提交 9589babe 编写于 作者: Q Qiao Longfei

Merge branch 'develop' of https://github.com/PaddlePaddle/Paddle into refactor-prefetch

test=develop
---
name: 建议(Feature request)
about: 您可以提出您的建议。 You could use this template for reporting a suggestion  issue.
---
欢迎您对PaddlePaddle提出建议,非常感谢您对PaddlePaddle的贡献!
在留下您的建议时,辛苦您同步提供如下信息:
- 版本、环境信息
1)PaddlePaddle版本:请提供您的PaddlePaddle版本号,例如1.1
2)CPU/GPU:您是否使用GPU进行训练,如是,请提供您的CUDA和cuDNN版本号
3)系统环境:请您描述系统类型、版本,例如Mac OS 10.14
- 复现信息:如为报错,请给出复现环境、复现步骤
- 建议描述:请您详细描述,您认为需优化的功能
Thank you for contributing to PaddlePaddle.
Before submitting the issue, you could search issue in the github in case that there was a similar issue submitted or resolved before.
Please make sure that this is a feature request.
**System information**
-PaddlePaddle version (eg.1.1)or CommitID
-CPU: including CPUMKL/OpenBlas/MKLDNN version
-GPU: including CUDA/CUDNN version
-OS Platform (eg.Mac OS 10.14)
**To Reproduce**
Steps to reproduce the behavior
**Describe the feature and the current behavior/state.**
**Any Other info.**
---
name: 预测(Inference Issue)
about: 您可以提问预测中报错、应用等问题。 You could use this template for reporting an inference issue.
---
为使您的问题得到快速解决,在建立Issue前,请您先通过如下方式搜索是否有相似问题:【搜索issue关键字】【使用labels筛选】【官方文档】
如果您没有查询到相似问题,为快速解决您的提问,建立issue时请提供如下细节信息:
- 标题:简洁、精准描述您的问题,例如“最新预测库的API文档在哪儿 ”
- 版本、环境信息:
   1)PaddlePaddle版本:请提供您的PaddlePaddle版本号(如1.1)或CommitID
   2)CPU:预测若用CPU,请提供CPU型号,MKL/OpenBlas/MKLDNN/等数学库使用情况
   3)GPU:预测若用GPU,请提供GPU型号、CUDA和CUDNN版本号
   4)系统环境:请您描述系统类型、版本(如Mac OS 10.14),Python版本
-预测信息
   1)C++预测:请您提供预测库安装包的版本信息,及其中的version.txt文件
   2)CMake包含路径的完整命令
   3)API信息(如调用请提供)
   4)预测库来源:官网下载/特殊环境(如BCLOUD编译)
- 复现信息:如为报错,请给出复现环境、复现步骤
- 问题描述:请详细描述您的问题,同步贴出报错信息、日志/代码关键片段
Thank you for contributing to PaddlePaddle.
Before submitting the issue, you could search issue in the github in case that th
If there is no solution,please make sure that this is an inference issue including the following details :
**System information**
-PaddlePaddle version (eg.1.1)or CommitID
-CPU: including CPUMKL/OpenBlas/MKLDNN version
-GPU: including CUDA/CUDNN version
-OS Platform (eg.Mac OS 10.14)
-Python version
-Cmake orders
-C++version.txt
-API information
**To Reproduce**
Steps to reproduce the behavior
**Describe your current behavior**
**Code to reproduce the issue**
**Other info / logs**
---
name: 安装(Installation Issue)
about: 您可以提问安装、编译出现报错等问题。 You could use this template for reporting an installation
 issue.
---
为使您的问题得到快速解决,在建立Issue前,请您先通过如下方式搜索是否有相似问题:【搜索issue关键字】【使用labels筛选】【官方文档】
建立issue时,为快速解决问题,请您根据使用情况给出如下信息:
- 标题:请包含关键词“安装错误”/“编译错误”,例如“Mac编译错误”
- 版本、环境信息:
   1)PaddlePaddle版本:请提供您的PaddlePaddle版本号(如1.1)或CommitID
   2)CPU:请提供CPU型号,MKL/OpenBlas/MKLDNN/等数学库的使用情况
   3)GPU:请提供GPU型号,CUDA和CUDNN版本号
   4)系统环境:请说明系统类型、版本(如Mac OS 10.14)、Python版本
- 安装方式信息:
1)pip安装/docker安装
2)本地编译:请提供cmake命令,编译命令
3)docker编译:请提供docker镜像,编译命令           
 特殊环境请注明:如离线安装等
- 复现信息:如为报错,请给出复现环境、复现步骤
- 问题描述:请详细描述您的问题,同步贴出报错信息、日志/代码关键片段
Thank you for contributing to PaddlePaddle.
Before submitting the issue, you could search issue in Github in case that there was a similar issue submitted or resolved before.
If there is no solution,please make sure that this is an installation issue including the following details:
**System information**
-PaddlePaddle version (eg.1.1)or CommitID
-CPU: including CPUMKL/OpenBlas/MKLDNN version
-GPU: including CUDA/CUDNN version
-OS Platform (eg. Mac OS 10.14)
-Python version
- Install method: pip install/install with docker/build from source(without docker)/build within docker
- Other special cases that you think may be related to this problem, eg. offline install, special internet condition  
**To Reproduce**
Steps to reproduce the behavior
**Describe your current behavior**
**Code to reproduce the issue**
**Other info / logs**
---
name: 模型(Model Issue)
about: 您可以提问模型、算法、数据集方向的使用报错等问题。You could use this template for reporting a model/
algorithm/dataset  issue.
---
为使您的问题得到快速解决,在建立Issue前,请您先通过如下方式搜索是否有相似问题:【搜索issue关键字】【使用labels筛选】【官方文档】
建立issue时,为快速解决问题,请您根据使用情况给出如下信息:
- 标题:简洁、精准描述您的问题,例如“ssd 模型前置lstm报错  ”
- 版本、环境信息:
   1)PaddlePaddle版本:请提供PaddlePaddle版本号,例如1.1或CommitID
   2)CPU:请提供CPU型号,MKL/OpenBlas/MKLDNN/等数学库的使用情况
   3)GPU:请提供GPU型号,CUDA和CUDNN版本号
   4)系统环境:请说明系统类型、版本(例如Mac OS 10.14),Python版本
- 模型信息
   1)模型名称 2)使用数据集名称 3)使用算法名称 4)模型链接
- 复现信息:如为报错,请给出复现环境、复现步骤
- 问题描述:请详细描述您的问题,同步贴出报错信息、日志/代码关键片段
Thank you for contributing to PaddlePaddle.
Before submitting the issue, you could search issue in the github.Probably there was a similar issue submitted or resolved before.
If there is no solution,please make sure that this is a issue of models including the following details:
**System information**
-PaddlePaddle version (eg.1.1)or CommitID
-CPU: including CPUMKL/OpenBlas/MKLDNN version
-GPU: including CUDA/CUDNN version
-OS Platform (eg.Mac OS 10.14)
-Python version
-Name of Models&Dataset/details of operator
**To Reproduce**
Steps to reproduce the behavior
**Describe your current behavior**
**Code to reproduce the issue**
**Other info / logs**
---
name: 其他(Others)
about: 如上述分类未包含您的问题,可在此提出。 You could use this template for reporting other issues
---
为使您的问题得到快速解决,在建立Issues前,请您先通过如下方式搜索是否有相似问题:【搜索issue关键字】【使用labels筛选】【官方文档】
如果您没有查询到相似问题,为快速解决您的提问,建立issue时请提供如下细节信息:
- 标题:简洁、精准概括您的问题
- 版本、环境信息:
   1)PaddlePaddle版本:请提供您的PaddlePaddle版本号,例如1.1或CommitID
   2)CPU/GPU:如果您使用GPU训练,请提供GPU驱动版本、CUDA和cuDNN版本号
   3)系统环境:请您描述系统类型、版本,例如Mac OS 10.14
   4)Python版本号
   5)显存信息
- 复现信息:如为报错,请给出复现环境、复现步骤
- 问题描述:请详细描述您的问题,同步贴出报错信息、日志/代码关键片段
Thank you for contributing to PaddlePaddle.
Before submitting the issue, you could search issue in the github in case that there was a similar issue submitted or resolved before.
If there is no solution,please provide us with the following details :
**System information**
-PaddlePaddle version (eg.1.1)or CommitID
-CPU: including CPUMKL/OpenBlas/MKLDNN version
-GPU: including CUDA/cuDNN version
-OS Platform and Distribution(eg.Mac OS 10.14)
-Python version
**To Reproduce**
Steps to reproduce the behavior
**Describe your current behavior**
**Code to reproduce the issue**
**Other info / logs**
---
name: 训练(Training issue)
about: 您可以提问训练中报错、应用、出core等问题。 You could use this template for reporting an training
 issue.
---
为使您的问题得到快速解决,在建立Issues前,请您先通过如下方式搜索是否有相似问题:【搜索issue关键字】【使用labels筛选】【官方文档】
如果您没有查询到相似问题,为快速解决您的提问,建立issue时请提供如下细节信息:
- 标题:简洁、精准概括您的问题,例如“Insufficient Memory xxx" ”
- 版本、环境信息:
   1)PaddlePaddle版本:请提供您的PaddlePaddle版本号,例如1.1或CommitID
   2)CPU:预测若用CPU,请提供CPU型号,MKL/OpenBlas/MKLDNN/等数学库使用情况
   3)GPU:预测若用GPU,请提供GPU型号、CUDA和CUDNN版本号
   4)系统环境:请您描述系统类型、版本,例如Mac OS 10.14,Python版本
- 训练信息
   1)单机/多机,单卡/多卡
   2)显存信息
   3)Operator信息
- 复现信息:如为报错,请给出复现环境、复现步骤
- 问题描述:请详细描述您的问题,同步贴出报错信息、日志、可复现的代码片段
Thank you for contributing to PaddlePaddle.
Before submitting the issue, you could search issue in the github in case that there was a similar issue submitted or resolved before.
If there is no solution,please make sure that this is a training issue including the following details:
**System information**
-PaddlePaddle version (eg.1.1)or CommitID
-CPU: including CPUMKL/OpenBlas/MKLDNN version
-GPU: including CUDA/CUDNN version
-OS Platform (eg.Mac OS 10.14)
-Other imformation: Distriuted training/informantion of operator/
Graphics card storage
**To Reproduce**
Steps to reproduce the behavior
**Describe your current behavior**
**Code to reproduce the issue**
**Other info / logs**
......@@ -204,7 +204,9 @@ include(external/eigen) # download eigen3
include(external/pybind11) # download pybind11
include(external/cares)
include(external/cub)
include(external/rocprim)
include(external/xxhash) # download xxhash
include(external/dlpack)
include(external/snappy) # download snappy
include(external/snappystream) # download snappystream
......
