未验证 提交 9666979d 编写于 作者: C ccrrong 提交者: GitHub

move conv2d_transpose and conv3d_transpose (#48198)

上级 32462c64
......@@ -77,8 +77,6 @@ __all__ = [
'inplace_abn',
'instance_norm',
'data_norm',
'conv2d_transpose',
'conv3d_transpose',
'reduce_sum',
'reduce_mean',
'reduce_max',
......@@ -3811,731 +3809,6 @@ def spectral_norm(weight, dim=0, power_iters=1, eps=1e-12, name=None):
return out
def conv2d_transpose(
input,
num_filters,
output_size=None,
filter_size=None,
padding=0,
stride=1,
dilation=1,
groups=None,
param_attr=None,
bias_attr=None,
use_cudnn=True,
act=None,
name=None,
data_format='NCHW',
):
r"""
:api_attr: Static Graph
The convolution2D transpose layer calculates the output based on the input,
filter, and dilations, strides, paddings. Input(Input) and output(Output)
are in NCHW or NHWC format. Where N is batch size, C is the number of channels,
H is the height of the feature, and W is the width of the feature.
Parameters(dilations, strides, paddings) are two elements. These two elements
represent height and width, respectively. The details of convolution transpose
layer, please refer to the following explanation and references
`therein <https://arxiv.org/pdf/1603.07285.pdf>`_.
If bias attribution and activation type are provided, bias is added to
the output of the convolution, and the corresponding activation function
is applied to the final result.
For each input :math:`X`, the equation is:
.. math::
Out = \sigma (W \\ast X + b)
Where:
* :math:`X`: Input value, a 4-D Tensor with NCHW or NHWC format.
* :math:`W`: Filter value, a 4-D Tensor with MCHW format.
* :math:`\\ast`: Convolution operation.
* :math:`b`: Bias value, a 2-D Tensor with shape [M, 1].
* :math:`\\sigma`: Activation function.
* :math:`Out`: Output value, a 4-D Tensor with data format 'NCHW' or 'NHWC', the shape of :math:`Out` and :math:`X` may be different.
Example:
- Input:
Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
Filter shape: :math:`(C_{in}, C_{out}, H_f, W_f)`
- Output:
Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
Where
.. math::
H^\prime_{out} &= (H_{in} - 1) * strides[0] - pad_height_top - pad_height_bottom + dilations[0] * (H_f - 1) + 1 \\\\
W^\prime_{out} &= (W_{in} - 1) * strides[1] - pad_width_left - pad_width_right + dilations[1] * (W_f - 1) + 1 \\\\
H_{out} &\in [ H^\prime_{out}, H^\prime_{out} + strides[0] ] \\\\
W_{out} &\in [ W^\prime_{out}, W^\prime_{out} + strides[1] ]
Note:
The conv2d_transpose can be seen as the backward of the conv2d. For conv2d,
when stride > 1, conv2d maps multiple input shape to the same output shape,
so for conv2d_transpose, when stride > 1, input shape maps multiple output shape.
If output_size is None, :math:`H_{out} = H^\prime_{out}, W_{out} = W^\prime_{out}`;
else, the :math:`H_{out}` of the output size must between :math:`H^\prime_{out}`
and :math:`H^\prime_{out} + strides[0]`, and the :math:`W_{out}` of the output size must
between :math:`W^\prime_{out}` and :math:`W^\prime_{out} + strides[1]`,
conv2d_transpose can compute the kernel size automatically.
Args:
input(Tensor): 4-D Tensor with [N, C, H, W] or [N, H, W, C] format,
its data type is float32 or float64.
num_filters(int): The number of the filter. It is as same as the output
image channel.
output_size(int|tuple, optional): The output image size. If output size is a
tuple, it must contain two integers, (image_height, image_width). None if use
filter_size, padding, and stride to calculate output_size.
If output_size and filter_size are specified at the same time, They
should follow the formula above. Default: None. output_size and filter_size
should not be None at the same time.
filter_size(int|tuple, optional): The filter size. If filter_size is a tuple,
it must contain two integers, (filter_size_height, filter_size_width).
Otherwise, filter_size_height = filter_size_width = filter_size. None if
use output size to calculate filter_size. Default: None. filter_size and
output_size should not be None at the same time.
stride(int|tuple, optional): The stride size. It means the stride in transposed convolution.
If stride is a tuple, it must contain two integers, (stride_height, stride_width).
Otherwise, stride_height = stride_width = stride. Default: stride = 1.
padding(str|int|list|tuple, optional): The padding size. It means the number of zero-paddings
on both sides for each dimension. If `padding` is a string, either 'VALID' or
'SAME' which is the padding algorithm. If `padding` is a tuple or list,
it could be in three forms: `[pad_height, pad_width]` or
`[pad_height_top, pad_height_bottom, pad_width_left, pad_width_right]`,
and when `data_format` is `"NCHW"`, `padding` can be in the form
`[[0,0], [0,0], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right]]`.
when `data_format` is `"NHWC"`, `padding` can be in the form
`[[0,0], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right], [0,0]]`.
Default: padding = 0.
dilation(int|tuple, optional): The dilation size. It means the spacing between the kernel points.
If dilation is a tuple, it must contain two integers, (dilation_height, dilation_width).
Otherwise, dilation_height = dilation_width = dilation. Default: dilation = 1.
filter_size(int|tuple, optional): The filter size. If filter_size is a tuple,
it must contain two integers, (filter_size_height, filter_size_width).
Otherwise, filter_size_height = filter_size_width = filter_size. None if
use output size to calculate filter_size. Default: None.
groups(int, optional): The groups number of the Conv2d transpose layer. Inspired by
grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
when group=2, the first half of the filters is only connected to the
first half of the input channels, while the second half of the
filters is only connected to the second half of the input channels.
Default: groups = 1.
param_attr (ParamAttr, optional): The parameter attribute for learnable parameters/weights
of conv2d_transpose. If it is set to None or one attribute of ParamAttr, conv2d_transpose
will create ParamAttr as param_attr. If the Initializer of the param_attr
is not set, the parameter is initialized with Xavier. Default: None.
bias_attr (ParamAttr|bool, optional): The parameter attribute for the bias of conv2d_transpose.
If it is set to False, no bias will be added to the output units.
If it is set to None or one attribute of ParamAttr, conv2d_transpose
will create ParamAttr as bias_attr. If the Initializer of the bias_attr
is not set, the bias is initialized zero. Default: None.
use_cudnn(bool, optional): Use cudnn kernel or not, it is valid only when the cudnn
library is installed. Default: True.
act (str, optional): Activation type, if it is set to None, activation is not appended.
Default: None.
name(str, optional): For detailed information, please refer
to :ref:`api_guide_Name`. Usually name is no need to set and
None by default.
data_format (str, optional): Specify the data format of the input, and the data format of the output
will be consistent with that of the input. An optional string from: `"NCHW"`, `"NHWC"`.
The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
`[batch_size, input_channels, input_height, input_width]`.
Returns:
A Tensor representing the conv2d_transpose, whose
data type is the same with input and shape is (num_batches, channels, out_h,
out_w) or (num_batches, out_h, out_w, channels). If act is None, the tensor
storing the transposed convolution result, and if act is not None, the
tensor storing transposed convolution and non-linearity activation
result.
Raises:
ValueError: If the type of `use_cudnn` is not bool.
ValueError: If `data_format` is not "NCHW" or "NHWC".
ValueError: If `padding` is a string, but not "SAME" or "VALID".
ValueError: If `padding` is a tuple, but the element corresponding to the input's batch size is not 0
or the element corresponding to the input's channel is not 0.
ValueError: If `output_size` and filter_size are None at the same time.
ShapeError: If the input is not 4-D Tensor.
ShapeError: If the input's dimension size and filter's dimension size not equal.
ShapeError: If the dimension size of input minus the size of `stride` is not 2.
ShapeError: If the number of input channels is not equal to filter's channels.
ShapeError: If the size of `output_size` is not equal to that of `stride`.
Examples:
.. code-block:: python
import paddle
paddle.enable_static()
data = paddle.static.data(name='data', shape=[None, 3, 32, 32], dtype='float32')
conv2d_transpose = paddle.static.nn.conv2d_transpose(input=data, num_filters=2, filter_size=3)
print(conv2d_transpose.shape) # [-1, 2, 34, 34]
"""
assert (
param_attr is not False
), "param_attr should not be False in conv2d_transpose."
if len(input.shape) != 4:
raise ValueError(
"Input size should be 4, "
"but received {}".format(len(input.shape))
)
if data_format not in ['NCHW', 'NHWC']:
raise ValueError(
"Attr(data_format) of Op(fluid.layers.conv2d_transpose) got wrong value: received "
+ data_format
+ " but only NCHW or NHWC supported."
)
input_channel = input.shape[1] if data_format == 'NCHW' else input.shape[-1]
op_type = 'conv2d_transpose'
if (
input_channel == groups
and num_filters == input_channel
and not use_cudnn
):
op_type = 'depthwise_conv2d_transpose'
helper = LayerHelper(op_type, **locals())
if not isinstance(input, Variable):
raise TypeError("Input of conv2d_transpose must be Variable")
stride = utils.convert_to_list(stride, 2, 'stride')
dilation = utils.convert_to_list(dilation, 2, 'dilation')
if not isinstance(use_cudnn, bool):
raise ValueError("use_cudnn should be True or False")
def _update_padding(padding, data_format):
def is_list_or_tuple(ele):
if isinstance(ele, list) or isinstance(ele, tuple):
return True
return False
if is_list_or_tuple(padding) and len(padding) == 4:
if is_list_or_tuple(padding[0]) and (data_format == "NCHW"):
if not (padding[0] == [0, 0] and padding[1] == [0, 0]):
raise ValueError(
"Non-zero padding(%s) in the batch or channel dimensions "
"is not supported." % str(padding)
)
padding = padding[2:4]
padding = [ele for a_list in padding for ele in a_list]
elif is_list_or_tuple(padding[0]) and (data_format == "NHWC"):
if not (padding[0] == [0, 0] and padding[3] == [0, 0]):
raise ValueError(
"Non-zero padding(%s) in the batch or channel dimensions "
"is not supported." % str(padding)
)
padding = padding[1:3]
padding = [ele for a_list in padding for ele in a_list]
padding = utils.convert_to_list(padding, 4, 'padding')
else:
padding = utils.convert_to_list(padding, 2, 'padding')
padding = [padding[0], padding[0], padding[1], padding[1]]
return padding
padding_algorithm = "EXPLICIT"
if isinstance(padding, str):
padding = padding.upper()
if padding not in ["SAME", "VALID"]:
raise ValueError(
"Unknown padding: '%s'. It can only be 'SAME' or 'VALID'."
