layers
[
'_quanter'
]
=
None
...
...
python/paddle/quantization/config.py
浏览文件 @
973dab86
...
@@ -89,6 +89,7 @@ class QuantConfig(object):
...
@@ -89,6 +89,7 @@ class QuantConfig(object):
self
.
_type2config
=
{}
self
.
_type2config
=
{}
self
.
_model
=
None
self
.
_model
=
None
self
.
_qat_layer_mapping
=
copy
.
deepcopy
(
DEFAULT_QAT_LAYER_MAPPINGS
)
self
.
_qat_layer_mapping
=
copy
.
deepcopy
(
DEFAULT_QAT_LAYER_MAPPINGS
)
self
.
_customized_qat_layer_mapping
=
dict
()
self
.
_customized_leaves
=
[]
self
.
_customized_leaves
=
[]
...
@@ -259,6 +260,7 @@ class QuantConfig(object):
...
@@ -259,6 +260,7 @@ class QuantConfig(object):
source
,
paddle
.
nn
.
Layer
source
,
paddle
.
nn
.
Layer
),
"The target layer should be a subclass of paddle.nn.qat.Layer"
),
"The target layer should be a subclass of paddle.nn.qat.Layer"
self
.
_qat_layer_mapping
[
source
]
=
target
self
.
_qat_layer_mapping
[
source
]
=
target
self
.
_customized_qat_layer_mapping
[
source
]
=
target
def
add_customized_leaf
(
self
,
layer_type
:
type
):
def
add_customized_leaf
(
self
,
layer_type
:
type
):
r
"""
r
"""
...
@@ -296,7 +298,11 @@ class QuantConfig(object):
...
@@ -296,7 +298,11 @@ class QuantConfig(object):
def
_get_qat_layer
(
self
,
layer
:
Layer
):
def
_get_qat_layer
(
self
,
layer
:
Layer
):
q_config
=
self
.
_get_config_by_layer
(
layer
)
q_config
=
self
.
_get_config_by_layer
(
layer
)
return
self
.
qat_layer_mappings
[
type
(
layer
)](
layer
,
q_config
)
target_type
=
self
.
_customized_qat_layer_mapping
.
get
(
type
(
layer
),
self
.
qat_layer_mappings
.
get
(
type
(
layer
))
)
return
target_type
(
layer
,
q_config
)
def
_has_observer_config
(
self
,
layer
:
Layer
):
def
_has_observer_config
(
self
,
layer
:
Layer
):
r
"""
r
"""
...
@@ -397,6 +403,7 @@ class QuantConfig(object):
...
@@ -397,6 +403,7 @@ class QuantConfig(object):
for
child
in
model
.
children
():
for
child
in
model
.
children
():
layer_prefix
=
child
.
full_name
()
layer_prefix
=
child
.
full_name
()
config
=
self
.
_layer2config
.
get
(
model
,
self
.
global_config
)
config
=
self
.
_layer2config
.
get
(
model
,
self
.
global_config
)
config
=
self
.
_type2config
.
get
(
type
(
child
),
config
)
config
=
self
.
_type2config
.
get
(
type
(
child
),
config
)
config
=
self
.
_prefix2config
.
get
(
layer_prefix
,
config
)
config
=
self
.
_prefix2config
.
get
(
layer_prefix
,
config
)
if
config
is
not
None
:
if
config
is
not
None
:
...
@@ -413,11 +420,11 @@ class QuantConfig(object):
...
@@ -413,11 +420,11 @@ class QuantConfig(object):
return
self
.
_details_helper
(
self
.
_model
)
return
self
.
_details_helper
(
self
.
_model
)
def
_details_helper
(
self
,
layer
:
Layer
):
def
_details_helper
(
self
,
layer
:
Layer
):
extra_lines
=
[]
sublayer_lines
=
[]
sublayer_lines
=
[]
for
name
,
sublayer
in
layer
.
named_children
():
for
name
,
sublayer
in
layer
.
named_children
():
sublayer_str
=
self
.
_details_helper
(
sublayer
)
sublayer_str
=
self
.
_details_helper
(
sublayer
)
sublayer_str
=
self
.
_addindent
(
sublayer_str
,
2
)
sublayer_str
=
self
.
_addindent
(
sublayer_str
,
2
)
if
sublayer
in
self
.
_layer2config
:
sublayer_lines
.
append
(
sublayer_lines
.
append
(
'('
'('
+
name
+
name
...
@@ -428,11 +435,6 @@ class QuantConfig(object):
...