......@@ -22,6 +22,29 @@ ENV HOME /root
# Add bash enhancements
COPY ./paddle/scripts/docker/root/ /root/
# Prepare packages for Python
RUN apt-get update && \
apt-get install -y make build-essential libssl-dev zlib1g-dev libbz2-dev \
libreadline-dev libsqlite3-dev wget curl llvm libncurses5-dev libncursesw5-dev \
xz-utils tk-dev libffi-dev liblzma-dev
# Install Python3.6
RUN mkdir -p /root/python_build/ && wget -q https://www.sqlite.org/2018/sqlite-autoconf-3250300.tar.gz && \
tar -zxf sqlite-autoconf-3250300.tar.gz && cd sqlite-autoconf-3250300 && \
./configure -prefix=/usr/local && make -j8 && make install && cd ../ && rm sqlite-autoconf-3250300.tar.gz && \
wget -q https://www.python.org/ftp/python/3.6.0/Python-3.6.0.tgz && \
tar -xzf Python-3.6.0.tgz && cd Python-3.6.0 && \
CFLAGS="-Wformat" ./configure --prefix=/usr/local/ --enable-shared > /dev/null && \
make -j8 > /dev/null && make altinstall > /dev/null
# Install Python3.7
RUN wget -q https://www.python.org/ftp/python/3.7.0/Python-3.7.0.tgz && \
tar -xzf Python-3.7.0.tgz && cd Python-3.7.0 && \
CFLAGS="-Wformat" ./configure --prefix=/usr/local/ --enable-shared > /dev/null && \
make -j8 > /dev/null && make altinstall > /dev/null
RUN rm -r /root/python_build
RUN apt-get update && \
apt-get install -y --allow-downgrades patchelf \
python3 python3-dev python3-pip \
......@@ -74,6 +97,12 @@ RUN localedef -i en_US -f UTF-8 en_US.UTF-8
RUN pip3 install -U wheel && \
pip3 install -U docopt PyYAML sphinx==1.5.6 && \
pip3 install sphinx-rtd-theme==0.1.9 recommonmark && \
pip3.6 install -U wheel && \
pip3.6 install -U docopt PyYAML sphinx==1.5.6 && \
pip3.6 install sphinx-rtd-theme==0.1.9 recommonmark && \
pip3.7 install -U wheel && \
pip3.7 install -U docopt PyYAML sphinx==1.5.6 && \
pip3.7 install sphinx-rtd-theme==0.1.9 recommonmark && \
easy_install -U pip && \
pip install -U pip setuptools wheel && \
pip install -U docopt PyYAML sphinx==1.5.6 && \
......@@ -82,22 +111,34 @@ RUN pip3 install -U wheel && \
RUN pip3 install 'pre-commit==1.10.4' 'ipython==5.3.0' && \
pip3 install 'ipykernel==4.6.0' 'jupyter==1.0.0' && \
pip3 install opencv-python && \
pip3.6 install 'pre-commit==1.10.4' 'ipython==5.3.0' && \
pip3.6 install 'ipykernel==4.6.0' 'jupyter==1.0.0' && \
pip3.6 install opencv-python && \
pip3.7 install 'pre-commit==1.10.4' 'ipython==5.3.0' && \
pip3.7 install 'ipykernel==4.6.0' 'jupyter==1.0.0' && \
pip3.7 install opencv-python && \
pip install 'pre-commit==1.10.4' 'ipython==5.3.0' && \
pip install 'ipykernel==4.6.0' 'jupyter==1.0.0' && \
pip install opencv-python
#For docstring checker
RUN pip3 install pylint pytest astroid isort
RUN pip3.6 install pylint pytest astroid isort
RUN pip3.7 install pylint pytest astroid isort
RUN pip install pylint pytest astroid isort LinkChecker
COPY ./python/requirements.txt /root/
RUN pip3 install -r /root/requirements.txt
RUN pip3.6 install -r /root/requirements.txt
RUN pip3.7 install -r /root/requirements.txt
RUN pip install -r /root/requirements.txt
# To fix https://github.com/PaddlePaddle/Paddle/issues/1954, we use
# the solution in https://urllib3.readthedocs.io/en/latest/user-guide.html#ssl-py2
RUN apt-get install -y libssl-dev libffi-dev
RUN pip3 install certifi urllib3[secure]
RUN pip3.6 install certifi urllib3[secure]
RUN pip3.7 install certifi urllib3[secure]
RUN pip install certifi urllib3[secure]
......
......@@ -199,8 +199,11 @@ elseif(CMAKE_BUILD_TYPE STREQUAL "MinSizeRel")
list(APPEND CUDA_NVCC_FLAGS ${CMAKE_CXX_FLAGS_RELEASE})
endif()
else(NOT WIN32)
list(APPEND CUDA_NVCC_FLAGS "--compiler-options;/bigobj")
if(CMAKE_BUILD_TYPE STREQUAL "Debug")
list(APPEND CUDA_NVCC_FLAGS "-g -G")
# match the cl's _ITERATOR_DEBUG_LEVEL
list(APPEND CUDA_NVCC_FLAGS "-D_DEBUG")
elseif(CMAKE_BUILD_TYPE STREQUAL "Release")
list(APPEND CUDA_NVCC_FLAGS "-O3 -DNDEBUG")
else()
......
include(ExternalProject)
set(DLPACK_SOURCE_DIR ${THIRD_PARTY_PATH}/dlpack)
set(DLPACK_INCLUDE_DIR ${DLPACK_SOURCE_DIR}/src/extern_dlpack/include)
include_directories(${DLPACK_INCLUDE_DIR})
ExternalProject_Add(
extern_dlpack
${EXTERNAL_PROJECT_LOG_ARGS}
GIT_REPOSITORY "https://github.com/dmlc/dlpack.git"
GIT_TAG "v0.2"
PREFIX ${DLPACK_SOURCE_DIR}
UPDATE_COMMAND ""
CONFIGURE_COMMAND ""
BUILD_COMMAND ""
INSTALL_COMMAND ""
TEST_COMMAND ""
)
if(${CMAKE_VERSION} VERSION_LESS "3.3.0")
set(dummyfile ${CMAKE_CURRENT_BINARY_DIR}/dlpack_dummy.c)
file(WRITE ${dummyfile} "const char *dummy = \"${dummyfile}\";")
add_library(dlpack STATIC ${dummyfile})
else()
add_library(dlpack INTERFACE)
endif()
add_dependencies(dlpack extern_dlpack)
LIST(APPEND externl_project_dependencies dlpack)
......@@ -17,7 +17,7 @@ if(WITH_AMD_GPU)
extern_eigen3
${EXTERNAL_PROJECT_LOG_ARGS}
GIT_REPOSITORY "https://github.com/sabreshao/hipeigen.git"
GIT_TAG 0cba03ff9f8f9f70bbd92ac5857b031aa8fed6f9
GIT_TAG 7cb2b6e5a4b4a1efe658abb215cd866c6fb2275e
PREFIX ${EIGEN_SOURCE_DIR}
UPDATE_COMMAND ""
CONFIGURE_COMMAND ""
......
......@@ -53,7 +53,7 @@ ExternalProject_Add(
${EXTERNAL_PROJECT_LOG_ARGS}
DEPENDS ${MKLDNN_DEPENDS}
GIT_REPOSITORY "https://github.com/01org/mkl-dnn.git"
GIT_TAG "21fb5f2af1dd14e132af4f1b79160977ee487818"
GIT_TAG "830a10059a018cd2634d94195140cf2d8790a75a"
PREFIX ${MKLDNN_SOURCES_DIR}
UPDATE_COMMAND ""
CMAKE_ARGS -DCMAKE_CXX_COMPILER=${CMAKE_CXX_COMPILER}
......
......@@ -26,7 +26,7 @@ ExternalProject_Add(
extern_pybind
${EXTERNAL_PROJECT_LOG_ARGS}
GIT_REPOSITORY "https://github.com/pybind/pybind11.git"
GIT_TAG "v2.1.1"
GIT_TAG "v2.2.4"
PREFIX ${PYBIND_SOURCE_DIR}
UPDATE_COMMAND ""
CONFIGURE_COMMAND ""
......
if (NOT WITH_AMD_GPU)
return()
endif()
# rocprim is "ROCm Parallel Primitives" for short.
# It is a header-only library providing HIP and HC parallel primitives
# for developing performant GPU-accelerated code on AMD ROCm platform.
if("x${HCC_HOME}" STREQUAL "x")
set(HCC_HOME "/opt/rocm/hcc")
endif()
INCLUDE(ExternalProject)
SET(ROCPRIM_SOURCE_DIR ${THIRD_PARTY_PATH}/rocprim)
SET(ROCPRIM_INSTALL_DIR ${THIRD_PARTY_PATH}/install/rocprim)
SET(ROCPRIM_INCLUDE_DIR ${ROCPRIM_INSTALL_DIR}/include)
ExternalProject_Add(
extern_rocprim
GIT_REPOSITORY "https://github.com/ROCmSoftwarePlatform/rocPRIM.git"
GIT_TAG 5bd41b96ab8d8343330fb2c3e1b96775bde3b3fc
PREFIX ${ROCPRIM_SOURCE_DIR}
UPDATE_COMMAND ""
CMAKE_ARGS -DCMAKE_CXX_COMPILER=${HCC_HOME}/bin/hcc
CMAKE_ARGS -DONLY_INSTALL=ON
CMAKE_ARGS -DBUILD_TEST=OFF
CMAKE_ARGS -DCMAKE_INSTALL_PREFIX=${ROCPRIM_INSTALL_DIR}
INSTALL_DIR ${ROCPRIM_INSTALL_DIR}
${EXTERNAL_PROJECT_LOG_ARGS}
)
INCLUDE_DIRECTORIES(${ROCPRIM_INCLUDE_DIR})
if (${CMAKE_VERSION} VERSION_LESS "3.3.0")
set(dummyfile ${CMAKE_CURRENT_BINARY_DIR}/rocprim_dummy.c)
file(WRITE ${dummyfile} "const char *dummy_rocprim = \"${dummyfile}\";")
add_library(rocprim STATIC ${dummyfile})
else()
add_library(rocprim INTERFACE)
endif()
add_dependencies(rocprim extern_rocprim)
......@@ -129,6 +129,9 @@ set(COMMON_FLAGS
-Wno-error=parentheses-equality # Warnings in pybind11
-Wno-error=ignored-attributes # Warnings in Eigen, gcc 6.3
-Wno-error=terminate # Warning in PADDLE_ENFORCE
-Wno-error=int-in-bool-context # Warning in Eigen gcc 7.2
-Wimplicit-fallthrough=0 # Warning in tinyformat.h
-Wno-error=maybe-uninitialized # Warning in boost gcc 7.2
)
set(GPU_COMMON_FLAGS
......