% str(padding)
)
if padding == "VALID":
padding_algorithm = "VALID"
padding = [0, 0, 0, 0]
elif padding == "SAME":
padding_algorithm = "SAME"
padding = [0, 0, 0, 0]
padding = _update_padding(padding, data_format)
if output_size is None:
output_size = []
elif isinstance(output_size, (list, tuple)):
if utils._contain_var(output_size):
output_size = utils._convert_to_tensor_list(output_size)
else:
output_size = utils.convert_to_list(output_size, 2, 'output_size')
elif isinstance(output_size, int):
output_size = utils.convert_to_list(output_size, 2, 'output_size')
elif isinstance(output_size, Variable):
check_dtype(
output_size.dtype,
'output_size',
['int32', 'int64'],
'conv2d_transpose',
)
if len(output_size.shape) == 1 and (
output_size.shape[0] == 1 or output_size.shape[0] == 2
):
if output_size.shape[0] == 1:
output_size = [output_size, output_size]
else:
raise ValueError("output_size must contain one or two integers.")
else:
raise ValueError(
"output_size should be int, list[int] or tuple[int] or Tensor"
)
if filter_size is None:
if output_size is []:
raise ValueError("output_size must be set when filter_size is None")
if not _non_static_mode():
if isinstance(output_size, Variable) or utils._contain_var(
output_size
):
raise ValueError(
"filter_size should not be None when output_size is Variable or contain Variable in static mode."
)
else:
output_size = utils.convert_shape_to_list(output_size)
if len(output_size) == 1:
output_size = utils.convert_to_list(
output_size[0], 2, 'output_size'
)
h_in = input.shape[2] if data_format == 'NCHW' else input.shape[1]
w_in = input.shape[3] if data_format == 'NCHW' else input.shape[2]
filter_size_h = (
output_size[0]
- (h_in - 1) * stride[0]
+ padding[0]
+ padding[1]
- 1
) // dilation[0] + 1
filter_size_w = (
output_size[1]
- (w_in - 1) * stride[1]
+ padding[2]
+ padding[3]
- 1
) // dilation[1] + 1
filter_size = [filter_size_h, filter_size_w]
else:
filter_size = utils.convert_to_list(
filter_size, 2, 'conv2d_transpose.filter_size'
)
if len(padding) == 4 and utils._is_symmetric_padding(padding, 2):
padding = [padding[0], padding[2]]
if groups is None:
groups = 1
elif groups <= 0:
raise ValueError(
"the groups of input must be greater than 0, "
"but received the groups of input is {}".format(groups)
)
filter_shape = [input_channel, num_filters // groups] + filter_size
img_filter = helper.create_parameter(
dtype=input.dtype, shape=filter_shape, attr=helper.param_attr
)
pre_bias = helper.create_variable_for_type_inference(dtype=input.dtype)
helper.append_op(
type=op_type,
inputs={'Input': [input], 'Filter': [img_filter]},
outputs={'Output': pre_bias},
attrs={
'output_size': output_size,
'strides': stride,
'paddings': padding,
'padding_algorithm': padding_algorithm,
'dilations': dilation,
'groups': groups,
'use_cudnn': use_cudnn,
'data_format': data_format,
},
)
if data_format == 'NCHW':
pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
else:
pre_act = helper.append_bias_op(pre_bias, dim_start=3, dim_end=4)
out = helper.append_activation(pre_act)
return out
def conv3d_transpose(
input,
num_filters,
output_size=None,
filter_size=None,
padding=0,
stride=1,
dilation=1,
groups=None,
param_attr=None,
bias_attr=None,
use_cudnn=True,
act=None,
name=None,
data_format='NCDHW',
):
r"""
:api_attr: Static Graph
The convolution3D transpose layer calculates the output based on the input,
filter, and dilations, strides, paddings. Input(Input) and output(Output)
are in NCDHW or NDHWC format. Where N is batch size, C is the number of channels,
D is the depth of the feature, H is the height of the feature, and W
is the width of the feature. Parameters(dilations, strides, paddings) are
two elements. These two elements represent height and width, respectively.
The details of convolution transpose layer, please refer to the following
explanation and references `therein <https://arxiv.org/pdf/1603.07285.pdf>`_.
If bias attribution and activation type are provided, bias is added to
the output of the convolution, and the corresponding activation function
is applied to the final result.
For each input :math:`X`, the equation is:
.. math::
Out = \sigma (W \ast X + b)
In the above equation:
* :math:`X`: Input value, a Tensor with NCDHW or NDHWC format.
* :math:`W`: Filter value, a Tensor with MCDHW format.
* :math:`\ast`: Convolution operation.
* :math:`b`: Bias value, a 2-D Tensor with shape [M, 1].
* :math:`\sigma`: Activation function.
* :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Example:
- Input:
Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`
Filter shape: :math:`(C_{in}, C_{out}, D_f, H_f, W_f)`
- Output:
Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`
Where
.. math::
D^\prime_{out} &= (D_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (D_f - 1) + 1 \\\\
H^\prime_{out} &= (H_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (H_f - 1) + 1 \\\\
W^\prime_{out} &= (W_{in} - 1) * strides[2] - 2 * paddings[2] + dilations[2] * (W_f - 1) + 1 \\\\
D_{out} &\in [ D^\prime_{out}, D^\prime_{out} + strides[0] ] \\\\
H_{out} &\in [ H^\prime_{out}, H^\prime_{out} + strides[1] ] \\\\
W_{out} &\in [ W^\prime_{out}, W^\prime_{out} + strides[2] ]
Note:
The conv3d_transpose can be seen as the backward of the conv3d. For conv3d,
when stride > 1, conv3d maps multiple input shape to the same output shape,
so for conv3d_transpose, when stride > 1, input shape maps multiple output shape.
If output_size is None, :math:`H_{out} = H^\prime_{out}, :math:`H_{out} = \
H^\prime_{out}, W_{out} = W^\prime_{out}`; else, the :math:`D_{out}` of the output
size must between :math:`D^\prime_{out}` and :math:`D^\prime_{out} + strides[0]`,
the :math:`H_{out}` of the output size must between :math:`H^\prime_{out}`
and :math:`H^\prime_{out} + strides[1]`, and the :math:`W_{out}` of the output size must
between :math:`W^\prime_{out}` and :math:`W^\prime_{out} + strides[2]`,
conv3d_transpose can compute the kernel size automatically.
Args:
input(Tensor): The input is 5-D Tensor with shape [N, C, D, H, W] or [N, D, H, W, C], the data type
of input is float32 or float64.
num_filters(int): The number of the filter. It is as same as the output
image channel.
output_size(int|tuple, optional): The output image size. If output size is a
tuple, it must contain three integers, (image_depth, image_height, image_width). This
parameter only works when filter_size is None. If output_size and filter_size are
specified at the same time, They should follow the formula above. Default: None.
Output_size and filter_size should not be None at the same time.
filter_size(int|tuple, optional): The filter size. If filter_size is a tuple,
it must contain three integers, (filter_size_depth, filter_size_height,
filter_size_width). Otherwise, filter_size_depth = filter_size_height = \
filter_size_width = filter_size. None if use output size to
calculate filter_size. Default: None. filter_size and output_size should not be
None at the same time.
padding(int|list|str|tuple, optional): The padding size. The padding argument effectively
adds `dilation * (kernel - 1)` amount of zero-padding on both sides of input. If `padding` is a string,
either 'VALID' or 'SAME' supported, which is the padding algorithm. If `padding`
is a tuple or list, it could be in three forms: `[pad_depth, pad_height, pad_width]` or
`[pad_depth_front, pad_depth_back, pad_height_top, pad_height_bottom, pad_width_left, pad_width_right]`,
and when `data_format` is `'NCDHW'`, `padding` can be in the form
`[[0,0], [0,0], [pad_depth_front, pad_depth_back], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right]]`.
when `data_format` is `'NDHWC'`, `padding` can be in the form
`[[0,0], [pad_depth_front, pad_depth_back], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right], [0,0]]`.
Default: padding = 0.
stride(int|tuple, optional): The stride size. It means the stride in transposed convolution.
If stride is a tuple, it must contain three integers, (stride_depth, stride_height,
stride_width). Otherwise, stride_depth = stride_height = stride_width = stride.
Default: stride = 1.
dilation(int|tuple, optional): The dilation size. It means the spacing between the kernel points.
If dilation is a tuple, it must contain three integers, (dilation_depth, dilation_height,
dilation_width). Otherwise, dilation_depth = dilation_height = dilation_width = dilation.
Default: dilation = 1.
groups(int, optional): The groups number of the Conv3d transpose layer. Inspired by
grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
when group=2, the first half of the filters is only connected to the
first half of the input channels, while the second half of the
filters is only connected to the second half of the input channels.
Default: groups=1
param_attr (ParamAttr, optional): The parameter attribute for learnable parameters/weights
of conv3d_transpose. If it is set to None or one attribute of ParamAttr, conv3d_transpose
will create ParamAttr as param_attr. If the Initializer of the param_attr
is not set, the parameter is initialized with Xavier. Default: None.
bias_attr (ParamAttr|bool, optional): The parameter attribute for the bias of conv3d_transpose.
If it is set to False, no bias will be added to the output units.
If it is set to None or one attribute of ParamAttr, conv3d_transpose
will create ParamAttr as bias_attr. If the Initializer of the bias_attr
is not set, the bias is initialized zero. Default: None.
use_cudnn(bool, optional): Use cudnn kernel or not, it is valid only when the cudnn
library is installed. Default: True
act (str, optional): Activation type, if it is set to None, activation is not appended.
