未验证 提交 96331f74 编写于 作者: L LielinJiang 提交者: GitHub

fix conv1d padding (#26921)

上级 95e1434b
......@@ -44,7 +44,7 @@ class Conv1dTestCase(unittest.TestCase):
self.spartial_shape = spartial_shape
self.filter_size = filter_size
self.data_format = data_format
self.channel_last = (self.data_format == "NHWC")
self.channel_last = (self.data_format == "NLC")
self.padding = padding
self.padding_mode = padding_mode
......@@ -147,6 +147,14 @@ class Conv1dErrorTestCase(Conv1dTestCase):
self.paddle_nn_layer()
class Conv1dTypeErrorTestCase(Conv1dTestCase):
def runTest(self):
place = fluid.CPUPlace()
with dg.guard(place):
with self.assertRaises(TypeError):
self.paddle_nn_layer()
def add_cases(suite):
suite.addTest(Conv1dTestCase(methodName='runTest'))
suite.addTest(Conv1dTestCase(methodName='runTest', stride=[1], dilation=2))
......@@ -161,6 +169,7 @@ def add_cases(suite):
Conv1dTestCase(
methodName='runTest', padding=2, data_format='NLC'))
suite.addTest(Conv1dTestCase(methodName='runTest', padding=[1]))
suite.addTest(Conv1dTestCase(methodName='runTest', padding=[1, 2]))
suite.addTest(Conv1dTestCase(methodName='runTest', padding=2))
suite.addTest(Conv1dTestCase(methodName='runTest'))
suite.addTest(
......@@ -178,7 +187,7 @@ def add_cases(suite):
def add_error_cases(suite):
suite.addTest(
Conv1dErrorTestCase(
Conv1dTypeErrorTestCase(
methodName='runTest', padding_mode="reflect", padding="valid"))
suite.addTest(
Conv1dErrorTestCase(
......
......@@ -201,6 +201,7 @@ def add_cases(suite):
ConvTranspose1dTestCase(
methodName='runTest', data_format="NLC", stride=3,
output_padding=2))
suite.addTest(ConvTranspose1dTestCase(methodName='runTest', padding=[1, 2]))
def add_error_cases(suite):
......
......@@ -232,7 +232,7 @@ def conv1d(x,
raise ValueError("Attr(data_format) should be 'NCL' or 'NLC'. "
"Received Attr(data_format): {}.".format(data_format))
channel_last = (data_format == "NHWC")
channel_last = (data_format == "NLC")
channel_dim = -1 if channel_last else 1
conv2d_data_format = "NHWC" if channel_last else "NCHW"
num_channels = x.shape[channel_dim]
......@@ -399,7 +399,7 @@ def conv2d(x,
`[pad_height_top, pad_height_bottom, pad_width_left, pad_width_right]`, and when
`data_format` is `"NCHW"`, `padding` can be in the form `[[0,0], [0,0],
[pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right]]`.
when `data_format` is `"NHWC"`, `pool_padding` can be in the form
when `data_format` is `"NHWC"`, `padding` can be in the form
`[[0,0], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right], [0,0]]`.
Default: padding = 0.
dilation (int|tuple): The dilation size. It means the spacing between the kernel
......@@ -733,20 +733,31 @@ def conv_transpose1d(x,
stride = utils.convert_to_list(stride, 1, 'stride') + [1]
dilation = utils.convert_to_list(dilation, 1, 'dilation') + [1]
output_padding = utils.convert_to_list(output_padding, 1,
'output_padding') + [0]
if output_padding[0] > stride[0]:
raise ValueError(
"The size of output_padding should not be greater than stride."
"But got output_padding={} and stride={}".format(output_padding[0],
stride[0]))
if output_size is None:
output_size = []
elif isinstance(output_size, (list, tuple, int)):
output_size = utils.convert_to_list(output_size, 1, 'output_size') + [1]
else:
raise ValueError("output_size should be int, or list, tuple of ints")
if output_padding != 0:
raise ValueError('output_padding option is mutually exclusive with '
'output_size')
if isinstance(output_size, (list, tuple, int)):
output_size = utils.convert_to_list(output_size, 1,
'output_size') + [1]
else:
raise ValueError(
"output_size should be int, or list, tuple of ints")
if output_padding == 0:
output_padding = []
else:
output_padding = utils.convert_to_list(output_padding, 1,
'output_padding') + [0]
if len(output_padding) > 0 and output_padding[0] > stride[0]:
raise ValueError(
"The size of output_padding should not be greater than stride."