......@@ -349,10 +349,17 @@ function(cc_test TARGET_NAME)
set(oneValueArgs "")
set(multiValueArgs SRCS DEPS ARGS)
cmake_parse_arguments(cc_test "${options}" "${oneValueArgs}" "${multiValueArgs}" ${ARGN})
if(WIN32)
list(APPEND win32_deps shlwapi)
if("${cc_test_DEPS};" MATCHES "python;")
list(REMOVE_ITEM cc_test_DEPS python)
list(APPEND win32_deps ${PYTHON_LIBRARIES})
endif()
endif(WIN32)
add_executable(${TARGET_NAME} ${cc_test_SRCS})
target_link_libraries(${TARGET_NAME} ${cc_test_DEPS} paddle_gtest_main lod_tensor memory gtest gflags glog)
if(WIN32)
target_link_libraries(${TARGET_NAME} shlwapi)
target_link_libraries(${TARGET_NAME} ${win32_deps})
endif(WIN32)
add_dependencies(${TARGET_NAME} ${cc_test_DEPS} paddle_gtest_main lod_tensor memory gtest gflags glog)
add_test(NAME ${TARGET_NAME}
......@@ -454,11 +461,15 @@ function(hip_library TARGET_NAME)
else()
add_library(${TARGET_NAME} STATIC ${_cmake_options} ${_generated_files} ${_sources})
set_target_properties(${TARGET_NAME} PROPERTIES LINKER_LANGUAGE CXX)
target_link_libraries(${TARGET_NAME} /opt/rocm/hip/lib/libhip_hcc.so /opt/rocm/hip/lib/libhip_device.a)
target_link_libraries(${TARGET_NAME} /opt/rocm/hip/lib/libhip_hcc.so /opt/rocm/hip/lib/libhip_device.a /opt/rocm/rccl/lib/librccl.so /opt/rocm/hiprand/lib/libhiprand.so)
find_fluid_modules(${TARGET_NAME})
endif()
if (hip_library_DEPS)
add_dependencies(${TARGET_NAME} ${hip_library_DEPS})
if("${hip_library_DEPS}" MATCHES "ARCHIVE_START")
# Support linking flags: --whole-archive (Linux) / -force_load (MacOS).
# WARNING: Please don't use ARCHIVE_START&ARCHIVE_END if TARGET_NAME will be linked by other libraries.
target_circle_link_libraries(${TARGET_NAME} ${hip_library_DEPS})
list(REMOVE_ITEM hip_library_DEPS ARCHIVE_START ARCHIVE_END)
else()
target_link_libraries(${TARGET_NAME} ${hip_library_DEPS})
endif()
# cpplint code style
......@@ -679,7 +690,7 @@ function(py_test TARGET_NAME)
set(multiValueArgs SRCS DEPS ARGS ENVS)
cmake_parse_arguments(py_test "${options}" "${oneValueArgs}" "${multiValueArgs}" ${ARGN})
add_test(NAME ${TARGET_NAME}
COMMAND env FLAGS_init_allocated_mem=true FLAGS_cudnn_deterministic=true
COMMAND ${CMAKE_COMMAND} -E env FLAGS_init_allocated_mem=true FLAGS_cudnn_deterministic=true
FLAGS_cpu_deterministic=true
PYTHONPATH=${PADDLE_BINARY_DIR}/python ${py_test_ENVS}
${PYTHON_EXECUTABLE} -u ${py_test_SRCS} ${py_test_ARGS}
......
......@@ -3,6 +3,8 @@ if(NOT WITH_AMD_GPU)
endif()
include_directories("/opt/rocm/include")
include_directories("/opt/rocm/hip/include")
include_directories("/opt/rocm/miopen/include")
include_directories("/opt/rocm/hipblas/include")
include_directories("/opt/rocm/hiprand/include")
include_directories("/opt/rocm/rocrand/include")
......@@ -11,20 +13,40 @@ include_directories("/opt/rocm/thrust")
list(APPEND EXTERNAL_LIBS "-L/opt/rocm/lib/ -lhip_hcc")
set(HIP_HCC_FLAGS "${HIP_HCC_FLAGS} -fPIC -DPADDLE_WITH_HIP -std=c++14" )
set(HIP_HCC_FLAGS "${HIP_HCC_FLAGS} -fPIC -DPADDLE_WITH_HIP -std=c++11" )
if(WITH_DSO)
set(HIP_HCC_FLAGS "${HIP_HCC_FLAGS} -DPADDLE_USE_DSO")
endif(WITH_DSO)
if(WITH_DOUBLE)
set(HIP_HCC_FLAGS "${HIP_HCC_FLAGS} -DPADDLE_TYPE_DOUBLE")
endif(WITH_DOUBLE)
if(WITH_TESTING)
set(HIP_HCC_FLAGS "${HIP_HCC_FLAGS} -DPADDLE_WITH_TESTING")
endif(WITH_TESTING)
if(WITH_DISTRIBUTE)
set(HIP_HCC_FLAGS "${HIP_HCC_FLAGS} -DPADDLE_WITH_DISTRIBUTE")
endif(WITH_DISTRIBUTE)
if(WITH_GRPC)
set(HIP_HCC_FLAGS "${HIP_HCC_FLAGS} -DPADDLE_WITH_GRPC")
endif(WITH_GRPC)
if(NOT WITH_GOLANG)
set(HIP_HCC_FLAGS "${HIP_HCC_FLAGS} -DPADDLE_WITHOUT_GOLANG")
endif(NOT WITH_GOLANG)
if(WITH_MKLDNN)
set(HIP_HCC_FLAGS "${HIP_HCC_FLAGS} -DPADDLE_WITH_MKLDNN")
endif(WITH_MKLDNN)
set(HIP_HCC_FLAGS "${HIP_HCC_FLAGS} -DANY_IMPL_ANY_CAST_MOVEABLE")
if(NOT WITH_RDMA)
set(HIP_HCC_FLAGS "${HIP_HCC_FLAGS} -DPADDLE_DISABLE_RDMA")
endif(NOT WITH_RDMA)
if(CMAKE_BUILD_TYPE STREQUAL "Debug")
list(APPEND HIP_HCC_FLAGS ${CMAKE_CXX_FLAGS_DEBUG})
elseif(CMAKE_BUILD_TYPE STREQUAL "RelWithDebInfo")
......
......@@ -186,8 +186,7 @@ set(module "inference")
copy(inference_lib DEPS ${inference_deps}
SRCS ${src_dir}/${module}/*.h ${PADDLE_BINARY_DIR}/paddle/fluid/inference/libpaddle_fluid.*
${src_dir}/${module}/api/paddle_*.h
${PADDLE_BINARY_DIR}/paddle/fluid/inference/api/paddle_inference_pass.h
DSTS ${dst_dir}/${module} ${dst_dir}/${module} ${dst_dir}/${module} ${dst_dir}/${module}
DSTS ${dst_dir}/${module} ${dst_dir}/${module} ${dst_dir}/${module}
)
set(module "platform")
......
......@@ -109,7 +109,8 @@ function(op_library TARGET)
# Define operators that don't need pybind here.
foreach(manual_pybind_op "compare_op" "logical_op" "nccl_op"
"tensor_array_read_write_op" "tensorrt_engine_op" "conv_fusion_op")
"tensor_array_read_write_op" "tensorrt_engine_op" "conv_fusion_op"
"fusion_transpose_flatten_concat_op")
if ("${TARGET}" STREQUAL "${manual_pybind_op}")
set(pybind_flag 1)
endif()
......