Default: None.
name(str, optional): For detailed information, please refer
to :ref:`api_guide_Name`. Usually name is no need to set and
None by default.
data_format (str, optional): Specify the data format of the input, and the data format of the output
will be consistent with that of the input. An optional string from: `"NCHW"`, `"NHWC"`.
The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
`[batch_size, input_channels, input_height, input_width]`.
Returns:
A Variable holding Tensor representing the conv3d_transpose, whose data
type is the same with input and shape is (num_batches, channels, out_d, out_h,
out_w) or (num_batches, out_d, out_h, out_w, channels). If act is None, the tensor
variable storing the transposed convolution result, and if act is not None, the tensor
variable storing transposed convolution and non-linearity activation result.
Raises:
ValueError: If the type of `use_cudnn` is not bool.
ValueError: If `data_format` is not "NCDHW" or "NDHWC".
ValueError: If `padding` is a string, but not "SAME" or "VALID".
ValueError: If `padding` is a tuple, but the element corresponding to the input's batch size is not 0
or the element corresponding to the input's channel is not 0.
ValueError: If `output_size` and filter_size are None at the same time.
ShapeError: If the input is not 5-D Tensor.
ShapeError: If the input's dimension size and filter's dimension size not equal.
ShapeError: If the dimension size of input minus the size of `stride` is not 2.
ShapeError: If the number of input channels is not equal to filter's channels.
ShapeError: If the size of `output_size` is not equal to that of `stride`.
Examples:
.. code-block:: python
import paddle
import numpy as np
paddle.enable_static()
data = paddle.static.data(name='data', shape=[None, 3, 12, 32, 32], dtype='float32')
param_attr = paddle.framework.ParamAttr(name='conv3d.weight', initializer=paddle.nn.initializer.XavierNormal(), learning_rate=0.001)
res = paddle.static.nn.conv3d_transpose(input=data, num_filters=2, filter_size=3, act="relu", param_attr=param_attr)
place = paddle.CPUPlace()
exe = paddle.static.Executor(place)
exe.run(paddle.static.default_startup_program())
x = np.random.rand(1, 3, 12, 32, 32).astype("float32")
output = exe.run(feed={"data": x}, fetch_list=[res])
print(output)
"""
assert (
param_attr is not False
), "param_attr should not be False in conv3d_transpose."
if data_format not in ['NCDHW', 'NDHWC']:
raise ValueError(
"Param(data_format) of Op(fluid.layers.conv3d_transpose) got wrong value: received "
+ data_format
+ " but only NCDHW or NDHWC supported."
)
l_type = "conv3d_transpose"
helper = LayerHelper(l_type, **locals())
if not isinstance(input, Variable):
raise TypeError("Input of conv3d_transpose must be Variable")
if len(input.shape) != 5:
raise ValueError(
"Input should be 5D tensor, but received input with the shape of {}".format(
input.shape
)
)
input_channel = (
input.shape[1] if data_format == 'NCDHW' else input.shape[-1]
)
stride = utils.convert_to_list(stride, 3, 'stride')
dilation = utils.convert_to_list(dilation, 3, 'dilation')
if not isinstance(use_cudnn, bool):
raise ValueError("use_cudnn should be True or False")
def _update_padding(padding, data_format):
def is_list_or_tuple(ele):
if isinstance(ele, list) or isinstance(ele, tuple):
return True
return False
if is_list_or_tuple(padding) and len(padding) == 5:
if is_list_or_tuple(padding[0]) and (data_format == "NCDHW"):
if not (padding[0] == [0, 0] and padding[1] == [0, 0]):
raise ValueError(
"Non-zero padding(%s) in the batch or channel dimensions "
"is not supported." % str(padding)
)
padding = padding[2:5]
padding = [ele for a_list in padding for ele in a_list]
elif is_list_or_tuple(padding[0]) and (data_format == "NDHWC"):
if not (padding[0] == [0, 0] and padding[4] == [0, 0]):
raise ValueError(
"Non-zero padding(%s) in the batch or channel dimensions "
"is not supported." % str(padding)
)
padding = padding[1:4]
padding = [ele for a_list in padding for ele in a_list]
padding = utils.convert_to_list(padding, 6, 'padding')
elif is_list_or_tuple(padding) and len(padding) == 6:
padding = utils.convert_to_list(padding, 6, 'padding')
else:
padding = utils.convert_to_list(padding, 3, 'padding')
padding = [
padding[0],
padding[0],
padding[1],
padding[1],
padding[2],
padding[2],
]
return padding
padding_algorithm = "EXPLICIT"
if isinstance(padding, str):
padding = padding.upper()
if padding not in ["SAME", "VALID"]:
raise ValueError(
"Unknown padding: '%s'. It can only be 'SAME' or 'VALID'."
% str(padding)
)
if padding == "VALID":
padding_algorithm = "VALID"
padding = [0, 0, 0, 0, 0, 0]
elif padding == "SAME":
padding_algorithm = "SAME"
padding = [0, 0, 0, 0, 0, 0]
padding = _update_padding(padding, data_format)
if filter_size is None:
if output_size is None:
raise ValueError("output_size must be set when filter_size is None")
if isinstance(output_size, int):
output_size = [output_size, output_size, output_size]
d_in = input.shape[2] if data_format == 'NCDHW' else input.shape[1]
h_in = input.shape[3] if data_format == 'NCDHW' else input.shape[2]
w_in = input.shape[4] if data_format == 'NCDHW' else input.shape[3]
filter_size_d = (
output_size[0]
- (d_in - 1) * stride[0]
+ padding[0]
+ padding[1]
- 1
) // dilation[0] + 1
filter_size_h = (
output_size[1]
- (h_in - 1) * stride[1]
+ padding[2]
+ padding[3]
- 1
) // dilation[1] + 1
filter_size_w = (
output_size[2]
- (w_in - 1) * stride[2]
+ padding[4]
+ padding[5]
- 1
) // dilation[2] + 1
filter_size = [filter_size_d, filter_size_h, filter_size_w]
else:
filter_size = utils.convert_to_list(
filter_size, 3, 'conv3d_transpose.filter_size'
)
if len(padding) == 6 and utils._is_symmetric_padding(padding, 3):
padding = [padding[0], padding[2], padding[4]]
if output_size is None:
output_size = []
elif isinstance(output_size, (list, tuple, int)):
output_size = utils.convert_to_list(output_size, 3, 'output_size')
else:
raise ValueError("output_size should be int, list[int] or tuple[int]")
groups = 1 if groups is None else groups
if groups <= 0:
raise ValueError(
"the groups of conv3d_transpose should be greater than 0. Received groups: {}".format(
groups
)
)
if num_filters % groups != 0:
raise ValueError(
"Attr(num_filters) must be divisible by groups,"
"Received: Attr(num_filters) is {}, the groups is {}".format(
num_filters, groups
)
)
filter_shape = [input_channel, num_filters // groups] + filter_size
img_filter = helper.create_parameter(
dtype=input.dtype, shape=filter_shape, attr=helper.param_attr
)
if data_format == 'NCDHW':
data_format = 'NCHW'
if data_format == 'NDHWC':
data_format = 'NHWC'
pre_bias = helper.create_variable_for_type_inference(dtype=input.dtype)
helper.append_op(
type=l_type,
inputs={'Input': [input], 'Filter': [img_filter]},
outputs={'Output': pre_bias},
attrs={
'output_size': output_size,
'strides': stride,
'paddings': padding,
'padding_algorithm': padding_algorithm,
'dilations': dilation,
'groups': groups,
'use_cudnn': use_cudnn,
'data_format': data_format,
},
)
if data_format == 'NCHW':
pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
else:
pre_act = helper.append_bias_op(pre_bias, dim_start=4, dim_end=5)
out = helper.append_activation(pre_act)
return out
def reduce_sum(input, dim=None, keep_dim=False, name=None):
"""
......
......@@ -15,6 +15,7 @@
import unittest
import numpy as np
from inference_pass_test import InferencePassTest
import paddle
import paddle.fluid as fluid
from paddle.fluid.core import PassVersionChecker
......@@ -173,7 +174,7 @@ class ConvTransposeMkldnnFusePassDialtionsGroupsTest(InferencePassTest):
initializer=fluid.initializer.Xavier(uniform=False),
learning_rate=0.001,
)
conv_out = fluid.layers.conv2d_transpose(
conv_out = paddle.static.nn.conv2d_transpose(
input=data,
num_filters=3,
filter_size=3,
......
......@@ -15,6 +15,7 @@
import unittest
import numpy as np
from inference_pass_test import InferencePassTest
import paddle
import paddle.fluid as fluid
import paddle.fluid.core as core
from paddle.fluid.core import PassVersionChecker
......@@ -28,7 +29,7 @@ class TensorRTSubgraphPassConv3dTransposeTest(InferencePassTest):
data = fluid.data(
name="data", shape=[-1, 4, 4, 32, 32], dtype="float32"
)
conv_out = fluid.layers.conv3d_transpose(
conv_out = paddle.static.nn.conv3d_transpose(
input=data,
num_filters=self.conv_num_filters,
filter_size=self.conv_filter_size,
......@@ -95,7 +96,7 @@ class DynamicShapeTensorRTSubgraphPassConv3dTransposeTest(InferencePassTest):
data = fluid.data(
name="data", shape=[-1, 6, -1, -1, -1], dtype="float32"
)
conv_out = fluid.layers.conv3d_transpose(
conv_out = paddle.static.nn.conv3d_transpose(
input=data,
num_filters=self.conv_num_filters,
filter_size=self.conv_filter_size,
......
......@@ -16,6 +16,7 @@ import os
import unittest
import numpy as np
from inference_pass_test import InferencePassTest
import paddle
import paddle.fluid as fluid
import paddle.fluid.core as core
from paddle.fluid.core import PassVersionChecker
......@@ -109,7 +110,7 @@ class TensorRTSubgraphPassConvTransposeTest(InferencePassTest):
data = fluid.data(
name="data", shape=[-1, 6, 64, 64], dtype="float32"
)
conv_out = fluid.layers.conv2d_transpose(
conv_out = paddle.static.nn.conv2d_transpose(
input=data,
num_filters=self.conv_num_filters,
filter_size=self.conv_filter_size,
......