"But got output_padding={} and stride={}".format(output_padding[0],
stride[0]))
op_type = 'conv2d_transpose'
num_filters = weight.shape[1]
......@@ -761,16 +772,17 @@ def conv_transpose1d(x,
weight = nn.unsqueeze(input=weight, axes=[-1])
if in_dygraph_mode():
attrs = ('output_size', output_size, 'strides', stride, 'paddings',
padding, 'padding_algorithm', padding_algorithm, 'dilations',
dilation, 'groups', groups, 'use_cudnn', use_cudnn,
'data_format', conv2d_data_format)
attrs = ('output_padding', output_padding, 'output_size', output_size,
'strides', stride, 'paddings', padding, 'padding_algorithm',
padding_algorithm, 'dilations', dilation, 'groups', groups,
'use_cudnn', use_cudnn, 'data_format', conv2d_data_format)
out = getattr(core.ops, op_type)(x, weight, *attrs)
if bias is not None:
out = nn.elementwise_add(out, bias, axis=channel_dim)
else:
inputs = {'Input': [x], 'Filter': [weight]}
attrs = {
'output_padding': output_padding,
'output_size': output_size,
'strides': stride,
'paddings': padding,
......@@ -791,12 +803,6 @@ def conv_transpose1d(x,
if bias is not None:
out = nn.elementwise_add(out, bias, axis=channel_dim)
if output_size is None:
out = pad2d(
out,
padding=[0, output_padding, 0, 0],
data_format=conv2d_data_format,
name=name)
out = nn.squeeze(input=out, axes=[squeeze_axis])
return out
......@@ -888,9 +894,9 @@ def conv_transpose2d(x,
'SAME' which is the padding algorithm. If padding size is a tuple or list,
it could be in three forms: `[pad_height, pad_width]` or
`[pad_height_top, pad_height_bottom, pad_width_left, pad_width_right]`,
and when `data_format` is `"NCHW"`, `pool_padding` can be in the form
and when `data_format` is `"NCHW"`, `padding` can be in the form
`[[0,0], [0,0], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right]]`.
when `data_format` is `"NHWC"`, `pool_padding` can be in the form
when `data_format` is `"NHWC"`, `padding` can be in the form
`[[0,0], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right], [0,0]]`.
Default: padding = 0.
output_padding(int|list|tuple, optional): Additional size added to one side
......@@ -1116,9 +1122,9 @@ def conv3d(x,
'SAME' which is the padding algorithm. If padding size is a tuple or list,
it could be in three forms: `[pad_depth, pad_height, pad_width]` or
`[pad_depth_front, pad_depth_back, pad_height_top, pad_height_bottom, pad_width_left, pad_width_right]`,
and when `data_format` is `"NCDHW"`, `pool_padding` can be in the form
and when `data_format` is `"NCDHW"`, `padding` can be in the form
`[[0,0], [0,0], [pad_depth_front, pad_depth_back], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right]]`.
when `data_format` is `"NDHWC"`, `pool_padding` can be in the form
when `data_format` is `"NDHWC"`, `padding` can be in the form
`[[0,0], [pad_depth_front, pad_depth_back], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right], [0,0]]`.
Default: padding = 0.
dilation (int|tuple): The dilation size. It means the spacing between the kernel points.
......@@ -1340,9 +1346,9 @@ def conv_transpose3d(x,
'SAME' which is the padding algorithm. If padding size is a tuple or list,
it could be in three forms: `[pad_depth, pad_height, pad_width]` or
`[pad_depth_front, pad_depth_back, pad_height_top, pad_height_bottom, pad_width_left, pad_width_right]`,
and when `data_format` is `"NCDHW"`, `pool_padding` can be in the form
and when `data_format` is `"NCDHW"`, `padding` can be in the form
`[[0,0], [0,0], [pad_depth_front, pad_depth_back], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right]]`.
when `data_format` is `"NDHWC"`, `pool_padding` can be in the form
when `data_format` is `"NDHWC"`, `padding` can be in the form
`[[0,0], [pad_depth_front, pad_depth_back], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right], [0,0]]`.
Default: padding = 0.
output_padding(int|list|tuple, optional): Additional size added to one side
......