@@ -428,11 +435,6 @@ class QuantConfig(object):
)
)
final_str
=
layer
.
__class__
.
__name__
+
'('
final_str
=
layer
.
__class__
.
__name__
+
'('
if
extra_lines
:
if
len
(
extra_lines
)
>
1
:
final_str
+=
'
\n
'
+
'
\n
'
.
join
(
extra_lines
)
+
'
\n
'
elif
len
(
extra_lines
)
==
1
:
final_str
+=
extra_lines
[
0
]
if
sublayer_lines
:
if
sublayer_lines
:
final_str
+=
'
\n
'
+
'
\n
'
.
join
(
sublayer_lines
)
+
'
\n
'
final_str
+=
'
\n
'
+
'
\n
'
.
join
(
sublayer_lines
)
+
'
\n
'
...
...
python/paddle/quantization/quanters/abs_max.py
浏览文件 @
973dab86
...
@@ -12,9 +12,11 @@
...
@@ -12,9 +12,11 @@
# See the License for the specific language governing permissions and
# See the License for the specific language governing permissions and
# limitations under the License.
# limitations under the License.
import
paddle
from
paddle
import
_legacy_C_ops
from
paddle
import
_legacy_C_ops
from
paddle.fluid.data_feeder
import
check_variable_and_dtype
from
paddle.fluid.framework
import
_varbase_creator
from
paddle.fluid.framework
import
_varbase_creator
from
paddle.framework
import
ParamAttr
from
paddle.framework
import
ParamAttr
,
core
from
paddle.nn.initializer
import
Constant
from
paddle.nn.initializer
import
Constant
from
paddle.utils
import
unique_name
from
paddle.utils
import
unique_name
...
@@ -142,7 +144,7 @@ class FakeQuanterWithAbsMaxObserverLayer(BaseQuanter):
...
@@ -142,7 +144,7 @@ class FakeQuanterWithAbsMaxObserverLayer(BaseQuanter):
)
)
self
.
_accum
.
stop_gradient
=
True
self
.
_accum
.
stop_gradient
=
True
def
forward
(
self
,
input
):
def
dynamic_
forward
(
self
,
input
):
attrs
=
(
attrs
=
(
'moving_rate'
,
'moving_rate'
,
self
.
_moving_rate
,
self
.
_moving_rate
,
...
@@ -181,6 +183,46 @@ class FakeQuanterWithAbsMaxObserverLayer(BaseQuanter):
...
@@ -181,6 +183,46 @@ class FakeQuanterWithAbsMaxObserverLayer(BaseQuanter):
return
out
return
out
def
static_forward
(
self
,
input
):
check_variable_and_dtype
(
input
,
'input'
,
[
'float32'
],
"FakeQuantMovingAverageAbsMax"
)
attrs
=
{
'moving_rate'
:
self
.
_moving_rate
,
'bit_length'
:
self
.
_bit_length
,
'is_test'
:
not
self
.
training
,
}
inputs
=
{
"X"
:
[
input
],
"InScale"
:
[
self
.
_scale
]}
quant_out
=
self
.
_helper
.
create_variable
(
name
=
"{}.quantized.dequantized"
.
format
(
input
.
name
),
dtype
=
input
.
dtype
,
type
=
core
.
VarDesc
.
VarType
.
LOD_TENSOR
,
persistable
=
False
,
stop_gradient
=
False
,
)
outputs
=
{
"Out"
:
[
quant_out
],
"OutScale"
:
[
self
.
_scale
]}
if
self
.
training
:
inputs
[
'InState'
]
=
[
self
.
_state
]
inputs
[
'InAccum'
]
=
[
self
.
_accum
]
outputs
[
'OutState'
]
=
[
self
.
_state
]
outputs
[
'OutAccum'
]
=
[
self
.
_accum
]
self
.
_helper
.
append_op
(
type
=
"fake_quantize_dequantize_moving_average_abs_max"
,
inputs
=
inputs
,
outputs
=
outputs
,
attrs
=
attrs
,
)
return
quant_out
def
forward
(
self
,
input
):
if
paddle
.
framework
.
in_dynamic_mode
():
return
self
.
dynamic_forward
(
input
)
else
:
return
self
.
static_forward
(
input
)
def
bit_length
(
self
):
def
bit_length
(
self
):
return
self
.
_bit_length
return
self
.
_bit_length
...
...
python/paddle/quantization/quantize.py
浏览文件 @
973dab86
...
@@ -84,11 +84,13 @@ class Quantization(object, metaclass=abc.ABCMeta):
...