......@@ -237,7 +237,7 @@ class QuantDequantTensorRTSubgraphPassConvTransposeTest(QuantDequantTest):
data_reshape = paddle.reshape(self.data, shape=[1, 4, 14, 14])
self.label = fluid.data(name='label', shape=[1, 1], dtype='int64')
label_shape = paddle.reshape(self.label, shape=[1, 1, 1])
conv_out = fluid.layers.conv2d_transpose(
conv_out = paddle.static.nn.conv2d_transpose(
input=data_reshape,
num_filters=self.conv_num_filters,
filter_size=self.conv_filter_size,
......
......@@ -499,21 +499,21 @@ class TestConv2DTransposeAPI(unittest.TestCase):
data2 = fluid.layers.data(
name='data2', shape=[5, 5, 3], dtype='float32'
)
out1 = fluid.layers.conv2d_transpose(
out1 = paddle.static.nn.conv2d_transpose(
input=data1,
groups=1,
num_filters=6,
filter_size=3,
data_format='NCHW',
)
out2 = fluid.layers.conv2d_transpose(
out2 = paddle.static.nn.conv2d_transpose(
input=data2,
groups=1,
num_filters=6,
filter_size=3,
data_format='NHWC',
)
out3 = fluid.layers.conv2d_transpose(
out3 = paddle.static.nn.conv2d_transpose(
input=data1,
groups=1,
num_filters=6,
......@@ -521,7 +521,7 @@ class TestConv2DTransposeAPI(unittest.TestCase):
padding=[[0, 0], [1, 1], [1, 1], [0, 0]],
data_format='NHWC',
)
out4 = fluid.layers.conv2d_transpose(
out4 = paddle.static.nn.conv2d_transpose(
input=data1,
groups=3,
num_filters=6,
......@@ -529,7 +529,7 @@ class TestConv2DTransposeAPI(unittest.TestCase):
padding=[[0, 0], [0, 0], [2, 1], [0, 0]],
data_format='NCHW',
)
out5 = fluid.layers.conv2d_transpose(
out5 = paddle.static.nn.conv2d_transpose(
input=data2,
groups=1,
num_filters=6,
......@@ -537,7 +537,7 @@ class TestConv2DTransposeAPI(unittest.TestCase):
padding='SAME',
data_format='NCHW',
)
out6 = fluid.layers.conv2d_transpose(
out6 = paddle.static.nn.conv2d_transpose(
input=data1,
groups=1,
num_filters=6,
......@@ -545,7 +545,7 @@ class TestConv2DTransposeAPI(unittest.TestCase):
padding='VALID',
data_format='NHWC',
)
out7 = fluid.layers.conv2d_transpose(
out7 = paddle.static.nn.conv2d_transpose(
input=data1,
groups=1,
num_filters=6,
......@@ -586,7 +586,7 @@ class TestConv2DTransposeOpException(unittest.TestCase):
data = fluid.layers.data(name='data', shape=[3, 5, 5], dtype="float32")
def attr_data_format():
out = fluid.layers.conv2d_transpose(
out = paddle.static.nn.conv2d_transpose(
input=data,
groups=1,
num_filters=6,
......@@ -597,7 +597,7 @@ class TestConv2DTransposeOpException(unittest.TestCase):
self.assertRaises(ValueError, attr_data_format)
def attr_padding_str():
out = fluid.layers.conv2d_transpose(
out = paddle.static.nn.conv2d_transpose(
input=data,
groups=1,
num_filters=6,
......@@ -608,7 +608,7 @@ class TestConv2DTransposeOpException(unittest.TestCase):
self.assertRaises(ValueError, attr_padding_str)
def attr_padding_list():
out = fluid.layers.conv2d_transpose(
out = paddle.static.nn.conv2d_transpose(
input=data,
groups=1,
num_filters=6,
......@@ -619,7 +619,7 @@ class TestConv2DTransposeOpException(unittest.TestCase):
self.assertRaises(ValueError, attr_padding_list)
def attr_padding_with_data_format():
out = fluid.layers.conv2d_transpose(
out = paddle.static.nn.conv2d_transpose(
input=data,
groups=1,
num_filters=6,
......@@ -635,14 +635,14 @@ class TestConv2DTransposeOpException(unittest.TestCase):
)
def error_input_size():
out = fluid.layers.conv2d_transpose(
out = paddle.static.nn.conv2d_transpose(
input=error_input, groups=1, num_filters=6, filter_size=3
)
self.assertRaises(ValueError, error_input_size)
def error_groups():
out = fluid.layers.conv2d_transpose(
out = paddle.static.nn.conv2d_transpose(
input=data,
groups=0,
num_filters=6,
......
......@@ -435,21 +435,21 @@ class TestConv2DTransposeAPI(unittest.TestCase):
data2 = fluid.layers.data(
name='data2', shape=[5, 5, 3], dtype='float32'
)
out1 = fluid.layers.conv2d_transpose(
out1 = paddle.static.nn.conv2d_transpose(
input=data1,
groups=1,
num_filters=6,
filter_size=3,
data_format='NCHW',
)
out2 = fluid.layers.conv2d_transpose(
out2 = paddle.static.nn.conv2d_transpose(
input=data2,
groups=1,
num_filters=6,
filter_size=3,
data_format='NHWC',
)
out3 = fluid.layers.conv2d_transpose(
out3 = paddle.static.nn.conv2d_transpose(
input=data1,
groups=1,
num_filters=6,
......@@ -457,7 +457,7 @@ class TestConv2DTransposeAPI(unittest.TestCase):
padding=[[0, 0], [1, 1], [1, 1], [0, 0]],
data_format='NHWC',
)
out4 = fluid.layers.conv2d_transpose(
out4 = paddle.static.nn.conv2d_transpose(
input=data1,
groups=3,
num_filters=6,
......@@ -465,7 +465,7 @@ class TestConv2DTransposeAPI(unittest.TestCase):
padding=[[0, 0], [0, 0], [2, 1], [0, 0]],
data_format='NCHW',
)
out5 = fluid.layers.conv2d_transpose(
out5 = paddle.static.nn.conv2d_transpose(
input=data2,
groups=1,
num_filters=6,
......@@ -473,7 +473,7 @@ class TestConv2DTransposeAPI(unittest.TestCase):
padding='SAME',
data_format='NCHW',
)
out6 = fluid.layers.conv2d_transpose(
out6 = paddle.static.nn.conv2d_transpose(
input=data1,
groups=1,
num_filters=6,
......@@ -481,7 +481,7 @@ class TestConv2DTransposeAPI(unittest.TestCase):
padding='VALID',
data_format='NHWC',
)
out7 = fluid.layers.conv2d_transpose(
out7 = paddle.static.nn.conv2d_transpose(
input=data1,
groups=1,
num_filters=6,
......
......@@ -13,6 +13,7 @@
# limitations under the License.
import numpy as np
import paddle
from paddle import fluid, nn
import paddle.fluid.dygraph as dg
import paddle.nn.functional as F
......@@ -104,7 +105,7 @@ class Conv2DTransposeTestCase(unittest.TestCase):
else:
bias_attr = I.NumpyArrayInitializer(self.bias)
y_var = fluid.layers.conv2d_transpose(
y_var = paddle.static.nn.conv2d_transpose(
x_var,
self.num_filters,
filter_size=self.filter_size,
......
......@@ -835,21 +835,21 @@ class TestConv2DTransposeAPI(unittest.TestCase):
data2 = fluid.layers.data(
name='data2', shape=[5, 5, 3], dtype='float32'
)
out1 = fluid.layers.conv2d_transpose(
out1 = paddle.static.nn.conv2d_transpose(
input=data1,
groups=1,
num_filters=6,
filter_size=3,
data_format='NCHW',
)
out2 = fluid.layers.conv2d_transpose(
out2 = paddle.static.nn.conv2d_transpose(
input=data2,
groups=1,
num_filters=6,
filter_size=3,
data_format='NHWC',
)
out3 = fluid.layers.conv2d_transpose(
out3 = paddle.static.nn.conv2d_transpose(
input=data1,
groups=1,
num_filters=6,
......@@ -857,7 +857,7 @@ class TestConv2DTransposeAPI(unittest.TestCase):
padding=[[0, 0], [1, 1], [1, 1], [0, 0]],
data_format='NHWC',
)
out4 = fluid.layers.conv2d_transpose(
out4 = paddle.static.nn.conv2d_transpose(
input=data1,
groups=3,
num_filters=6,
......@@ -865,7 +865,7 @@ class TestConv2DTransposeAPI(unittest.TestCase):
padding=[[0, 0], [0, 0], [2, 1], [0, 0]],
data_format='NCHW',
)
out5 = fluid.layers.conv2d_transpose(
out5 = paddle.static.nn.conv2d_transpose(
input=data2,
groups=1,
num_filters=6,
......@@ -873,7 +873,7 @@ class TestConv2DTransposeAPI(unittest.TestCase):
padding='SAME',
data_format='NCHW',
)
out6 = fluid.layers.conv2d_transpose(
out6 = paddle.static.nn.conv2d_transpose(
input=data1,
groups=1,
num_filters=6,
......@@ -881,7 +881,7 @@ class TestConv2DTransposeAPI(unittest.TestCase):
padding='VALID',
data_format='NHWC',
)
out7 = fluid.layers.conv2d_transpose(
out7 = paddle.static.nn.conv2d_transpose(
input=data1,
groups=1,
num_filters=6,
......@@ -919,7 +919,7 @@ class TestConv2DTransposeOpException(unittest.TestCase):
data = fluid.layers.data(name='data', shape=[3, 5, 5], dtype="float32")
def attr_data_format():
out = fluid.layers.conv2d_transpose(
out = paddle.static.nn.conv2d_transpose(
input=data,
groups=1,
num_filters=6,
......@@ -930,7 +930,7 @@ class TestConv2DTransposeOpException(unittest.TestCase):
self.assertRaises(ValueError, attr_data_format)
def attr_padding_str():
out = fluid.layers.conv2d_transpose(
out = paddle.static.nn.conv2d_transpose(
input=data,
groups=1,
num_filters=6,
......@@ -941,7 +941,7 @@ class TestConv2DTransposeOpException(unittest.TestCase):
self.assertRaises(ValueError, attr_padding_str)
def attr_padding_list():
out = fluid.layers.conv2d_transpose(
out = paddle.static.nn.conv2d_transpose(
input=data,
groups=1,
num_filters=6,
......@@ -952,7 +952,7 @@ class TestConv2DTransposeOpException(unittest.TestCase):
self.assertRaises(ValueError, attr_padding_list)
def attr_padding_with_data_format():
out = fluid.layers.conv2d_transpose(
out = paddle.static.nn.conv2d_transpose(
input=data,
groups=1,
num_filters=6,
......@@ -968,14 +968,14 @@ class TestConv2DTransposeOpException(unittest.TestCase):
)
def error_input_size():
out = fluid.layers.conv2d_transpose(
out = paddle.static.nn.conv2d_transpose(
input=error_input, groups=1, num_filters=6, filter_size=3
)
self.assertRaises(ValueError, error_input_size)
def error_groups():
out = fluid.layers.conv2d_transpose(
out = paddle.static.nn.conv2d_transpose(
input=data,
groups=0,
num_filters=6,
......@@ -1064,7 +1064,7 @@ class TestTensorOutputSize3(TestTensorOutputSize1):
def call_func(self, x):
w_var = paddle.randn((3, 6, 3, 3), dtype='float32')
output_size = paddle.assign([17])
out = paddle.fluid.layers.conv2d_transpose(
out = paddle.static.nn.conv2d_transpose(
x, num_filters=6, output_size=output_size, filter_size=3, stride=2
)
return out
......@@ -1076,7 +1076,7 @@ class TestTensorOutputSize4(TestTensorOutputSize1):
def call_func(self, x):
output_size = [17, paddle.assign([17])]
out = paddle.fluid.layers.conv2d_transpose(
out = paddle.static.nn.conv2d_transpose(
x, num_filters=6, output_size=output_size, filter_size=3, stride=2
)
return out
......