......@@ -113,7 +113,7 @@ class _ConvNd(layers.Layer):
attr=self._bias_attr, shape=[self._out_channels], is_bias=True)
class Conv1d(layers.Layer):
class Conv1d(_ConvNd):
"""
This interface is used to construct a callable object of the ``Conv1d`` class.
For more details, refer to code examples.
......@@ -172,8 +172,7 @@ class Conv1d(layers.Layer):
When in 'replicate' mode, uses input boundaries to pad the input tensor.
When in 'circular' mode, uses circular input to pad the input tensor.
Default is 'zeros'.
bias(bool, optional): Whether to use bias. Default: True.
param_attr (ParamAttr, optional): The parameter attribute for learnable weights(Parameter)
weight_attr (ParamAttr, optional): The parameter attribute for learnable weights(Parameter)
of conv1d. If it is set to None or one attribute of ParamAttr, conv1d
will create ParamAttr as param_attr. If the Initializer of the param_attr
is not set, the parameter is initialized with :math:`Normal(0.0, std)`,
......@@ -218,196 +217,6 @@ class Conv1d(layers.Layer):
# [160. 211.]]]
"""
def __init__(self,
in_channels,
out_channels,
kernel_size,
stride=1,
padding=0,
dilation=1,
groups=1,
padding_mode='zeros',
bias=True,
weight_attr=None,
bias_attr=None,
data_format="NCL",
name=None):
super(Conv1d, self).__init__()
assert weight_attr is not False, "param_attr should not be False here."
self._in_channels = in_channels
self._out_channels = out_channels
self._groups = groups
if in_channels % groups != 0:
raise ValueError("in_channels must be divisible by groups.")
self._kernel_size = utils.convert_to_list(kernel_size, 1, 'kernel_size')
self._stride = utils.convert_to_list(stride, 1, 'stride')
self._dilation = utils.convert_to_list(dilation, 1, 'dilation')
self._padding = padding # leave it to F.conv1d
self._weight_attr = weight_attr
self._bias_attr = bias_attr
self._data_format = data_format
self._name = name
self._padding_mode = padding_mode
valid_padding_modes = {'zeros', 'reflect', 'replicate', 'circular'}
if padding_mode not in valid_padding_modes:
raise ValueError(
"padding_mode must be one of {}, but got padding_mode='{}'".
format(valid_padding_modes, padding_mode))
if padding_mode in {'reflect', 'replicate', 'circular'
} and not isinstance(padding, np.int):
raise ValueError(
"when padding_mode in ['reflect', 'replicate', 'circular'], type of padding must be int"
)
if not isinstance(padding, str):
self._padding = utils.convert_to_list(padding, 1, 'padding') * 2
num_filter_channels = in_channels // groups
filter_shape = [self._out_channels, num_filter_channels
] + self._kernel_size
self.weight = self.create_parameter(
attr=self._weight_attr,
shape=filter_shape,
default_initializer=_get_default_param_initializer(
self._in_channels, filter_shape))
self.bias = self.create_parameter(
attr=self._bias_attr, shape=[self._out_channels],
is_bias=True) if bias else None
def forward(self, x):
padding = 0
if self._padding_mode != "zeros":
x = F.pad(x,
self._padding,
mode=self._padding_mode,
data_format=self._data_format)
else:
padding = self._padding
out = F.conv1d(
x,
self.weight,
bias=self.bias,
padding=padding,
stride=self._stride,
dilation=self._dilation,
groups=self._groups,
data_format=self._data_format,
name=self._name)
return out
class Conv2d(_ConvNd):
"""
This interface is used to construct a callable object of the ``Conv2d`` class.
For more details, refer to code examples.
The convolution2D layer calculates the output based on the input, filter
and strides, paddings, dilations, groups parameters. Input and
Output are in NCHW format, where N is batch size, C is the number of
the feature map, H is the height of the feature map, and W is the width of the feature map.
Filter's shape is [MCHW] , where M is the number of output feature map,
C is the number of input feature map, H is the height of the filter,
and W is the width of the filter. If the groups is greater than 1,
C will equal the number of input feature map divided by the groups.
Please refer to UFLDL's `convolution
<http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_
for more details.
If bias attribution and activation type are provided, bias is added to the
output of the convolution, and the corresponding activation function is
applied to the final result.
For each input :math:`X`, the equation is:
.. math::
Out = \sigma (W \\ast X + b)
Where:
* :math:`X`: Input value, a ``Tensor`` with NCHW format.
* :math:`W`: Filter value, a ``Tensor`` with shape [MCHW] .