......@@ -26,10 +26,10 @@ paddle.fluid.release_memory ArgSpec(args=['input_program', 'skip_opt_set'], vara
paddle.fluid.DistributeTranspilerConfig.__init__
paddle.fluid.ParallelExecutor.__init__ ArgSpec(args=['self', 'use_cuda', 'loss_name', 'main_program', 'share_vars_from', 'exec_strategy', 'build_strategy', 'num_trainers', 'trainer_id', 'scope'], varargs=None, keywords=None, defaults=(None, None, None, None, None, 1, 0, None))
paddle.fluid.ParallelExecutor.run ArgSpec(args=['self', 'fetch_list', 'feed', 'feed_dict', 'return_numpy'], varargs=None, keywords=None, defaults=(None, None, True))
paddle.fluid.ExecutionStrategy.__init__ __init__(self: paddle.fluid.core.ExecutionStrategy) -> None
paddle.fluid.BuildStrategy.GradientScaleStrategy.__init__ __init__(self: paddle.fluid.core.GradientScaleStrategy, arg0: int) -> None
paddle.fluid.BuildStrategy.ReduceStrategy.__init__ __init__(self: paddle.fluid.core.ReduceStrategy, arg0: int) -> None
paddle.fluid.BuildStrategy.__init__ __init__(self: paddle.fluid.core.BuildStrategy) -> None
paddle.fluid.ExecutionStrategy.__init__ __init__(self: paddle.fluid.core.ParallelExecutor.ExecutionStrategy) -> None
paddle.fluid.BuildStrategy.GradientScaleStrategy.__init__ __init__(self: paddle.fluid.core.ParallelExecutor.BuildStrategy.GradientScaleStrategy, arg0: int) -> None
paddle.fluid.BuildStrategy.ReduceStrategy.__init__ __init__(self: paddle.fluid.core.ParallelExecutor.BuildStrategy.ReduceStrategy, arg0: int) -> None
paddle.fluid.BuildStrategy.__init__ __init__(self: paddle.fluid.core.ParallelExecutor.BuildStrategy) -> None
paddle.fluid.create_lod_tensor ArgSpec(args=['data', 'recursive_seq_lens', 'place'], varargs=None, keywords=None, defaults=None)
paddle.fluid.create_random_int_lodtensor ArgSpec(args=['recursive_seq_lens', 'base_shape', 'place', 'low', 'high'], varargs=None, keywords=None, defaults=None)
paddle.fluid.io.save_vars ArgSpec(args=['executor', 'dirname', 'main_program', 'vars', 'predicate', 'filename'], varargs=None, keywords=None, defaults=(None, None, None, None))
......@@ -276,7 +276,7 @@ paddle.fluid.layers.hard_shrink ArgSpec(args=['x', 'threshold'], varargs=None, k
paddle.fluid.layers.cumsum ArgSpec(args=['x', 'axis', 'exclusive', 'reverse'], varargs=None, keywords=None, defaults=(None, None, None))
paddle.fluid.layers.thresholded_relu ArgSpec(args=['x', 'threshold'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.layers.prior_box ArgSpec(args=['input', 'image', 'min_sizes', 'max_sizes', 'aspect_ratios', 'variance', 'flip', 'clip', 'steps', 'offset', 'name', 'min_max_aspect_ratios_order'], varargs=None, keywords=None, defaults=(None, [1.0], [0.1, 0.1, 0.2, 0.2], False, False, [0.0, 0.0], 0.5, None, False))
paddle.fluid.layers.density_prior_box ArgSpec(args=['input', 'image', 'densities', 'fixed_sizes', 'fixed_ratios', 'variance', 'clip', 'steps', 'offset', 'name'], varargs=None, keywords=None, defaults=(None, None, None, [0.1, 0.1, 0.2, 0.2], False, [0.0, 0.0], 0.5, None))
paddle.fluid.layers.density_prior_box ArgSpec(args=['input', 'image', 'densities', 'fixed_sizes', 'fixed_ratios', 'variance', 'clip', 'steps', 'offset', 'flatten_to_2d', 'name'], varargs=None, keywords=None, defaults=(None, None, None, [0.1, 0.1, 0.2, 0.2], False, [0.0, 0.0], 0.5, False, None))
paddle.fluid.layers.multi_box_head ArgSpec(args=['inputs', 'image', 'base_size', 'num_classes', 'aspect_ratios', 'min_ratio', 'max_ratio', 'min_sizes', 'max_sizes', 'steps', 'step_w', 'step_h', 'offset', 'variance', 'flip', 'clip', 'kernel_size', 'pad', 'stride', 'name', 'min_max_aspect_ratios_order'], varargs=None, keywords=None, defaults=(None, None, None, None, None, None, None, 0.5, [0.1, 0.1, 0.2, 0.2], True, False, 1, 0, 1, None, False))
paddle.fluid.layers.bipartite_match ArgSpec(args=['dist_matrix', 'match_type', 'dist_threshold', 'name'], varargs=None, keywords=None, defaults=(None, None, None))
paddle.fluid.layers.target_assign ArgSpec(args=['input', 'matched_indices', 'negative_indices', 'mismatch_value', 'name'], varargs=None, keywords=None, defaults=(None, None, None))
......@@ -342,7 +342,7 @@ paddle.fluid.transpiler.RoundRobin.dispatch ArgSpec(args=['self', 'varlist'], va
paddle.fluid.transpiler.RoundRobin.reset ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None)
paddle.fluid.transpiler.DistributeTranspilerConfig.__init__
paddle.fluid.nets.simple_img_conv_pool ArgSpec(args=['input', 'num_filters', 'filter_size', 'pool_size', 'pool_stride', 'pool_padding', 'pool_type', 'global_pooling', 'conv_stride', 'conv_padding', 'conv_dilation', 'conv_groups', 'param_attr', 'bias_attr', 'act', 'use_cudnn'], varargs=None, keywords=None, defaults=(0, 'max', False, 1, 0, 1, 1, None, None, None, True))
paddle.fluid.nets.sequence_conv_pool ArgSpec(args=['input', 'num_filters', 'filter_size', 'param_attr', 'act', 'pool_type'], varargs=None, keywords=None, defaults=(None, 'sigmoid', 'max'))
paddle.fluid.nets.sequence_conv_pool ArgSpec(args=['input', 'num_filters', 'filter_size', 'param_attr', 'act', 'pool_type', 'bias_attr'], varargs=None, keywords=None, defaults=(None, 'sigmoid', 'max', None))
paddle.fluid.nets.glu ArgSpec(args=['input', 'dim'], varargs=None, keywords=None, defaults=(-1,))
paddle.fluid.nets.scaled_dot_product_attention ArgSpec(args=['queries', 'keys', 'values', 'num_heads', 'dropout_rate'], varargs=None, keywords=None, defaults=(1, 0.0))
paddle.fluid.nets.img_conv_group ArgSpec(args=['input', 'conv_num_filter', 'pool_size', 'conv_padding', 'conv_filter_size', 'conv_act', 'param_attr', 'conv_with_batchnorm', 'conv_batchnorm_drop_rate', 'pool_stride', 'pool_type', 'use_cudnn'], varargs=None, keywords=None, defaults=(1, 3, None, None, False, 0.0, 1, 'max', True))
......
......@@ -116,8 +116,9 @@ cc_test(op_proto_maker_test SRCS op_proto_maker_test.cc DEPS op_proto_maker)
cc_library(op_info SRCS op_info.cc DEPS attribute framework_proto)
cc_library(shape_inference SRCS shape_inference.cc DEPS ddim attribute device_context)
cc_library(transfer_scope_cache SRCS transfer_scope_cache.cc DEPS scope framework_proto device_context)
cc_library(operator SRCS operator.cc DEPS op_info device_context tensor scope glog
shape_inference data_transform lod_tensor profiler)
shape_inference data_transform lod_tensor profiler transfer_scope_cache)
cc_test(operator_test SRCS operator_test.cc DEPS operator op_registry device_context)
......@@ -192,3 +193,6 @@ cc_test(tuple_test SRCS tuple_test.cc )
if (NOT WIN32)
cc_test(rw_lock_test SRCS rw_lock_test.cc)
endif (NOT WIN32)
cc_library(dlpack_tensor SRCS dlpack_tensor.cc DEPS tensor dlpack)
cc_test(dlpack_tensor_test SRCS dlpack_tensor_test.cc DEPS dlpack_tensor glog)
......@@ -23,7 +23,7 @@ namespace paddle {
namespace framework {
namespace details {
#ifdef PADDLE_WITH_CUDA
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
AllReduceOpHandle::AllReduceOpHandle(ir::Node *node,
const std::vector<Scope *> &local_scopes,
const std::vector<platform::Place> &places,
......@@ -74,7 +74,7 @@ void AllReduceOpHandle::RunImpl() {
}
if (platform::is_gpu_place(lod_tensors[0]->place())) {
#ifdef PADDLE_WITH_CUDA
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
PADDLE_ENFORCE(nccl_ctxs_, "nccl_ctxs should not be nullptr.");
int dtype = -1;
size_t numel = 0;
......
......@@ -20,7 +20,7 @@
#include "paddle/fluid/framework/details/op_handle_base.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/scope.h"
#ifdef PADDLE_WITH_CUDA
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
#include "paddle/fluid/platform/nccl_helper.h"
#endif
......@@ -29,7 +29,7 @@ namespace framework {
namespace details {
struct AllReduceOpHandle : public OpHandleBase {
#ifdef PADDLE_WITH_CUDA
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
AllReduceOpHandle(ir::Node *node, const std::vector<Scope *> &local_scopes,
const std::vector<platform::Place> &places,
const platform::NCCLContextMap *ctxs);
......@@ -49,7 +49,7 @@ struct AllReduceOpHandle : public OpHandleBase {
private:
std::vector<Scope *> local_scopes_;
std::vector<platform::Place> places_;
#ifdef PADDLE_WITH_CUDA
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
const platform::NCCLContextMap *nccl_ctxs_;
#endif
};
......
......@@ -82,7 +82,7 @@ void BroadcastOpHandle::BroadcastOneVar(
});
}
} else {
#ifdef PADDLE_WITH_CUDA
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
VarHandle *out_handle = nullptr;
int root_id = boost::get<platform::CUDAPlace>(in_tensor.place()).device;
std::vector<std::function<void()>> broadcast_calls;
......
......@@ -24,7 +24,7 @@
#include "paddle/fluid/framework/selected_rows.h"
#include "paddle/fluid/platform/device_context.h"
#ifdef PADDLE_WITH_CUDA
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
#include "paddle/fluid/platform/nccl_helper.h"
#endif
......@@ -34,7 +34,7 @@ namespace details {
struct BroadcastOpHandle : public OpHandleBase {
public:
#ifdef PADDLE_WITH_CUDA
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
BroadcastOpHandle(ir::Node *node, const std::vector<Scope *> &local_scopes,
const std::vector<platform::Place> &places,
const platform::NCCLContextMap *nccl_ctxs)
......@@ -68,7 +68,7 @@ struct BroadcastOpHandle : public OpHandleBase {
std::vector<Scope *> local_scopes_;
std::vector<platform::Place> places_;
#ifdef PADDLE_WITH_CUDA
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
const platform::NCCLContextMap *nccl_ctxs_;
#endif
......
......@@ -42,7 +42,7 @@ struct TestBroadcastOpHandle {
std::vector<std::unique_ptr<ir::Node>> nodes_;
std::vector<p::Place> place_list_;
bool use_gpu_;
#ifdef PADDLE_WITH_CUDA
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
std::unique_ptr<platform::NCCLContextMap> nccl_ctxs_;
#endif
......@@ -50,7 +50,7 @@ struct TestBroadcastOpHandle {
for (size_t j = 0; j < ctxs_.size(); ++j) {
ctxs_[j]->Wait();
}
#ifdef PADDLE_WITH_CUDA
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
if (nccl_ctxs_) {
nccl_ctxs_->WaitAll();
}
......@@ -60,7 +60,7 @@ struct TestBroadcastOpHandle {
void InitCtxOnGpu(bool use_gpu) {
use_gpu_ = use_gpu;
if (use_gpu_) {
#ifdef PADDLE_WITH_CUDA
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
int count = p::GetCUDADeviceCount();
if (count <= 1) {
LOG(WARNING) << "Cannot test multi-gpu Broadcast, because the CUDA "
......@@ -84,7 +84,7 @@ struct TestBroadcastOpHandle {
place_list_.push_back(p);
ctxs_.emplace_back(new p::CPUDeviceContext(p));
}
#ifdef PADDLE_WITH_CUDA
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
nccl_ctxs_.reset(nullptr);
#endif
}
......@@ -106,14 +106,14 @@ struct TestBroadcastOpHandle {
nodes_.emplace_back(
ir::CreateNodeForTest("node0", ir::Node::Type::kOperation));
if (use_gpu_) {
#ifdef PADDLE_WITH_CUDA
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
op_handle_ = new BroadcastOpHandle(nodes_.back().get(), local_scopes_,
place_list_, nccl_ctxs_.get());
#else
PADDLE_THROW("CUDA is not support.");
#endif
} else {
#ifdef PADDLE_WITH_CUDA
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
op_handle_ = new BroadcastOpHandle(nodes_.back().get(), local_scopes_,
place_list_, nccl_ctxs_.get());
#else
......