......@@ -13,6 +13,7 @@
# limitations under the License.
import numpy as np
import paddle
from paddle import fluid, nn
import paddle.fluid.dygraph as dg
import paddle.nn.functional as F
......@@ -101,7 +102,7 @@ class Conv3DTransposeTestCase(unittest.TestCase):
bias_attr = False
else:
bias_attr = I.NumpyArrayInitializer(self.bias)
y_var = fluid.layers.conv3d_transpose(
y_var = paddle.static.nn.conv3d_transpose(
x_var,
self.num_filters,
filter_size=self.filter_size,
......
......@@ -15,6 +15,7 @@
import unittest
import numpy as np
import paddle
import paddle.fluid.core as core
import paddle.fluid as fluid
from test_conv3d_transpose_op import TestConv3DTransposeOp
......@@ -91,21 +92,21 @@ class TestConv3DTransposeAPI(unittest.TestCase):
name='data2', shape=[5, 5, 5, 3], dtype='float32'
)
out1 = fluid.layers.conv3d_transpose(
out1 = paddle.static.nn.conv3d_transpose(
input=data1,
groups=1,
num_filters=6,
filter_size=3,
data_format='NCDHW',
)
out2 = fluid.layers.conv3d_transpose(
out2 = paddle.static.nn.conv3d_transpose(
input=data2,
groups=1,
num_filters=6,
filter_size=3,
data_format='NDHWC',
)
out3 = fluid.layers.conv3d_transpose(
out3 = paddle.static.nn.conv3d_transpose(
input=data1,
groups=1,
num_filters=6,
......@@ -113,7 +114,7 @@ class TestConv3DTransposeAPI(unittest.TestCase):
padding=[[0, 0], [0, 0], [1, 1], [0, 0], [1, 1]],
data_format='NCDHW',
)
out4 = fluid.layers.conv3d_transpose(
out4 = paddle.static.nn.conv3d_transpose(
input=data2,
groups=3,
num_filters=6,
......@@ -121,7 +122,7 @@ class TestConv3DTransposeAPI(unittest.TestCase):
padding=[[0, 0], [0, 0], [1, 1], [1, 2], [0, 0]],
data_format='NDHWC',
)
out5 = fluid.layers.conv3d_transpose(
out5 = paddle.static.nn.conv3d_transpose(
input=data2,
groups=1,
num_filters=6,
......@@ -129,7 +130,7 @@ class TestConv3DTransposeAPI(unittest.TestCase):
padding='SAME',
data_format='NCDHW',
)
out6 = fluid.layers.conv3d_transpose(
out6 = paddle.static.nn.conv3d_transpose(
input=data2,
groups=1,
num_filters=6,
......@@ -137,7 +138,7 @@ class TestConv3DTransposeAPI(unittest.TestCase):
padding='VALID',
data_format='NDHWC',
)
out7 = fluid.layers.conv3d_transpose(
out7 = paddle.static.nn.conv3d_transpose(
input=data2,
groups=1,
num_filters=6,
......@@ -177,7 +178,7 @@ class TestConv3DTransposeOpException(unittest.TestCase):
)
def attr_data_format():
out = fluid.layers.conv2d_transpose(
out = paddle.static.nn.conv2d_transpose(
input=data,
groups=1,
num_filters=6,
......@@ -188,7 +189,7 @@ class TestConv3DTransposeOpException(unittest.TestCase):
self.assertRaises(ValueError, attr_data_format)
def attr_padding_str():
out = fluid.layers.conv2d_transpose(
out = paddle.static.nn.conv2d_transpose(
input=data,
groups=1,
num_filters=6,
......@@ -199,7 +200,7 @@ class TestConv3DTransposeOpException(unittest.TestCase):
self.assertRaises(ValueError, attr_padding_str)
def attr_padding_list():
out = fluid.layers.conv2d_transpose(
out = paddle.static.nn.conv2d_transpose(
input=data,
groups=1,
num_filters=6,
......@@ -210,7 +211,7 @@ class TestConv3DTransposeOpException(unittest.TestCase):
self.assertRaises(ValueError, attr_padding_list)
def attr_padding_with_data_format():
out = fluid.layers.conv2d_transpose(
out = paddle.static.nn.conv2d_transpose(
input=data,
groups=1,
num_filters=6,
......
......@@ -36,7 +36,7 @@ class TestConvTransposeDoubleGradCheck(unittest.TestCase):
if core.is_compiled_with_rocm():
dtype = np.float32
x = layers.data('x', shape, False, dtype)
y = layers.conv2d_transpose(
y = paddle.static.nn.conv2d_transpose(
x, 2, filter_size=1, groups=1, bias_attr=False
)
x_arr = np.random.uniform(-1, 1, shape).astype(dtype)
......@@ -92,7 +92,7 @@ class TestConvTranspose2DoubleGradCheck_AsyPadding(
if core.is_compiled_with_rocm():
dtype = np.float32
x = layers.data('x', shape, False, dtype)
y = layers.conv2d_transpose(
y = paddle.static.nn.conv2d_transpose(
input=x,
num_filters=2,
filter_size=1,
......@@ -145,7 +145,7 @@ class TestConvTranspose2DoubleGradCheck_PaddingSAME(
if core.is_compiled_with_rocm():
dtype = np.float32
x = layers.data('x', shape, False, dtype)
y = layers.conv2d_transpose(
y = paddle.static.nn.conv2d_transpose(
input=x,
num_filters=2,
filter_size=1,
......@@ -198,7 +198,7 @@ class TestConvTranspose2DoubleGradCheck_PaddingVALID(
if core.is_compiled_with_rocm():
dtype = np.float32
x = layers.data('x', shape, False, dtype)
y = layers.conv2d_transpose(
y = paddle.static.nn.conv2d_transpose(
input=x,
num_filters=2,
filter_size=1,
......@@ -251,7 +251,7 @@ class TestConvTranspose2DoubleGradCheck_ChannelLast(
if core.is_compiled_with_rocm():
dtype = np.float32
x = layers.data('x', shape, False, dtype)
y = layers.conv2d_transpose(
y = paddle.static.nn.conv2d_transpose(
input=x,
num_filters=2,
filter_size=1,
......
......@@ -89,7 +89,7 @@ class TestFunctionalConv2D(TestCase):
(-1, self.in_channels, -1, -1),
dtype=self.dtype,
)
y = fluid.layers.conv2d_transpose(
y = paddle.static.nn.conv2d_transpose(
x,
self.out_channels,
output_size=self.output_size,
......
......@@ -89,7 +89,7 @@ class TestFunctionalConv3DTranspose(TestCase):
(-1, self.in_channels, -1, -1, -1),
dtype=self.dtype,
)
y = fluid.layers.conv3d_transpose(
y = paddle.static.nn.conv3d_transpose(
x,
self.out_channels,
output_size=self.output_size,
......@@ -550,7 +550,7 @@ class TestFunctionalConv3DTransposeErrorCase10(TestCase):
with fluid.unique_name.guard():
with fluid.program_guard(main, start):
x = fluid.data("input", self.input.shape, dtype=paddle.float32)
y = fluid.layers.conv3d_transpose(
y = paddle.static.nn.conv3d_transpose(
x,
self.num_filters,
self.filter_size,
......
......@@ -103,20 +103,20 @@ class TestDygraphLoadStatic(unittest.TestCase):
name="conv2d_trans_in", shape=[None, 10, 10, 10]
)
conv2d_trans_out_1 = fluid.layers.conv2d_transpose(
conv2d_trans_out_1 = paddle.static.nn.conv2d_transpose(
conv2d_trans_in, num_filters=10, filter_size=5, act="relu"
)
conv2d_trans_out_2 = fluid.layers.conv2d_transpose(
conv2d_trans_out_2 = paddle.static.nn.conv2d_transpose(
conv2d_trans_in, num_filters=10, filter_size=5, act="relu"
)
conv3d_trans_in = fluid.data(
name='conv3d_trans_in', shape=[None, 3, 12, 32, 32], dtype='float32'
)
conv3d_trans_out_1 = fluid.layers.conv3d_transpose(
conv3d_trans_out_1 = paddle.static.nn.conv3d_transpose(
input=conv3d_trans_in, num_filters=2, filter_size=3, act="relu"
)
conv3d_trans_out_2 = fluid.layers.conv3d_transpose(
conv3d_trans_out_2 = paddle.static.nn.conv3d_transpose(
input=conv3d_trans_in, num_filters=2, filter_size=3, act="relu"
)
......