@@ -84,11 +84,13 @@ class Quantization(object, metaclass=abc.ABCMeta):
def
_convert_to_quant_layers
(
self
,
model
:
Layer
,
config
:
QuantConfig
):
def
_convert_to_quant_layers
(
self
,
model
:
Layer
,
config
:
QuantConfig
):
replaced
=
{}
replaced
=
{}
for
name
,
child
in
model
.
named_children
():
for
name
,
child
in
model
.
named_children
():
if
config
.
_is_quantifiable
(
child
):
if
(
if
type
(
child
)
not
in
config
.
qat_layer_mappings
:
config
.
_is_quantifiable
(
child
)
self
.
_convert_to_quant_layers
(
child
,
config
)
and
type
(
child
)
in
config
.
qat_layer_mappings
else
:
)
:
replaced
[
name
]
=
config
.
_get_qat_layer
(
child
)
replaced
[
name
]
=
config
.
_get_qat_layer
(
child
)
else
:
self
.
_convert_to_quant_layers
(
child
,
config
)
for
key
,
value
in
replaced
.
items
():
for
key
,
value
in
replaced
.
items
():
model
.
_sub_layers
[
key
]
=
value
model
.
_sub_layers
[
key
]
=
value
...
...
python/paddle/tests/quantization/test_trace_quanter.py
0 → 100644
浏览文件 @
973dab86
# copyright (c) 2023 paddlepaddle authors. all rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""The quantizer layers should be traced by paddle.jit.save function."""
import
os
import
tempfile
import
unittest
import
paddle
from
paddle.quantization
import
QAT
,
QuantConfig
from
paddle.quantization.quanters
import
FakeQuanterWithAbsMaxObserver
from
paddle.quantization.quanters.abs_max
import
(
FakeQuanterWithAbsMaxObserverLayer
,
)
from
paddle.vision.models
import
resnet18
class
TestPTQ
(
unittest
.
TestCase
):
def
setUp
(
self
):
self
.
temp_dir
=
tempfile
.
TemporaryDirectory
(
dir
=
"./"
)
self
.
path
=
os
.
path
.
join
(
self
.
temp_dir
.
name
,
'ptq'
)
def
tearDown
(
self
):
self
.
temp_dir
.
cleanup
()
def
_get_model_for_qat
(
self
):
observer
=
FakeQuanterWithAbsMaxObserver
()
model
=
resnet18
()
model
.
train
()
q_config
=
QuantConfig
(
activation
=
None
,
weight
=
None
)
q_config
.
add_type_config
(
paddle
.
nn
.
Conv2D
,
activation
=
observer
,
weight
=
observer
)
qat
=
QAT
(
q_config
)
quant_model
=
qat
.
quantize
(
model
)
return
quant_model
,
qat
def
_count_layers
(
self
,
model
,
layer_type
):
count
=
0
for
_layer
in
model
.
sublayers
(
True
):
if
isinstance
(
_layer
,
layer_type
):
count
+=
1
return
count
def
test_trace
(
self
):
quant_model
,
ptq
=
self
.
_get_model_for_qat
()
image
=
paddle
.
rand
([
1
,
3
,
32
,
32
],
dtype
=
"float32"
)
quantizer_count_in_dygraph
=
self
.
_count_layers
(
quant_model
,
FakeQuanterWithAbsMaxObserverLayer
)
save_path
=
os
.
path
.
join
(
self
.
path
,
'int8_infer'
)
paddle
.
jit
.
save
(
quant_model
,
save_path
,
[
image
])
print
(
f
"quant_model is saved into
{
save_path
}
"
)
paddle
.
enable_static
()
exe
=
paddle
.
static
.
Executor
(
paddle
.
CPUPlace
())
main_program
=
paddle
.
static
.
Program
()
startup_program
=
paddle
.
static
.
Program
()
with
paddle
.
static
.
program_guard
(
main_program
,
startup_program
):
[
inference_program
,
feed_target_names
,
fetch_targets
,
]
=
paddle
.
static
.
load_inference_model
(
save_path
,
exe
)
quantizer_count_in_static_model
=
0
for
_op
in
inference_program
.
global_block
().
ops
:
if
_op
.
type
==
"fake_quantize_dequantize_moving_average_abs_max"
:
quantizer_count_in_static_model
+=
1
self
.
assertEqual
(
quantizer_count_in_dygraph
,
quantizer_count_in_static_model
)
paddle
.
disable_static
()
if
__name__
==
'__main__'
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录