* :math:`\\ast`: Convolution operation.
* :math:`b`: Bias value, a 2-D ``Tensor`` with shape [M, 1].
* :math:`\\sigma`: Activation function.
* :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Parameters:
in_channels(int): The number of input channels in the input image.
out_channels(int): The number of output channels produced by the convolution.
kernel_size(int|list|tuple, optional): The size of the convolving kernel.
stride(int|list|tuple, optional): The stride size. If stride is a tuple, it must
contain three integers, (stride_H, stride_W). Otherwise, the
stride_H = stride_W = stride. The default value is 1.
padding(int|str|tuple|list, optional): The padding size. Padding coule be in one of the following forms.
1. a string in ['valid', 'same'].
2. an int, which means each spartial dimension(depth, height, width) is zero paded by size of `padding`
3. a list[int] or tuple[int] whose length is the number of spartial dimensions, which contains the amount of padding on each side for each spartial dimension. It has the form [pad_d1, pad_d2, ...].
4. a list[int] or tuple[int] whose length is 2 * number of spartial dimensions. It has the form [pad_before, pad_after, pad_before, pad_after, ...] for all spartial dimensions.
5. a list or tuple of pairs of ints. It has the form [[pad_before, pad_after], [pad_before, pad_after], ...]. Note that, the batch dimension and channel dimension are also included. Each pair of integers correspond to the amount of padding for a dimension of the input. Padding in batch dimension and channel dimension should be [0, 0] or (0, 0).
The default value is 0.
dilation(int|list|tuple, optional): The dilation size. If dilation is a tuple, it must
contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
dilation_D = dilation_H = dilation_W = dilation. The default value is 1.
groups(int, optional): The groups number of the Conv3d Layer. According to grouped
convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
the first half of the filters is only connected to the first half
of the input channels, while the second half of the filters is only
connected to the second half of the input channels. The default value is 1.
padding_mode(str, optional): ``'zeros'``, ``'reflect'``, ``'replicate'`` or ``'circular'``. Default: ``'zeros'``.
weight_attr(ParamAttr, optional): The parameter attribute for learnable parameters/weights
of conv2d. If it is set to None or one attribute of ParamAttr, conv2d
will create ParamAttr as param_attr. If it is set to None, the parameter
is initialized with :math:`Normal(0.0, std)`, and the :math:`std` is
:math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. The default value is None.
bias_attr(ParamAttr|bool, optional): The parameter attribute for the bias of conv2d.
If it is set to False, no bias will be added to the output units.
If it is set to None or one attribute of ParamAttr, conv2d
will create ParamAttr as bias_attr. If the Initializer of the bias_attr
is not set, the bias is initialized zero. The default value is None.
data_format(str, optional): Data format that specifies the layout of input.
It can be "NCHW" or "NHWC". Default: "NCHW".
Attribute:
**weight** (Parameter): the learnable weights of filter of this layer.
**bias** (Parameter or None): the learnable bias of this layer.
Shape:
- x: :math:`(N, C_{in}, H_{in}, W_{in})`
- output: :math:`(N, C_{out}, H_{out}, W_{out})`
Where
.. math::
H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (kernel\_size[0] - 1) + 1))}{strides[0]} + 1
W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (kernel\_size[1] - 1) + 1))}{strides[1]} + 1
Examples:
.. code-block:: python
import numpy as np
import paddle
import paddle.nn as nn
x = np.random.uniform(-1, 1, (2, 4, 8, 8)).astype('float32')
paddle.disable_static()
x_var = paddle.to_tensor(x)
conv = nn.Conv2d(4, 6, (3, 3))
y_var = conv(x_var)
y_np = y_var.numpy()
print(y_np.shape)
# (2, 6, 6, 6)
"""
def __init__(self,
in_channels,
out_channels,
......@@ -419,13 +228,13 @@ class Conv2d(_ConvNd):
padding_mode='zeros',
weight_attr=None,
bias_attr=None,
data_format="NCHW"):
super(Conv2d, self).__init__(
data_format="NCL"):
super(Conv1d, self).__init__(
in_channels,
out_channels,
kernel_size,
False,
2,
1,
stride=stride,
padding=padding,
padding_mode=padding_mode,
......@@ -436,25 +245,20 @@ class Conv2d(_ConvNd):
data_format=data_format)
def forward(self, x):
if self._padding_mode != 'zeros':
padding = 0
if self._padding_mode != "zeros":
x = F.pad(x,
self._reversed_padding_repeated_twice,
self._padding,
mode=self._padding_mode,
data_format=self._data_format)
return F.conv2d(
x,
self.weight,
bias=self.bias,
stride=self._stride,
dilation=self._dilation,
groups=self._groups,
data_format=self._data_format)
else:
padding = self._padding
out = F.conv2d(
out = F.conv1d(
x,
self.weight,
bias=self.bias,
padding=self._padding,
padding=padding,
stride=self._stride,
dilation=self._dilation,
groups=self._groups,
......@@ -462,7 +266,7 @@ class Conv2d(_ConvNd):
return out
class ConvTranspose1d(layers.Layer):
class ConvTranspose1d(_ConvNd):
"""
This interface is used to construct a callable object of the ``ConvTranspose1d`` class.