......@@ -716,7 +716,7 @@ class TestLayer(LayerTest):
inp_np = np.arange(0, 24).reshape([2, 3, 2, 2]).astype('float32')
with self.static_graph():
img = layers.data(name='pixel', shape=[3, 2, 2], dtype='float32')
out = layers.conv2d_transpose(
out = paddle.static.nn.conv2d_transpose(
input=img,
num_filters=10,
filter_size=27,
......@@ -2270,7 +2270,7 @@ class TestLayer(LayerTest):
with self.static_graph():
img = layers.data(name='pixel', shape=[3, 2, 2, 2], dtype='float32')
out = layers.conv3d_transpose(
out = paddle.static.nn.conv3d_transpose(
input=img, num_filters=12, filter_size=12, use_cudnn=False
)
static_rlt = self.get_static_graph_result(
......@@ -3062,7 +3062,7 @@ class TestBook(LayerTest):
fluid.default_main_program(), fluid.default_startup_program()
):
img = self._get_data(name='pixel', shape=[3, 2, 2], dtype='float32')
return layers.conv2d_transpose(
return paddle.static.nn.conv2d_transpose(
input=img, num_filters=10, output_size=28
)
......
......@@ -14,15 +14,15 @@
from .common import fc # noqa: F401
from .common import deform_conv2d # noqa: F401
from .common import conv2d_transpose # noqa: F401
from .common import conv3d_transpose # noqa: F401
from ...fluid.layers import batch_norm # noqa: F401
from ...fluid.layers import bilinear_tensor_product # noqa: F401
from ...fluid.layers import case # noqa: F401
from ...fluid.layers import cond # noqa: F401
from ...fluid.layers import conv2d # noqa: F401
from ...fluid.layers import conv2d_transpose # noqa: F401
from ...fluid.layers import conv3d # noqa: F401
from ...fluid.layers import conv3d_transpose # noqa: F401
from ...fluid.layers import create_parameter # noqa: F401
from ...fluid.layers import crf_decoding # noqa: F401
from ...fluid.layers import data_norm # noqa: F401
......
......@@ -13,7 +13,9 @@
# limitations under the License.
import paddle
from paddle.fluid.framework import static_only
from paddle.fluid.framework import static_only, Variable, _non_static_mode
from paddle.fluid.data_feeder import check_dtype
from paddle.common_ops_import import (
check_type,
......@@ -174,6 +176,731 @@ def fc(
)
def conv2d_transpose(
input,
num_filters,
output_size=None,
filter_size=None,
padding=0,
stride=1,
dilation=1,
groups=None,
param_attr=None,
bias_attr=None,
use_cudnn=True,
act=None,
name=None,
data_format='NCHW',
):
r"""
:api_attr: Static Graph
The convolution2D transpose layer calculates the output based on the input,
filter, and dilations, strides, paddings. Input(Input) and output(Output)
are in NCHW or NHWC format. Where N is batch size, C is the number of channels,
H is the height of the feature, and W is the width of the feature.
Parameters(dilations, strides, paddings) are two elements. These two elements
represent height and width, respectively. The details of convolution transpose
layer, please refer to the following explanation and references
`therein <https://arxiv.org/pdf/1603.07285.pdf>`_.
If bias attribution and activation type are provided, bias is added to
the output of the convolution, and the corresponding activation function
is applied to the final result.
For each input :math:`X`, the equation is:
.. math::
Out = \sigma (W \\ast X + b)
Where:
* :math:`X`: Input value, a 4-D Tensor with NCHW or NHWC format.
* :math:`W`: Filter value, a 4-D Tensor with MCHW format.
* :math:`\\ast`: Convolution operation.
* :math:`b`: Bias value, a 2-D Tensor with shape [M, 1].
* :math:`\\sigma`: Activation function.
* :math:`Out`: Output value, a 4-D Tensor with data format 'NCHW' or 'NHWC', the shape of :math:`Out` and :math:`X` may be different.
Example:
- Input:
Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
Filter shape: :math:`(C_{in}, C_{out}, H_f, W_f)`
- Output:
Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
Where
.. math::
H^\prime_{out} &= (H_{in} - 1) * strides[0] - pad_height_top - pad_height_bottom + dilations[0] * (H_f - 1) + 1 \\\\
W^\prime_{out} &= (W_{in} - 1) * strides[1] - pad_width_left - pad_width_right + dilations[1] * (W_f - 1) + 1 \\\\
H_{out} &\in [ H^\prime_{out}, H^\prime_{out} + strides[0] ] \\\\
W_{out} &\in [ W^\prime_{out}, W^\prime_{out} + strides[1] ]
Note:
The conv2d_transpose can be seen as the backward of the conv2d. For conv2d,
when stride > 1, conv2d maps multiple input shape to the same output shape,
so for conv2d_transpose, when stride > 1, input shape maps multiple output shape.
If output_size is None, :math:`H_{out} = H^\prime_{out}, W_{out} = W^\prime_{out}`;
else, the :math:`H_{out}` of the output size must between :math:`H^\prime_{out}`
and :math:`H^\prime_{out} + strides[0]`, and the :math:`W_{out}` of the output size must
between :math:`W^\prime_{out}` and :math:`W^\prime_{out} + strides[1]`,
conv2d_transpose can compute the kernel size automatically.
Args:
input(Tensor): 4-D Tensor with [N, C, H, W] or [N, H, W, C] format,
its data type is float32 or float64.
num_filters(int): The number of the filter. It is as same as the output
image channel.
output_size(int|tuple, optional): The output image size. If output size is a
tuple, it must contain two integers, (image_height, image_width). None if use
filter_size, padding, and stride to calculate output_size.
If output_size and filter_size are specified at the same time, They
should follow the formula above. Default: None. output_size and filter_size
should not be None at the same time.
filter_size(int|tuple, optional): The filter size. If filter_size is a tuple,
it must contain two integers, (filter_size_height, filter_size_width).
Otherwise, filter_size_height = filter_size_width = filter_size. None if
use output size to calculate filter_size. Default: None. filter_size and
output_size should not be None at the same time.
stride(int|tuple, optional): The stride size. It means the stride in transposed convolution.
If stride is a tuple, it must contain two integers, (stride_height, stride_width).
Otherwise, stride_height = stride_width = stride. Default: stride = 1.
padding(str|int|list|tuple, optional): The padding size. It means the number of zero-paddings
on both sides for each dimension. If `padding` is a string, either 'VALID' or
'SAME' which is the padding algorithm. If `padding` is a tuple or list,
it could be in three forms: `[pad_height, pad_width]` or
`[pad_height_top, pad_height_bottom, pad_width_left, pad_width_right]`,
and when `data_format` is `"NCHW"`, `padding` can be in the form
`[[0,0], [0,0], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right]]`.
when `data_format` is `"NHWC"`, `padding` can be in the form
`[[0,0], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right], [0,0]]`.
Default: padding = 0.
dilation(int|tuple, optional): The dilation size. It means the spacing between the kernel points.
If dilation is a tuple, it must contain two integers, (dilation_height, dilation_width).
Otherwise, dilation_height = dilation_width = dilation. Default: dilation = 1.
filter_size(int|tuple, optional): The filter size. If filter_size is a tuple,
it must contain two integers, (filter_size_height, filter_size_width).
Otherwise, filter_size_height = filter_size_width = filter_size. None if
use output size to calculate filter_size. Default: None.
groups(int, optional): The groups number of the Conv2d transpose layer. Inspired by
grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
when group=2, the first half of the filters is only connected to the
first half of the input channels, while the second half of the
filters is only connected to the second half of the input channels.
Default: groups = 1.
param_attr (ParamAttr, optional): The parameter attribute for learnable parameters/weights
of conv2d_transpose. If it is set to None or one attribute of ParamAttr, conv2d_transpose
will create ParamAttr as param_attr. If the Initializer of the param_attr
is not set, the parameter is initialized with Xavier. Default: None.
bias_attr (ParamAttr|bool, optional): The parameter attribute for the bias of conv2d_transpose.
If it is set to False, no bias will be added to the output units.
If it is set to None or one attribute of ParamAttr, conv2d_transpose
will create ParamAttr as bias_attr. If the Initializer of the bias_attr
is not set, the bias is initialized zero. Default: None.
use_cudnn(bool, optional): Use cudnn kernel or not, it is valid only when the cudnn
library is installed. Default: True.
act (str, optional): Activation type, if it is set to None, activation is not appended.
Default: None.
name(str, optional): For detailed information, please refer
to :ref:`api_guide_Name`. Usually name is no need to set and
None by default.
data_format (str, optional): Specify the data format of the input, and the data format of the output
will be consistent with that of the input. An optional string from: `"NCHW"`, `"NHWC"`.
The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
`[batch_size, input_channels, input_height, input_width]`.
Returns:
A Tensor representing the conv2d_transpose, whose
data type is the same with input and shape is (num_batches, channels, out_h,
out_w) or (num_batches, out_h, out_w, channels). If act is None, the tensor
storing the transposed convolution result, and if act is not None, the
tensor storing transposed convolution and non-linearity activation
result.
Raises:
ValueError: If the type of `use_cudnn` is not bool.
ValueError: If `data_format` is not "NCHW" or "NHWC".
ValueError: If `padding` is a string, but not "SAME" or "VALID".
ValueError: If `padding` is a tuple, but the element corresponding to the input's batch size is not 0
or the element corresponding to the input's channel is not 0.
ValueError: If `output_size` and filter_size are None at the same time.
ShapeError: If the input is not 4-D Tensor.
ShapeError: If the input's dimension size and filter's dimension size not equal.
ShapeError: If the dimension size of input minus the size of `stride` is not 2.
ShapeError: If the number of input channels is not equal to filter's channels.