......@@ -96,7 +96,7 @@ std::unique_ptr<ir::Graph> BuildStrategy::Apply(
const std::string &loss_var_name,
const std::unordered_set<std::string> &param_names,
const std::vector<Scope *> &local_scopes,
#ifdef PADDLE_WITH_CUDA
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
const bool use_cuda, platform::NCCLContextMap *nccl_ctxs) const {
#else
const bool use_cuda) const {
......@@ -118,7 +118,7 @@ std::unique_ptr<ir::Graph> BuildStrategy::Apply(
pass->Erase("local_scopes");
pass->SetNotOwned<const std::vector<Scope *>>("local_scopes",
&local_scopes);
#ifdef PADDLE_WITH_CUDA
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
platform::NCCLContextMap *nctx = use_cuda ? nccl_ctxs : nullptr;
pass->Erase("nccl_ctxs");
pass->SetNotOwned<platform::NCCLContextMap>("nccl_ctxs", nctx);
......
......@@ -23,7 +23,7 @@
#include "paddle/fluid/platform/device_context.h"
#include "paddle/fluid/platform/enforce.h"
#ifdef PADDLE_WITH_CUDA
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
#include "paddle/fluid/platform/nccl_helper.h"
#endif
......@@ -98,7 +98,7 @@ struct BuildStrategy {
const std::string &loss_var_name,
const std::unordered_set<std::string> &param_names,
const std::vector<Scope *> &local_scopes,
#ifdef PADDLE_WITH_CUDA
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
const bool use_cuda, platform::NCCLContextMap *nccl_ctxs) const;
#else
const bool use_cuda) const;
......
......@@ -20,7 +20,7 @@ namespace paddle {
namespace framework {
namespace details {
#ifdef PADDLE_WITH_CUDA
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
DataBalanceOpHandle::DataBalanceOpHandle(
ir::Node *node, const std::vector<Scope *> &local_scopes,
const std::vector<platform::Place> &places,
......
......@@ -19,7 +19,7 @@
#include "paddle/fluid/framework/details/op_handle_base.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/scope.h"
#ifdef PADDLE_WITH_CUDA
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
#include "paddle/fluid/platform/nccl_helper.h"
#endif
......@@ -29,7 +29,7 @@ namespace details {
struct DataBalanceOpHandle : public OpHandleBase {
public:
#ifdef PADDLE_WITH_CUDA
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
DataBalanceOpHandle(ir::Node *node, const std::vector<Scope *> &local_scopes,
const std::vector<platform::Place> &places,
const platform::NCCLContextMap *ctxs);
......
......@@ -25,7 +25,7 @@
#include "paddle/fluid/framework/selected_rows.h"
#include "paddle/fluid/platform/device_context.h"
#ifdef PADDLE_WITH_CUDA
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
#include "paddle/fluid/platform/nccl_helper.h"
#endif
......@@ -35,7 +35,7 @@ namespace details {
struct FusedBroadcastOpHandle : public BroadcastOpHandle {
public:
#ifdef PADDLE_WITH_CUDA
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
FusedBroadcastOpHandle(ir::Node *node,
const std::vector<Scope *> local_scopes,
const std::vector<platform::Place> &places,
......
......@@ -44,14 +44,14 @@ struct TestFusedBroadcastOpHandle : TestBroadcastOpHandle {
nodes_.emplace_back(
ir::CreateNodeForTest("fused_broadcast", ir::Node::Type::kOperation));
if (use_gpu_) {
#ifdef PADDLE_WITH_CUDA
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
op_handle_ = new FusedBroadcastOpHandle(
nodes_.back().get(), local_scopes_, place_list_, nccl_ctxs_.get());
#else
PADDLE_THROW("CUDA is not supported.");
#endif
} else {
#ifdef PADDLE_WITH_CUDA
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
op_handle_ = new FusedBroadcastOpHandle(
nodes_.back().get(), local_scopes_, place_list_, nccl_ctxs_.get());
#else
......
......@@ -142,7 +142,7 @@ void MultiDevSSAGraphBuilder::Init() const {
places_ = Get<const std::vector<platform::Place>>(kPlaces);
local_scopes_ = Get<const std::vector<Scope *>>(kLocalScopes);
strategy_ = Get<const BuildStrategy>(kStrategy);
#ifdef PADDLE_WITH_CUDA
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
nccl_ctxs_ = &Get<platform::NCCLContextMap>("nccl_ctxs");
#endif
......@@ -431,7 +431,7 @@ std::unique_ptr<ir::Graph> MultiDevSSAGraphBuilder::ApplyImpl(
}
}
bool use_gpu = false;
#ifdef PADDLE_WITH_CUDA
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
use_gpu = nccl_ctxs_ != nullptr;
#endif
......@@ -478,7 +478,7 @@ bool MultiDevSSAGraphBuilder::IsSparseGradient(const std::string &og) const {
void MultiDevSSAGraphBuilder::SetCommunicationContext(
OpHandleBase *op_handle, const platform::Place &p) const {
#ifdef PADDLE_WITH_CUDA
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
if (nccl_ctxs_ == nullptr) {
op_handle->SetDeviceContext(p,
platform::DeviceContextPool::Instance().Get(p));
......@@ -492,7 +492,7 @@ void MultiDevSSAGraphBuilder::SetCommunicationContext(
void MultiDevSSAGraphBuilder::CreateBroadcastOp(ir::Graph *result,
const std::string &p_name,
size_t src_dev_id) const {
#ifdef PADDLE_WITH_CUDA
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
auto *op_handle = new BroadcastOpHandle(
result->CreateEmptyNode("broadcast", ir::Node::Type::kOperation),
local_scopes_, places_, nccl_ctxs_);
......@@ -522,7 +522,7 @@ void MultiDevSSAGraphBuilder::CreateBroadcastOp(ir::Graph *result,
void MultiDevSSAGraphBuilder::CreateFusedBroadcastOp(
ir::Graph *result,
const std::vector<std::unordered_set<std::string>> &bcast_varnames) const {
#ifdef PADDLE_WITH_CUDA
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
auto *op_handle = new FusedBroadcastOpHandle(
result->CreateEmptyNode("fused_broadcast", ir::Node::Type::kOperation),
local_scopes_, places_, nccl_ctxs_);
......@@ -568,7 +568,7 @@ void MultiDevSSAGraphBuilder::CreateComputationalOp(ir::Graph *result,
void MultiDevSSAGraphBuilder::InsertAllReduceOp(ir::Graph *result,
const std::string &og) const {
#ifdef PADDLE_WITH_CUDA
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
result->Get<GraphOps>(kGraphOps).emplace_back(new AllReduceOpHandle(
result->CreateEmptyNode("allreduce", ir::Node::Type::kOperation),
local_scopes_, places_, nccl_ctxs_));
......@@ -597,7 +597,7 @@ void MultiDevSSAGraphBuilder::InsertAllReduceOp(ir::Graph *result,
void MultiDevSSAGraphBuilder::InsertDataBalanceOp(
ir::Graph *result, const std::vector<std::string> &datas) const {
#ifdef PADDLE_WITH_CUDA
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
result->Get<GraphOps>(kGraphOps).emplace_back(new DataBalanceOpHandle(
result->CreateEmptyNode("data_balance", ir::Node::Type::kOperation),
local_scopes_, places_, nccl_ctxs_));
......@@ -694,7 +694,7 @@ void MultiDevSSAGraphBuilder::CreateComputationalOps(ir::Graph *result,
VarHandle *MultiDevSSAGraphBuilder::CreateReduceOp(ir::Graph *result,
const std::string &og,
int dst_dev_id) const {
#ifdef PADDLE_WITH_CUDA
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
result->Get<GraphOps>(kGraphOps).emplace_back(new ReduceOpHandle(
result->CreateEmptyNode("reduce", ir::Node::Type::kOperation),
local_scopes_, places_, nccl_ctxs_));
......
......@@ -40,7 +40,7 @@ class MultiDevSSAGraphBuilder : public ir::Pass {
size_t device_id) const;
void Init() const;
#ifdef PADDLE_WITH_CUDA
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
mutable platform::NCCLContextMap *nccl_ctxs_;
#endif
......
......@@ -125,7 +125,7 @@ void ReduceOpHandle::RunImpl() {
}
});
} else if (paddle::platform::is_gpu_place(lod_tensors[0]->place())) {
#ifdef PADDLE_WITH_CUDA
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
auto pre_in = pre_in_var->Get<framework::LoDTensor>();
VariableVisitor::ShareDimsAndLoD(*pre_in_var, out_var);
VariableVisitor::GetMutableTensor(out_var).mutable_data(
......
......@@ -23,7 +23,7 @@
#include "paddle/fluid/framework/scope.h"
#include "paddle/fluid/framework/selected_rows.h"
#include "paddle/fluid/platform/device_context.h"
#ifdef PADDLE_WITH_CUDA
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
#include "paddle/fluid/platform/nccl_helper.h"
#endif
......@@ -35,7 +35,7 @@ struct ReduceOpHandle : public OpHandleBase {
std::vector<Scope *> local_scopes_;
std::vector<platform::Place> places_;
#ifdef PADDLE_WITH_CUDA
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
const platform::NCCLContextMap *nccl_ctxs_;
ReduceOpHandle(ir::Node *node, const std::vector<Scope *> &local_scopes,
const std::vector<platform::Place> &places,
......
......@@ -35,7 +35,7 @@ struct TestReduceOpHandle {
std::vector<p::Place> gpu_list_;
std::vector<std::unique_ptr<p::DeviceContext>> ctxs_;
#ifdef PADDLE_WITH_CUDA
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
std::unique_ptr<platform::NCCLContextMap> nccl_ctxs_;
#endif
......@@ -43,7 +43,7 @@ struct TestReduceOpHandle {
for (size_t j = 0; j < ctxs_.size(); ++j) {
ctxs_[j]->Wait();
}
#ifdef PADDLE_WITH_CUDA
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
if (nccl_ctxs_) {
nccl_ctxs_->WaitAll();
}
......@@ -53,7 +53,7 @@ struct TestReduceOpHandle {
void InitCtxOnGpu(bool use_gpu) {
use_gpu_ = use_gpu;
if (use_gpu) {
#ifdef PADDLE_WITH_CUDA
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
int count = p::GetCUDADeviceCount();
if (count <= 1) {
LOG(WARNING) << "Cannot test multi-gpu Broadcast, because the CUDA "
......@@ -77,7 +77,7 @@ struct TestReduceOpHandle {
gpu_list_.push_back(p);
ctxs_.emplace_back(new p::CPUDeviceContext(p));
}
#ifdef PADDLE_WITH_CUDA
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
nccl_ctxs_.reset(nullptr);
#endif
}
......@@ -99,14 +99,14 @@ struct TestReduceOpHandle {
nodes.emplace_back(new ir::Node("node"));
if (use_gpu_) {
#ifdef PADDLE_WITH_CUDA
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
op_handle_.reset(new ReduceOpHandle(nodes.back().get(), local_scopes_,
gpu_list_, nccl_ctxs_.get()));
#else
PADDLE_THROW("CUDA is not support.");
#endif
} else {
#ifdef PADDLE_WITH_CUDA
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
op_handle_.reset(new ReduceOpHandle(nodes.back().get(), local_scopes_,
gpu_list_, nccl_ctxs_.get()));
#else
......