For more details, refer to code examples.
......@@ -603,34 +407,24 @@ class ConvTranspose1d(layers.Layer):
padding=0,
output_padding=0,
groups=1,
bias=True,
dilation=1,
weight_attr=None,
bias_attr=None,
data_format="NCL"):
super(ConvTranspose1d, self).__init__()
assert weight_attr is not False, "param_attr should not be False in ConvTranspose1d."
self._param_attr = weight_attr
self._bias_attr = bias_attr
self._groups = groups
self._in_channels = in_channels
self._out_channels = out_channels
self._output_padding = output_padding
self._data_format = data_format
self._bias = bias
self._stride = utils.convert_to_list(stride, 1, 'stride')
self._dilation = utils.convert_to_list(dilation, 1, 'dilation')
self._kernel_size = utils.convert_to_list(kernel_size, 1, 'kernel_size')
self._padding = padding
filter_shape = [self._in_channels, out_channels // groups
] + self._kernel_size
self.weight = self.create_parameter(
shape=filter_shape, attr=self._param_attr)
self.bias = self.create_parameter(
attr=self._bias_attr, shape=[self._out_channels],
is_bias=True) if self._bias else None
super(ConvTranspose1d, self).__init__(
in_channels,
out_channels,
kernel_size,
True,
1,
stride=stride,
padding=padding,
dilation=dilation,
output_padding=output_padding,
groups=groups,
weight_attr=weight_attr,
bias_attr=bias_attr,
data_format=data_format)
def forward(self, x, output_size=None):
out = F.conv_transpose1d(
......@@ -638,7 +432,169 @@ class ConvTranspose1d(layers.Layer):
self.weight,
bias=self.bias,
output_size=output_size,
output_padding=self._output_padding,
output_padding=self.output_padding,
padding=self._padding,
stride=self._stride,
dilation=self._dilation,
groups=self._groups,
data_format=self._data_format)
return out
class Conv2d(_ConvNd):
"""
This interface is used to construct a callable object of the ``Conv2d`` class.
For more details, refer to code examples.
The convolution2D layer calculates the output based on the input, filter
and strides, paddings, dilations, groups parameters. Input and
Output are in NCHW format, where N is batch size, C is the number of
the feature map, H is the height of the feature map, and W is the width of the feature map.
Filter's shape is [MCHW] , where M is the number of output feature map,
C is the number of input feature map, H is the height of the filter,
and W is the width of the filter. If the groups is greater than 1,
C will equal the number of input feature map divided by the groups.
Please refer to UFLDL's `convolution
<http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_
for more details.
If bias attribution and activation type are provided, bias is added to the
output of the convolution, and the corresponding activation function is
applied to the final result.
For each input :math:`X`, the equation is:
.. math::
Out = \sigma (W \\ast X + b)
Where:
* :math:`X`: Input value, a ``Tensor`` with NCHW format.
* :math:`W`: Filter value, a ``Tensor`` with shape [MCHW] .
* :math:`\\ast`: Convolution operation.
* :math:`b`: Bias value, a 2-D ``Tensor`` with shape [M, 1].
* :math:`\\sigma`: Activation function.
* :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Parameters:
in_channels(int): The number of input channels in the input image.
out_channels(int): The number of output channels produced by the convolution.
kernel_size(int|list|tuple, optional): The size of the convolving kernel.
stride(int|list|tuple, optional): The stride size. If stride is a tuple, it must
contain three integers, (stride_H, stride_W). Otherwise, the
stride_H = stride_W = stride. The default value is 1.
padding(int|str|tuple|list, optional): The padding size. Padding coule be in one of the following forms.