ShapeError: If the size of `output_size` is not equal to that of `stride`.
Examples:
.. code-block:: python
import paddle
paddle.enable_static()
data = paddle.static.data(name='data', shape=[None, 3, 32, 32], dtype='float32')
conv2d_transpose = paddle.static.nn.conv2d_transpose(input=data, num_filters=2, filter_size=3)
print(conv2d_transpose.shape) # [-1, 2, 34, 34]
"""
assert (
param_attr is not False
), "param_attr should not be False in conv2d_transpose."
if len(input.shape) != 4:
raise ValueError(
"Input size should be 4, "
"but received {}".format(len(input.shape))
)
if data_format not in ['NCHW', 'NHWC']:
raise ValueError(
"Attr(data_format) of Op(paddle.static.nn.layers.conv2d_transpose) got wrong value: received "
+ data_format
+ " but only NCHW or NHWC supported."
)
input_channel = input.shape[1] if data_format == 'NCHW' else input.shape[-1]
op_type = 'conv2d_transpose'
if (
input_channel == groups
and num_filters == input_channel
and not use_cudnn
):
op_type = 'depthwise_conv2d_transpose'
helper = LayerHelper(op_type, **locals())
if not isinstance(input, Variable):
raise TypeError("Input of conv2d_transpose must be Variable")
stride = utils.convert_to_list(stride, 2, 'stride')
dilation = utils.convert_to_list(dilation, 2, 'dilation')
if not isinstance(use_cudnn, bool):
raise ValueError("use_cudnn should be True or False")
def _update_padding(padding, data_format):
def is_list_or_tuple(ele):
if isinstance(ele, list) or isinstance(ele, tuple):
return True
return False
if is_list_or_tuple(padding) and len(padding) == 4:
if is_list_or_tuple(padding[0]) and (data_format == "NCHW"):
if not (padding[0] == [0, 0] and padding[1] == [0, 0]):
raise ValueError(
"Non-zero padding(%s) in the batch or channel dimensions "
"is not supported." % str(padding)
)
padding = padding[2:4]
padding = [ele for a_list in padding for ele in a_list]
elif is_list_or_tuple(padding[0]) and (data_format == "NHWC"):
if not (padding[0] == [0, 0] and padding[3] == [0, 0]):
raise ValueError(
"Non-zero padding(%s) in the batch or channel dimensions "
"is not supported." % str(padding)
)
padding = padding[1:3]
padding = [ele for a_list in padding for ele in a_list]
padding = utils.convert_to_list(padding, 4, 'padding')
else:
padding = utils.convert_to_list(padding, 2, 'padding')
padding = [padding[0], padding[0], padding[1], padding[1]]
return padding
padding_algorithm = "EXPLICIT"
if isinstance(padding, str):
padding = padding.upper()
if padding not in ["SAME", "VALID"]:
raise ValueError(
"Unknown padding: '%s'. It can only be 'SAME' or 'VALID'."
% str(padding)
)
if padding == "VALID":
padding_algorithm = "VALID"
padding = [0, 0, 0, 0]
elif padding == "SAME":
padding_algorithm = "SAME"
padding = [0, 0, 0, 0]
padding = _update_padding(padding, data_format)
if output_size is None:
output_size = []
elif isinstance(output_size, (list, tuple)):
if utils._contain_var(output_size):
output_size = utils._convert_to_tensor_list(output_size)
else:
output_size = utils.convert_to_list(output_size, 2, 'output_size')
elif isinstance(output_size, int):
output_size = utils.convert_to_list(output_size, 2, 'output_size')
elif isinstance(output_size, Variable):
check_dtype(
output_size.dtype,
'output_size',
['int32', 'int64'],
'conv2d_transpose',
)
if len(output_size.shape) == 1 and (
output_size.shape[0] == 1 or output_size.shape[0] == 2
):
if output_size.shape[0] == 1:
output_size = [output_size, output_size]
else:
raise ValueError("output_size must contain one or two integers.")
else:
raise ValueError(
"output_size should be int, list[int] or tuple[int] or Tensor"
)
if filter_size is None:
if output_size is []:
raise ValueError("output_size must be set when filter_size is None")
if not _non_static_mode():
if isinstance(output_size, Variable) or utils._contain_var(
output_size
):
raise ValueError(
"filter_size should not be None when output_size is Variable or contain Variable in static mode."
)
else:
output_size = utils.convert_shape_to_list(output_size)
if len(output_size) == 1:
output_size = utils.convert_to_list(
output_size[0], 2, 'output_size'
)
h_in = input.shape[2] if data_format == 'NCHW' else input.shape[1]
w_in = input.shape[3] if data_format == 'NCHW' else input.shape[2]
filter_size_h = (
output_size[0]
- (h_in - 1) * stride[0]
+ padding[0]
+ padding[1]
- 1
) // dilation[0] + 1
filter_size_w = (
output_size[1]
- (w_in - 1) * stride[1]
+ padding[2]
+ padding[3]
- 1
) // dilation[1] + 1
filter_size = [filter_size_h, filter_size_w]
else:
filter_size = utils.convert_to_list(
filter_size, 2, 'conv2d_transpose.filter_size'
)
if len(padding) == 4 and utils._is_symmetric_padding(padding, 2):
padding = [padding[0], padding[2]]
if groups is None:
groups = 1
elif groups <= 0:
raise ValueError(
"the groups of input must be greater than 0, "
"but received the groups of input is {}".format(groups)
)
filter_shape = [input_channel, num_filters // groups] + filter_size
img_filter = helper.create_parameter(
dtype=input.dtype, shape=filter_shape, attr=helper.param_attr
)
pre_bias = helper.create_variable_for_type_inference(dtype=input.dtype)
helper.append_op(
type=op_type,
inputs={'Input': [input], 'Filter': [img_filter]},
outputs={'Output': pre_bias},
attrs={
'output_size': output_size,
'strides': stride,
'paddings': padding,
'padding_algorithm': padding_algorithm,
'dilations': dilation,
'groups': groups,
'use_cudnn': use_cudnn,
'data_format': data_format,
},
)
if data_format == 'NCHW':
pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
else:
pre_act = helper.append_bias_op(pre_bias, dim_start=3, dim_end=4)
out = helper.append_activation(pre_act)
return out
def conv3d_transpose(
input,
num_filters,
output_size=None,
filter_size=None,
padding=0,
stride=1,
dilation=1,
groups=None,
param_attr=None,
bias_attr=None,
use_cudnn=True,
act=None,
name=None,
data_format='NCDHW',
):
r"""
:api_attr: Static Graph
The convolution3D transpose layer calculates the output based on the input,
filter, and dilations, strides, paddings. Input(Input) and output(Output)
are in NCDHW or NDHWC format. Where N is batch size, C is the number of channels,
D is the depth of the feature, H is the height of the feature, and W
is the width of the feature. Parameters(dilations, strides, paddings) are
two elements. These two elements represent height and width, respectively.
The details of convolution transpose layer, please refer to the following
explanation and references `therein <https://arxiv.org/pdf/1603.07285.pdf>`_.
If bias attribution and activation type are provided, bias is added to
the output of the convolution, and the corresponding activation function
is applied to the final result.
For each input :math:`X`, the equation is:
.. math::
Out = \sigma (W \ast X + b)
In the above equation:
* :math:`X`: Input value, a Tensor with NCDHW or NDHWC format.
* :math:`W`: Filter value, a Tensor with MCDHW format.
* :math:`\ast`: Convolution operation.
* :math:`b`: Bias value, a 2-D Tensor with shape [M, 1].
* :math:`\sigma`: Activation function.
* :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Example:
- Input:
Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`
Filter shape: :math:`(C_{in}, C_{out}, D_f, H_f, W_f)`
- Output:
Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`
Where
.. math::
D^\prime_{out} &= (D_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (D_f - 1) + 1 \\\\
H^\prime_{out} &= (H_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (H_f - 1) + 1 \\\\
W^\prime_{out} &= (W_{in} - 1) * strides[2] - 2 * paddings[2] + dilations[2] * (W_f - 1) + 1 \\\\
D_{out} &\in [ D^\prime_{out}, D^\prime_{out} + strides[0] ] \\\\
H_{out} &\in [ H^\prime_{out}, H^\prime_{out} + strides[1] ] \\\\
W_{out} &\in [ W^\prime_{out}, W^\prime_{out} + strides[2] ]
Note:
The conv3d_transpose can be seen as the backward of the conv3d. For conv3d,
when stride > 1, conv3d maps multiple input shape to the same output shape,
so for conv3d_transpose, when stride > 1, input shape maps multiple output shape.
If output_size is None, :math:`H_{out} = H^\prime_{out}, :math:`H_{out} = \
H^\prime_{out}, W_{out} = W^\prime_{out}`; else, the :math:`D_{out}` of the output
size must between :math:`D^\prime_{out}` and :math:`D^\prime_{out} + strides[0]`,
the :math:`H_{out}` of the output size must between :math:`H^\prime_{out}`
and :math:`H^\prime_{out} + strides[1]`, and the :math:`W_{out}` of the output size must
between :math:`W^\prime_{out}` and :math:`W^\prime_{out} + strides[2]`,
conv3d_transpose can compute the kernel size automatically.
Args:
input(Tensor): The input is 5-D Tensor with shape [N, C, D, H, W] or [N, D, H, W, C], the data type
of input is float32 or float64.
num_filters(int): The number of the filter. It is as same as the output
image channel.
output_size(int|tuple, optional): The output image size. If output size is a
tuple, it must contain three integers, (image_depth, image_height, image_width). This
parameter only works when filter_size is None. If output_size and filter_size are
specified at the same time, They should follow the formula above. Default: None.