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/framework/dlpack_tensor.h"
namespace paddle {
namespace framework {
namespace internal {
template <typename T>
static ::DLDataType GetDLDataTypeCode() {
::DLDataType dtype;
if (std::is_same<T, platform::float16>::value ||
std::is_floating_point<T>::value) {
dtype.code = kDLFloat;
} else if (std::is_unsigned<T>::value) {
dtype.code = kDLUInt;
} else if (std::is_integral<T>::value) {
dtype.code = kDLInt;
} else {
PADDLE_THROW("Unsupported data type %s", typeid(T).name());
}
dtype.bits = 8 * sizeof(T);
dtype.lanes = 1;
return dtype;
}
static DLDataType GetDLDataTypeFromTypeIndex(const std::type_index &type) {
#define REG_DL_DATA_TYPE(type) \
{ std::type_index(typeid(type)), GetDLDataTypeCode<type>() }
static const std::unordered_map<std::type_index, ::DLDataType>
type_to_dtype_map({
REG_DL_DATA_TYPE(platform::float16), // NOLINT
REG_DL_DATA_TYPE(float), // NOLINT
REG_DL_DATA_TYPE(double), // NOLINT
REG_DL_DATA_TYPE(int), // NOLINT
REG_DL_DATA_TYPE(int64_t), // NOLINT
REG_DL_DATA_TYPE(bool), // NOLINT
REG_DL_DATA_TYPE(size_t), // NOLINT
REG_DL_DATA_TYPE(int16_t), // NOLINT
REG_DL_DATA_TYPE(uint8_t), // NOLINT
REG_DL_DATA_TYPE(int8_t) // NOLINT
});
static auto type_to_dtype_map_end_it = type_to_dtype_map.end();
auto it = type_to_dtype_map.find(type);
PADDLE_ENFORCE(it != type_to_dtype_map_end_it, "Unsupported data type %s",
type.name());
return it->second;
#undef REG_DL_DATA_TYPE
}
struct DLContextVisitor : public boost::static_visitor<::DLContext> {
inline ::DLContext operator()(const platform::CPUPlace &place) const {
DLContext ctx;
ctx.device_type = kDLCPU;
ctx.device_id = 0;
return ctx;
}
inline ::DLContext operator()(const platform::CUDAPlace &place) const {
#ifdef PADDLE_WITH_CUDA
DLContext ctx;
ctx.device_type = kDLGPU;
ctx.device_id = place.device;
return ctx;
#else
PADDLE_THROW("platform::CUDAPlace is not supported in CPU only version");
#endif
}
inline ::DLContext operator()(const platform::CUDAPinnedPlace &place) const {
#ifdef PADDLE_WITH_CUDA
DLContext ctx;
ctx.device_type = kDLCPUPinned;
ctx.device_id = 0;
return ctx;
#else
PADDLE_THROW(
"platform::CUDAPinnedPlace is not supported in CPU only version");
#endif
}
};
} // namespace internal
DLPackTensor::DLPackTensor(const Tensor &tensor, LaneType lanes) {
// init data, data buffer
t_.data = const_cast<void *>(tensor.data<void>());
// init ctx, DLContext type with device_type and device_id
auto place = tensor.place();
t_.ctx = boost::apply_visitor(internal::DLContextVisitor(), place);
// init dtype
t_.dtype = internal::GetDLDataTypeFromTypeIndex(tensor.type());
t_.dtype.lanes = lanes;
// init ndim, tensor rank
auto &dims = tensor.dims();
using DimType = decltype(t_.ndim); // int
t_.ndim = static_cast<DimType>(dims.size());
// init shape, tensor dims
t_.shape = shape_;
for (DimType i = 0; i < t_.ndim; ++i) {
t_.shape[i] = dims[i];
}
// init strides, nullptr means the tensor is compact
t_.strides = nullptr;
// init byte_offset
t_.byte_offset = 0;
}
} // namespace framework
} // namespace paddle
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <dlpack/dlpack.h>
#include "paddle/fluid/framework/tensor.h"
namespace paddle {
namespace framework {
class DLPackTensor {
public:
using LaneType = decltype(::DLTensor::dtype.lanes); // uint16_t
using ShapeType =
std::remove_reference<decltype(::DLTensor::shape[0])>::type; // int64_t
// lanes is only used in CPU to enable vectorization
explicit DLPackTensor(const Tensor& tensor, LaneType lanes = 1);
inline operator const ::DLTensor&() const { return t_; }
inline operator ::DLTensor&() { return t_; }
private:
::DLTensor t_;
// The shape in DLTensor is defined as int64_t*
// Add this member to make TVMTensor init without heap allocation
ShapeType shape_[9];
};
} // namespace framework
} // namespace paddle
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/framework/dlpack_tensor.h"
#include <glog/logging.h>
#include <gtest/gtest.h>
#include <vector>
namespace paddle {
namespace framework {
namespace { // NOLINT
template <typename T>
constexpr uint8_t GetDLDataTypeCode() {
return std::is_same<platform::float16, T>::value ||
std::is_floating_point<T>::value
? static_cast<uint8_t>(kDLFloat)
: (std::is_unsigned<T>::value
? static_cast<uint8_t>(kDLUInt)
: (std::is_integral<T>::value ? static_cast<uint8_t>(kDLInt)
: static_cast<uint8_t>(-1)));
}
} // NOLINT
template <typename T>
void TestMain(const platform::Place &place, uint16_t lanes) {
DDim dims{4, 5, 6, 7};
Tensor tensor;
tensor.Resize(dims);
void *p = tensor.mutable_data<T>(place);
DLPackTensor dlpack_tensor(tensor, lanes);
::DLTensor &dl_tensor = dlpack_tensor;
CHECK_EQ(p, dl_tensor.data);
if (platform::is_cpu_place(place)) {
CHECK_EQ(kDLCPU, dl_tensor.ctx.device_type);
CHECK_EQ(0, dl_tensor.ctx.device_id);
} else if (platform::is_gpu_place(place)) {
CHECK_EQ(kDLGPU, dl_tensor.ctx.device_type);
CHECK_EQ(boost::get<platform::CUDAPlace>(place).device,
dl_tensor.ctx.device_id);
} else if (platform::is_cuda_pinned_place(place)) {
CHECK_EQ(kDLCPUPinned, dl_tensor.ctx.device_type);
CHECK_EQ(0, dl_tensor.ctx.device_id);
} else {
CHECK_EQ(false, true);
}
CHECK_EQ(dims.size(), dl_tensor.ndim);
for (auto i = 0; i < dims.size(); ++i) {
CHECK_EQ(dims[i], dl_tensor.shape[i]);
}
CHECK_EQ(dl_tensor.strides == nullptr, true);
CHECK_EQ(static_cast<uint64_t>(0), dl_tensor.byte_offset);
CHECK_EQ(lanes, dl_tensor.dtype.lanes);
CHECK_EQ(sizeof(T) * 8, dl_tensor.dtype.bits);
CHECK_EQ(GetDLDataTypeCode<T>(), dl_tensor.dtype.code);
}
template <typename T>
void TestMainLoop() {
#ifdef PADDLE_WITH_CUDA
std::vector<platform::Place> places{platform::CPUPlace(),
platform::CUDAPlace(0),
platform::CUDAPinnedPlace()};
if (platform::GetCUDADeviceCount() > 1) {
places.emplace_back(platform::CUDAPlace(1));
}
#else
std::vector<platform::Place> places{platform::CPUPlace()};
#endif
std::vector<uint16_t> lanes{1, 2};
for (auto &p : places) {
for (auto &l : lanes) {
TestMain<T>(p, l);
}
}
}
#define PADDLE_DLPACK_TEST(type) \
TEST(dlpack, test_##type) { TestMainLoop<type>(); }
using float16 = platform::float16;
PADDLE_DLPACK_TEST(float16);
PADDLE_DLPACK_TEST(float);
PADDLE_DLPACK_TEST(double);
PADDLE_DLPACK_TEST(int);
PADDLE_DLPACK_TEST(int64_t);
PADDLE_DLPACK_TEST(bool);
PADDLE_DLPACK_TEST(size_t);
PADDLE_DLPACK_TEST(int16_t);
PADDLE_DLPACK_TEST(uint8_t);
PADDLE_DLPACK_TEST(int8_t);
#undef PADDLE_DLPACK_TEST
} // namespace framework
} // namespace paddle
......@@ -20,6 +20,7 @@ limitations under the License. */
#include "paddle/fluid/framework/ngraph_operator.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/reader.h"
#include "paddle/fluid/framework/transfer_scope_cache.h"
#include "paddle/fluid/operators/detail/macros.h"
#include "paddle/fluid/platform/place.h"
#include "paddle/fluid/platform/profiler.h"
......@@ -391,8 +392,8 @@ void Executor::RunPreparedContext(ExecutorPrepareContext* ctx, Scope* scope,
int64_t max_memory_size = GetEagerDeletionThreshold();
std::unique_ptr<GarbageCollector<Tensor>> gc;
// WhileOp would set keep_kids to false
// WhileGradOp would need the scopes created in WhileOp
// WhileOp would set keep_kids to true,
// because WhileGradOp needs the scopes created in WhileOp.
// Perhaps, we should not perform eager deletion in WhileOp
// The scopes and variables created by WhileOp would be deleted
// in WhileGradOp.
......
......@@ -15,7 +15,10 @@
#include "paddle/fluid/framework/ir/is_test_pass.h"
#include <gtest/gtest.h>
#ifdef _WIN32
#undef FALSE
#undef TRUE
#endif
namespace paddle {
namespace framework {
namespace ir {
......