1. a string in ['valid', 'same'].
2. an int, which means each spartial dimension(depth, height, width) is zero paded by size of `padding`
3. a list[int] or tuple[int] whose length is the number of spartial dimensions, which contains the amount of padding on each side for each spartial dimension. It has the form [pad_d1, pad_d2, ...].
4. a list[int] or tuple[int] whose length is 2 * number of spartial dimensions. It has the form [pad_before, pad_after, pad_before, pad_after, ...] for all spartial dimensions.
5. a list or tuple of pairs of ints. It has the form [[pad_before, pad_after], [pad_before, pad_after], ...]. Note that, the batch dimension and channel dimension are also included. Each pair of integers correspond to the amount of padding for a dimension of the input. Padding in batch dimension and channel dimension should be [0, 0] or (0, 0).
The default value is 0.
dilation(int|list|tuple, optional): The dilation size. If dilation is a tuple, it must
contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
dilation_D = dilation_H = dilation_W = dilation. The default value is 1.
groups(int, optional): The groups number of the Conv3d Layer. According to grouped
convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
the first half of the filters is only connected to the first half
of the input channels, while the second half of the filters is only
connected to the second half of the input channels. The default value is 1.
padding_mode(str, optional): ``'zeros'``, ``'reflect'``, ``'replicate'`` or ``'circular'``. Default: ``'zeros'``.
weight_attr(ParamAttr, optional): The parameter attribute for learnable parameters/weights
of conv2d. If it is set to None or one attribute of ParamAttr, conv2d
will create ParamAttr as param_attr. If it is set to None, the parameter
is initialized with :math:`Normal(0.0, std)`, and the :math:`std` is
:math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. The default value is None.
bias_attr(ParamAttr|bool, optional): The parameter attribute for the bias of conv2d.
If it is set to False, no bias will be added to the output units.
If it is set to None or one attribute of ParamAttr, conv2d
will create ParamAttr as bias_attr. If the Initializer of the bias_attr
is not set, the bias is initialized zero. The default value is None.
data_format(str, optional): Data format that specifies the layout of input.
It can be "NCHW" or "NHWC". Default: "NCHW".
Attribute:
**weight** (Parameter): the learnable weights of filter of this layer.
**bias** (Parameter or None): the learnable bias of this layer.
Shape:
- x: :math:`(N, C_{in}, H_{in}, W_{in})`
- output: :math:`(N, C_{out}, H_{out}, W_{out})`
Where
.. math::
H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (kernel\_size[0] - 1) + 1))}{strides[0]} + 1
W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (kernel\_size[1] - 1) + 1))}{strides[1]} + 1
Examples:
.. code-block:: python
import numpy as np
import paddle
import paddle.nn as nn
x = np.random.uniform(-1, 1, (2, 4, 8, 8)).astype('float32')
paddle.disable_static()
x_var = paddle.to_tensor(x)
conv = nn.Conv2d(4, 6, (3, 3))
y_var = conv(x_var)
y_np = y_var.numpy()
print(y_np.shape)
# (2, 6, 6, 6)
"""
def __init__(self,
in_channels,
out_channels,
kernel_size,
stride=1,
padding=0,
dilation=1,
groups=1,
padding_mode='zeros',
weight_attr=None,
bias_attr=None,
data_format="NCHW"):
super(Conv2d, self).__init__(
in_channels,
out_channels,
kernel_size,
False,
2,
stride=stride,
padding=padding,
padding_mode=padding_mode,
dilation=dilation,
groups=groups,
weight_attr=weight_attr,
bias_attr=bias_attr,
data_format=data_format)
def forward(self, x):
if self._padding_mode != 'zeros':
x = F.pad(x,
self._reversed_padding_repeated_twice,
mode=self._padding_mode,
data_format=self._data_format)
return F.conv2d(
x,
self.weight,
bias=self.bias,
stride=self._stride,
dilation=self._dilation,
groups=self._groups,
data_format=self._data_format)
out = F.conv2d(
x,
self.weight,
bias=self.bias,
padding=self._padding,
stride=self._stride,
dilation=self._dilation,
......@@ -920,8 +876,8 @@ class Conv3d(_ConvNd):
in_channels,
out_channels,
kernel_size,
padding=0,
stride=1,
padding=0,
dilation=1,
groups=1,
padding_mode='zeros',
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册