Output_size and filter_size should not be None at the same time.
filter_size(int|tuple, optional): The filter size. If filter_size is a tuple,
it must contain three integers, (filter_size_depth, filter_size_height,
filter_size_width). Otherwise, filter_size_depth = filter_size_height = \
filter_size_width = filter_size. None if use output size to
calculate filter_size. Default: None. filter_size and output_size should not be
None at the same time.
padding(int|list|str|tuple, optional): The padding size. The padding argument effectively
adds `dilation * (kernel - 1)` amount of zero-padding on both sides of input. If `padding` is a string,
either 'VALID' or 'SAME' supported, which is the padding algorithm. If `padding`
is a tuple or list, it could be in three forms: `[pad_depth, pad_height, pad_width]` or
`[pad_depth_front, pad_depth_back, pad_height_top, pad_height_bottom, pad_width_left, pad_width_right]`,
and when `data_format` is `'NCDHW'`, `padding` can be in the form
`[[0,0], [0,0], [pad_depth_front, pad_depth_back], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right]]`.
when `data_format` is `'NDHWC'`, `padding` can be in the form
`[[0,0], [pad_depth_front, pad_depth_back], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right], [0,0]]`.
Default: padding = 0.
stride(int|tuple, optional): The stride size. It means the stride in transposed convolution.
If stride is a tuple, it must contain three integers, (stride_depth, stride_height,
stride_width). Otherwise, stride_depth = stride_height = stride_width = stride.
Default: stride = 1.
dilation(int|tuple, optional): The dilation size. It means the spacing between the kernel points.
If dilation is a tuple, it must contain three integers, (dilation_depth, dilation_height,
dilation_width). Otherwise, dilation_depth = dilation_height = dilation_width = dilation.
Default: dilation = 1.
groups(int, optional): The groups number of the Conv3d transpose layer. Inspired by
grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
when group=2, the first half of the filters is only connected to the
first half of the input channels, while the second half of the
filters is only connected to the second half of the input channels.
Default: groups=1
param_attr (ParamAttr, optional): The parameter attribute for learnable parameters/weights
of conv3d_transpose. If it is set to None or one attribute of ParamAttr, conv3d_transpose
will create ParamAttr as param_attr. If the Initializer of the param_attr
is not set, the parameter is initialized with Xavier. Default: None.
bias_attr (ParamAttr|bool, optional): The parameter attribute for the bias of conv3d_transpose.
If it is set to False, no bias will be added to the output units.
If it is set to None or one attribute of ParamAttr, conv3d_transpose
will create ParamAttr as bias_attr. If the Initializer of the bias_attr
is not set, the bias is initialized zero. Default: None.
use_cudnn(bool, optional): Use cudnn kernel or not, it is valid only when the cudnn
library is installed. Default: True
act (str, optional): Activation type, if it is set to None, activation is not appended.
Default: None.
name(str, optional): For detailed information, please refer
to :ref:`api_guide_Name`. Usually name is no need to set and
None by default.
data_format (str, optional): Specify the data format of the input, and the data format of the output
will be consistent with that of the input. An optional string from: `"NCHW"`, `"NHWC"`.
The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
`[batch_size, input_channels, input_height, input_width]`.
Returns:
A Variable holding Tensor representing the conv3d_transpose, whose data
type is the same with input and shape is (num_batches, channels, out_d, out_h,
out_w) or (num_batches, out_d, out_h, out_w, channels). If act is None, the tensor
variable storing the transposed convolution result, and if act is not None, the tensor
variable storing transposed convolution and non-linearity activation result.
Raises:
ValueError: If the type of `use_cudnn` is not bool.
ValueError: If `data_format` is not "NCDHW" or "NDHWC".
ValueError: If `padding` is a string, but not "SAME" or "VALID".
ValueError: If `padding` is a tuple, but the element corresponding to the input's batch size is not 0
or the element corresponding to the input's channel is not 0.
ValueError: If `output_size` and filter_size are None at the same time.
ShapeError: If the input is not 5-D Tensor.
ShapeError: If the input's dimension size and filter's dimension size not equal.
ShapeError: If the dimension size of input minus the size of `stride` is not 2.
ShapeError: If the number of input channels is not equal to filter's channels.
ShapeError: If the size of `output_size` is not equal to that of `stride`.
Examples:
.. code-block:: python
import paddle
import numpy as np
paddle.enable_static()
data = paddle.static.data(name='data', shape=[None, 3, 12, 32, 32], dtype='float32')
param_attr = paddle.framework.ParamAttr(name='conv3d.weight', initializer=paddle.nn.initializer.XavierNormal(), learning_rate=0.001)
res = paddle.static.nn.conv3d_transpose(input=data, num_filters=2, filter_size=3, act="relu", param_attr=param_attr)
place = paddle.CPUPlace()
exe = paddle.static.Executor(place)
exe.run(paddle.static.default_startup_program())
x = np.random.rand(1, 3, 12, 32, 32).astype("float32")
output = exe.run(feed={"data": x}, fetch_list=[res])
print(output)
"""
assert (
param_attr is not False
), "param_attr should not be False in conv3d_transpose."
if data_format not in ['NCDHW', 'NDHWC']:
raise ValueError(
"Param(data_format) of Op(paddle.static.nn.conv3d_transpose) got wrong value: received "
+ data_format
+ " but only NCDHW or NDHWC supported."
)
l_type = "conv3d_transpose"
helper = LayerHelper(l_type, **locals())
if not isinstance(input, Variable):
raise TypeError("Input of conv3d_transpose must be Variable")
if len(input.shape) != 5:
raise ValueError(
"Input should be 5D tensor, but received input with the shape of {}".format(
input.shape
)
)
input_channel = (
input.shape[1] if data_format == 'NCDHW' else input.shape[-1]
)
stride = utils.convert_to_list(stride, 3, 'stride')
dilation = utils.convert_to_list(dilation, 3, 'dilation')
if not isinstance(use_cudnn, bool):
raise ValueError("use_cudnn should be True or False")
def _update_padding(padding, data_format):
def is_list_or_tuple(ele):
if isinstance(ele, list) or isinstance(ele, tuple):
return True
return False
if is_list_or_tuple(padding) and len(padding) == 5:
if is_list_or_tuple(padding[0]) and (data_format == "NCDHW"):
if not (padding[0] == [0, 0] and padding[1] == [0, 0]):
raise ValueError(
"Non-zero padding(%s) in the batch or channel dimensions "
"is not supported." % str(padding)
)
padding = padding[2:5]
padding = [ele for a_list in padding for ele in a_list]
elif is_list_or_tuple(padding[0]) and (data_format == "NDHWC"):
if not (padding[0] == [0, 0] and padding[4] == [0, 0]):
raise ValueError(
"Non-zero padding(%s) in the batch or channel dimensions "
"is not supported." % str(padding)
)
padding = padding[1:4]
padding = [ele for a_list in padding for ele in a_list]
padding = utils.convert_to_list(padding, 6, 'padding')
elif is_list_or_tuple(padding) and len(padding) == 6:
padding = utils.convert_to_list(padding, 6, 'padding')
else:
padding = utils.convert_to_list(padding, 3, 'padding')
padding = [
padding[0],
padding[0],
padding[1],
padding[1],
padding[2],
padding[2],
]
return padding
padding_algorithm = "EXPLICIT"
if isinstance(padding, str):
padding = padding.upper()
if padding not in ["SAME", "VALID"]:
raise ValueError(
"Unknown padding: '%s'. It can only be 'SAME' or 'VALID'."
% str(padding)
)
if padding == "VALID":
padding_algorithm = "VALID"
padding = [0, 0, 0, 0, 0, 0]
elif padding == "SAME":
padding_algorithm = "SAME"
padding = [0, 0, 0, 0, 0, 0]
padding = _update_padding(padding, data_format)
if filter_size is None:
if output_size is None:
raise ValueError("output_size must be set when filter_size is None")
if isinstance(output_size, int):
output_size = [output_size, output_size, output_size]
d_in = input.shape[2] if data_format == 'NCDHW' else input.shape[1]
h_in = input.shape[3] if data_format == 'NCDHW' else input.shape[2]
w_in = input.shape[4] if data_format == 'NCDHW' else input.shape[3]
filter_size_d = (
output_size[0]
- (d_in - 1) * stride[0]
+ padding[0]
+ padding[1]
- 1
) // dilation[0] + 1
filter_size_h = (
output_size[1]
- (h_in - 1) * stride[1]
+ padding[2]
+ padding[3]
- 1
) // dilation[1] + 1
filter_size_w = (
output_size[2]
- (w_in - 1) * stride[2]
+ padding[4]
+ padding[5]
- 1
) // dilation[2] + 1
filter_size = [filter_size_d, filter_size_h, filter_size_w]
else:
filter_size = utils.convert_to_list(
filter_size, 3, 'conv3d_transpose.filter_size'
)
if len(padding) == 6 and utils._is_symmetric_padding(padding, 3):
padding = [padding[0], padding[2], padding[4]]
if output_size is None:
output_size = []
elif isinstance(output_size, (list, tuple, int)):
output_size = utils.convert_to_list(output_size, 3, 'output_size')
else:
raise ValueError("output_size should be int, list[int] or tuple[int]")
groups = 1 if groups is None else groups
if groups <= 0:
raise ValueError(
"the groups of conv3d_transpose should be greater than 0. Received groups: {}".format(
groups
)
)
if num_filters % groups != 0:
raise ValueError(
"Attr(num_filters) must be divisible by groups,"
"Received: Attr(num_filters) is {}, the groups is {}".format(
num_filters, groups
)
)
filter_shape = [input_channel, num_filters // groups] + filter_size
img_filter = helper.create_parameter(
dtype=input.dtype, shape=filter_shape, attr=helper.param_attr
)
if data_format == 'NCDHW':
data_format = 'NCHW'
if data_format == 'NDHWC':
data_format = 'NHWC'
pre_bias = helper.create_variable_for_type_inference(dtype=input.dtype)
helper.append_op(
type=l_type,
inputs={'Input': [input], 'Filter': [img_filter]},
outputs={'Output': pre_bias},
attrs={
'output_size': output_size,
'strides': stride,
'paddings': padding,
'padding_algorithm': padding_algorithm,
'dilations': dilation,
'groups': groups,
'use_cudnn': use_cudnn,
'data_format': data_format,
},
)
if data_format == 'NCHW':
pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
else:
pre_act = helper.append_bias_op(pre_bias, dim_start=4, dim_end=5)
out = helper.append_activation(pre_act)
return out
def deformable_conv(
input,
offset,
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册