......@@ -26,10 +26,8 @@ limitations under the License. */
#include "paddle/fluid/memory/memcpy.h"
#include "paddle/fluid/memory/memory.h"
#if !defined(_WIN32)
#include "paddle/fluid/recordio/scanner.h"
#include "paddle/fluid/recordio/writer.h"
#endif // _WIN32
namespace paddle {
namespace framework {
......@@ -305,7 +303,6 @@ void DeserializeFromStream(std::istream &is, LoDTensor *tensor,
TensorFromStream(is, static_cast<Tensor *>(tensor), dev_ctx);
}
#if !defined(_WIN32)
void WriteToRecordIO(recordio::Writer *writer,
const std::vector<LoDTensor> &tensor,
const platform::DeviceContext &dev_ctx) {
......@@ -335,19 +332,7 @@ bool ReadFromRecordIO(recordio::Scanner *scanner,
return true;
}
#else
class Writer {};
class Scanner {};
void WriteToRecordIO(recordio::Writer *writer,
const std::vector<LoDTensor> &tensor,
const platform::DeviceContext &dev_ctx) {}
bool ReadFromRecordIO(recordio::Scanner *scanner,
const platform::DeviceContext &dev_ctx,
std::vector<LoDTensor> *result_ptr) {
PADDLE_ENFORCE("windows didn't supported recordio!.");
return true;
}
#endif // _WIN32
std::vector<LoDTensor> LoDTensor::SplitLoDTensor(
const std::vector<platform::Place> places) const {
check_memory_size();
......
......@@ -274,7 +274,6 @@ TEST(LoD, ConvertToOffsetBasedLoD) {
EXPECT_EQ(offset_lod, expected);
}
#if !defined(_WIN32)
template <typename T>
static void TestRecordIO() {
LoDTensor tensor;
......@@ -321,7 +320,6 @@ TEST(LoDTensor, RecordIO) {
TestRecordIO<float>();
TestRecordIO<double>();
}
#endif // !defined(_WIN32)
} // namespace framework
} // namespace paddle
......@@ -83,6 +83,7 @@ void NaiveExecutor::Run() {
for (auto &op : ops_) {
VLOG(3) << std::this_thread::get_id() << " run " << op->Type()
<< " on scope " << scope_;
op->SetIsCalledByExecutor(false);
op->Run(*scope_, place_);
}
}
......
......@@ -252,6 +252,12 @@ void OpDesc::SetAttr(const std::string &name, const Attribute &v) {
this->attrs_[name] = std::vector<int>();
break;
}
case proto::AttrType::LONGS: {
VLOG(110) << "SetAttr: " << Type() << ", " << name
<< " from LONGS to LONGS";
this->attrs_[name] = std::vector<int64_t>();
break;
}
case proto::AttrType::FLOATS: {
VLOG(110) << "SetAttr: " << Type() << ", " << name
<< " from INTS to FLOATS";
......
......@@ -22,6 +22,7 @@ limitations under the License. */
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/operator.h"
#include "paddle/fluid/framework/shape_inference.h"
#include "paddle/fluid/framework/transfer_scope_cache.h"
#include "paddle/fluid/framework/var_type.h"
#include "paddle/fluid/platform/profiler.h"
......@@ -33,11 +34,6 @@ DEFINE_bool(check_nan_inf, false,
namespace paddle {
namespace framework {
// Combine two hash values to a single hash.
inline size_t CombineHash(size_t seed, size_t a) {
return (seed ^ a) + 0x9e3779b9 + (seed << 6) + (seed >> 2);
}
std::vector<std::tuple<platform::Place, LibraryType>> kKernelPriority = {
std::make_tuple(platform::CUDAPlace(0), LibraryType::kCUDNN),
std::make_tuple(platform::CUDAPlace(0), LibraryType::kPlain),
......@@ -153,17 +149,14 @@ void OperatorBase::Run(const Scope& scope, const platform::Place& place) {
#endif
}
// The profile has a process-wide mutex, results in serious performance issue
// in concurrency scenerio. Here use an `if` to fix this issue.
// Please not remove the `if`, ask @Superjomn if there are any concern.
#ifndef _WIN32
// The profile has a process-wide mutex, results in serious performance issue
// in concurrency scenerio. Here use an `if` to fix this issue.
// Please not remove the `if`, ask @Superjomn if there are any concern.
if (platform::IsProfileEnabled()) {
platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
platform::RecordEvent record_event(Type(), pool.Get(place));
RunImpl(scope, place);
} else
#endif
{
} else {
RunImpl(scope, place);
}
VLOG(30) << place << " " << DebugStringEx(&scope);
......@@ -797,17 +790,6 @@ void OperatorWithKernel::TransferInplaceVarsBack(
Scope* OperatorWithKernel::TryTransferData(
const Scope& scope, const OpKernelType& expected_kernel_key,
std::vector<std::string>* transfered_inplace_vars) const {
// In the inference scenerio, the scopes will be reused across the batches, so
// the `new_scope` here will result in GPU memroy explosion over the running of
// operators.
// We use a thread_local cache to fix that issue, the key in the cache is the
// combination of the `scope` argument, from_kernel_type, target_kernel_type.
// Have a discussion with @Superjomn or the inference developers if some changes
// on this logic for this macro might not tested on the other scenerios.
#ifdef PADDLE_ON_INFERENCE
thread_local std::unordered_map<size_t, Scope*> infer_transfer_scope_cache;
#endif
Scope* new_scope = nullptr;
for (auto& var_name_item : Inputs()) {
for (auto& var_name : var_name_item.second) {
......@@ -838,23 +820,23 @@ Scope* OperatorWithKernel::TryTransferData(
VLOG(30) << "Transform Variable " << var_name << " from "
<< kernel_type_for_var << " to " << expected_kernel_key;
#ifdef PADDLE_ON_INFERENCE
size_t infer_cache_key =
CombineHash(OpKernelType::Hash()(kernel_type_for_var),
OpKernelType::Hash()(expected_kernel_key));
infer_cache_key =
CombineHash(infer_cache_key, std::hash<const Scope*>()(&scope));
auto it = infer_transfer_scope_cache.find(infer_cache_key);
if (it != infer_transfer_scope_cache.end()) {
new_scope = infer_transfer_scope_cache[infer_cache_key];
} else {
new_scope = &scope.NewScope();
infer_transfer_scope_cache[infer_cache_key] = new_scope;
}
#endif
if (new_scope == nullptr) {
// In the inference scenerio, the scopes will be reused across the
// batches, so the `new_scope` here will result in GPU memroy explosion
// over the running of operators.
// We use a thread_local cache to fix that issue, the key in the cache is
// the combination of the `scope` argument, from_kernel_type,
// target_kernel_type.
// Have a discussion with @Superjomn or the inference developers if some
// changes on this logic for this macro might not tested on the other
// scenerios.
// If this op is not called by an Executor or ParallelExecutor, it should
// called by a NaiveExecutor, the NaiveExecutor will cache the scopes and
// variables, that behavior a lot different.
if (!run_by_executor_) {
new_scope = TryCreateTransferScope(kernel_type_for_var,
expected_kernel_key, &scope);
}
if (!new_scope) {
new_scope = &scope.NewScope();
}
......
......@@ -127,6 +127,8 @@ class OperatorBase {
//! Get all outputs variable names
virtual std::vector<std::string> OutputVars(bool has_intermediate) const;
void SetIsCalledByExecutor(bool x) { run_by_executor_ = x; }
protected:
std::string type_;
// NOTE: in case of OpGrad, inputs_ contains:
......@@ -139,6 +141,8 @@ class OperatorBase {
// IG (Inputs Gradients)
VariableNameMap outputs_;
AttributeMap attrs_;
// Whether this operator executes in an Executor.
bool run_by_executor_{true};
private:
void GenerateTemporaryNames();
......
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/framework/transfer_scope_cache.h"
namespace paddle {
namespace framework {
// Holds all the transfer scope across the process.
std::unordered_map<size_t, Scope*>& global_transfer_data_cache() {
typedef std::unordered_map<size_t, Scope*> map_t;
thread_local std::unique_ptr<map_t> x(new map_t);
return *x;
}
// Holds all the transfer scope for this thread.
std::unordered_set<Scope*>& global_transfer_scope_cache() {
typedef std::unordered_set<Scope*> set_t;
thread_local std::unique_ptr<set_t> x(new set_t);
return *x;
}
// Try to create a transfer scope. If one cached scope has match the
// requirement, just return that one.
// Inputs:
// @type0: the source kernel type.
// @type1: the target kernel type.
// @scope: the execution scope of this op.
// Returns: A scope used to hold the transfer data across the different kernel
// type.
Scope* TryCreateTransferScope(OpKernelType type0, OpKernelType type1,
const Scope* scope) {
Scope* new_scope{nullptr};
size_t infer_cache_key =
CombineHash(OpKernelType::Hash()(type0), OpKernelType::Hash()(type1));
infer_cache_key =
CombineHash(infer_cache_key, std::hash<const Scope*>()(scope));
auto it = global_transfer_data_cache().find(infer_cache_key);
if (it != global_transfer_data_cache().end()) {
new_scope = global_transfer_data_cache()[infer_cache_key];
} else {
new_scope = &scope->NewScope();
global_transfer_data_cache()[infer_cache_key] = new_scope;
}
global_transfer_scope_cache().insert(new_scope);
return new_scope;
}
} // namespace framework
} // namespace paddle
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <thread> // NOLINT
#include <unordered_map>
#include <unordered_set>
#include "paddle/fluid/framework/op_kernel_type.h"
#include "paddle/fluid/framework/scope.h"
namespace paddle {
namespace framework {
std::unordered_map<size_t, Scope*>& global_transfer_data_cache();
std::unordered_set<Scope*>& global_transfer_scope_cache();
// Combine two hash values to a single hash.
static size_t CombineHash(size_t seed, size_t a) {
return (seed ^ a) + 0x9e3779b9 + (seed << 6) + (seed >> 2);
}
Scope* TryCreateTransferScope(OpKernelType type0, OpKernelType type1,
const Scope* scope);
void RemoveKidsFromTransferScopeCache(Scope* scope);
} // namespace framework
} // namespace paddle
......@@ -4,6 +4,7 @@ endif()
# analysis and tensorrt must be added before creating static library,
# otherwise, there would be undefined reference to them in static library.
add_subdirectory(analysis)
add_subdirectory(utils)
if (TENSORRT_FOUND)
add_subdirectory(tensorrt)
endif()
......
......@@ -19,6 +19,7 @@
#include "paddle/fluid/inference/analysis/ut_helper.h"
#include "paddle/fluid/inference/api/paddle_inference_api.h"
#include "paddle/fluid/inference/api/paddle_inference_pass.h"
#include "paddle/fluid/platform/port.h"
namespace paddle {
namespace inference {
......@@ -75,7 +76,7 @@ void TestWord2vecPrediction(const std::string& model_path) {
0.000932706};
const size_t num_elements = outputs.front().data.length() / sizeof(float);
// The outputs' buffers are in CPU memory.
for (size_t i = 0; i < std::min(5UL, num_elements); i++) {
for (size_t i = 0; i < std::min((size_t)5UL, num_elements); i++) {
LOG(INFO) << "data: "
<< static_cast<float*>(outputs.front().data.data())[i];
PADDLE_ENFORCE(static_cast<float*>(outputs.front().data.data())[i],
......
......@@ -30,7 +30,9 @@ cc_library(paddle_pass_builder SRCS paddle_pass_builder.cc)
cc_library(analysis_predictor SRCS analysis_predictor.cc DEPS paddle_inference_api analysis naive_executor zero_copy_tensor reset_tensor_array analysis_config paddle_pass_builder ir_pass_manager)
cc_library(zero_copy_tensor SRCS details/zero_copy_tensor.cc DEPS scope lod_tensor enforce)
cc_library(zero_copy_tensor_dummy SRCS details/zero_copy_tensor_dummy.cc)
cc_library(paddle_inference_api SRCS api.cc api_impl.cc helper.cc DEPS lod_tensor scope paddle_pass_builder reset_tensor_array analysis_config analysis_config paddle_pass_builder DEPS zero_copy_tensor)
cc_library(paddle_inference_api SRCS api.cc api_impl.cc helper.cc DEPS
lod_tensor scope paddle_pass_builder reset_tensor_array analysis_config
analysis_config paddle_pass_builder zero_copy_tensor reset_tensor_array)
cc_test(test_paddle_inference_api
SRCS api_tester.cc
......
......@@ -46,6 +46,7 @@ contrib::AnalysisConfig::AnalysisConfig(const contrib::AnalysisConfig &other) {
prog_file = other.prog_file;
param_file = other.param_file;
specify_input_name = other.specify_input_name;
cpu_math_library_num_threads_ = other.cpu_math_library_num_threads_;
// fields from this.
enable_ir_optim = other.enable_ir_optim;
use_feed_fetch_ops = other.use_feed_fetch_ops;
......@@ -72,6 +73,7 @@ contrib::AnalysisConfig::AnalysisConfig(contrib::AnalysisConfig &&other) {
prog_file = other.prog_file;
param_file = other.param_file;
specify_input_name = other.specify_input_name;
cpu_math_library_num_threads_ = other.cpu_math_library_num_threads_;
// fields from this.
enable_ir_optim = other.enable_ir_optim;
use_feed_fetch_ops = other.use_feed_fetch_ops;
......
......@@ -31,11 +31,11 @@
#include "paddle/fluid/inference/tensorrt/convert/op_converter.h"
#endif
#include "paddle/fluid/inference/utils/singleton.h"
#include "paddle/fluid/memory/memcpy.h"
#include "paddle/fluid/platform/cpu_helper.h"
#include "paddle/fluid/platform/profiler.h"
DECLARE_bool(profile);
DECLARE_int32(paddle_num_threads);
namespace paddle {
......@@ -56,7 +56,6 @@ bool AnalysisPredictor::Init(
const std::shared_ptr<framework::Scope> &parent_scope,
const std::shared_ptr<framework::ProgramDesc> &program) {
VLOG(30) << "Predictor::init()";
#if !defined(_WIN32)
if (FLAGS_profile) {
LOG(WARNING) << "Profiler is actived, might affect the performance";
LOG(INFO) << "You can turn off by set gflags '-profile false'";
......@@ -64,10 +63,9 @@ bool AnalysisPredictor::Init(
: platform::ProfilerState::kCPU;
platform::EnableProfiler(tracking_device);
}
#endif
// no matter with or without MKLDNN
paddle::platform::SetNumThreads(FLAGS_paddle_num_threads);
paddle::platform::SetNumThreads(config_.cpu_math_library_num_threads());
if (!PrepareScope(parent_scope)) {
return false;
......@@ -160,6 +158,14 @@ bool AnalysisPredictor::PrepareExecutor() {
return true;
}
void AnalysisPredictor::SetMkldnnThreadID(int tid) {
#ifdef PADDLE_WITH_MKLDNN
platform::set_cur_thread_id(tid);
#else
LOG(ERROR) << "Please compile with MKLDNN first to use MKLDNN";
#endif
}
bool AnalysisPredictor::Run(const std::vector<PaddleTensor> &inputs,
std::vector<PaddleTensor> *output_data,
int batch_size) {
......@@ -167,7 +173,6 @@ bool AnalysisPredictor::Run(const std::vector<PaddleTensor> &inputs,
inference::Timer timer;
timer.tic();
// set feed variable
std::vector<framework::LoDTensor> feeds;
framework::Scope *scope = sub_scope_ ? sub_scope_ : scope_.get();
if (!SetFeed(inputs, scope)) {
LOG(ERROR) << "fail to set feed";
......@@ -208,17 +213,29 @@ bool AnalysisPredictor::SetFeed(const std::vector<PaddleTensor> &inputs,
framework::DDim ddim = framework::make_ddim(inputs[i].shape);
void *input_ptr;
if (inputs[i].dtype == PaddleDType::INT64) {
input_ptr = input.mutable_data<int64_t>(ddim, platform::CPUPlace());
input_ptr = input.mutable_data<int64_t>(ddim, place_);
} else if (inputs[i].dtype == PaddleDType::FLOAT32) {
input_ptr = input.mutable_data<float>(ddim, platform::CPUPlace());
input_ptr = input.mutable_data<float>(ddim, place_);
} else {
LOG(ERROR) << "unsupported feed type " << inputs[i].dtype;
return false;
}
if (platform::is_cpu_place(place_)) {
// TODO(panyx0718): Init LoDTensor from existing memcpy to save a copy.
std::memcpy(static_cast<void *>(input_ptr), inputs[i].data.data(),
inputs[i].data.length());
} else {
#ifdef PADDLE_WITH_CUDA
auto dst_gpu_place = boost::get<platform::CUDAPlace>(place_);
memory::Copy(dst_gpu_place, static_cast<void *>(input_ptr),
platform::CPUPlace(), inputs[i].data.data(),
inputs[i].data.length(),
0); // stream 0 for sync copy
#else
PADDLE_THROW("Not compile with CUDA, should not reach here.");
#endif
}
// TODO(Superjomn) Low performance, need optimization for heavy LoD copy.
framework::LoD lod;
for (auto &level : inputs[i].lod) {
......@@ -501,12 +518,10 @@ bool AnalysisPredictor::LoadParameters() {
}
AnalysisPredictor::~AnalysisPredictor() {
#if !defined(_WIN32)
if (FLAGS_profile) {
platform::DisableProfiler(platform::EventSortingKey::kTotal,
"./profile.log");
}
#endif
if (sub_scope_) {
scope_->DeleteScope(sub_scope_);
}
......
......@@ -69,6 +69,8 @@ class AnalysisPredictor : public PaddlePredictor {
framework::Scope *scope() { return scope_.get(); }
framework::ProgramDesc &program() { return *inference_program_; }
void SetMkldnnThreadID(int tid);
protected:
bool PrepareProgram(const std::shared_ptr<framework::ProgramDesc> &program);
bool PrepareScope(const std::shared_ptr<framework::Scope> &parent_scope);
......
......@@ -24,11 +24,11 @@ limitations under the License. */
#include "paddle/fluid/inference/api/api_impl.h"
#include "paddle/fluid/inference/api/details/reset_tensor_array.h"
#include "paddle/fluid/inference/api/helper.h"
#include "paddle/fluid/memory/memcpy.h"
#include "paddle/fluid/platform/cpu_helper.h"
#include "paddle/fluid/platform/profiler.h"
DEFINE_bool(profile, false, "Turn on profiler for fluid");
DECLARE_int32(paddle_num_threads);
namespace paddle {
namespace {
......@@ -64,7 +64,6 @@ void NativePaddlePredictor::PrepareFeedFetch() {
bool NativePaddlePredictor::Init(
std::shared_ptr<framework::Scope> parent_scope) {
VLOG(3) << "Predictor::init()";
#if !defined(_WIN32)
if (FLAGS_profile) {
LOG(WARNING) << "Profiler is actived, might affect the performance";
LOG(INFO) << "You can turn off by set gflags '-profile false'";
......@@ -73,10 +72,9 @@ bool NativePaddlePredictor::Init(
: platform::ProfilerState::kCPU;
platform::EnableProfiler(tracking_device);
}
#endif
// no matter with or without MKLDNN
paddle::platform::SetNumThreads(FLAGS_paddle_num_threads);
paddle::platform::SetNumThreads(config_.cpu_math_library_num_threads());
if (config_.use_gpu) {
place_ = paddle::platform::CUDAPlace(config_.device);
......@@ -121,12 +119,10 @@ bool NativePaddlePredictor::Init(
}
NativePaddlePredictor::~NativePaddlePredictor() {
#if !defined(_WIN32)
if (FLAGS_profile) {
platform::DisableProfiler(platform::EventSortingKey::kTotal,
"./profile.log");
}
#endif
if (sub_scope_) {
scope_->DeleteScope(sub_scope_);
}
......@@ -139,7 +135,6 @@ bool NativePaddlePredictor::Run(const std::vector<PaddleTensor> &inputs,
Timer timer;
timer.tic();
// set feed variable
std::vector<framework::LoDTensor> feeds;
framework::Scope *scope = sub_scope_ != nullptr ? sub_scope_ : scope_.get();
if (!SetFeed(inputs, scope)) {
LOG(ERROR) << "fail to set feed";
......@@ -195,17 +190,30 @@ bool NativePaddlePredictor::SetFeed(const std::vector<PaddleTensor> &inputs,
framework::DDim ddim = framework::make_ddim(inputs[i].shape);
void *input_ptr;
if (inputs[i].dtype == PaddleDType::INT64) {
input_ptr = input.mutable_data<int64_t>(ddim, platform::CPUPlace());
input_ptr = input.mutable_data<int64_t>(ddim, place_);
} else if (inputs[i].dtype == PaddleDType::FLOAT32) {
input_ptr = input.mutable_data<float>(ddim, platform::CPUPlace());
input_ptr = input.mutable_data<float>(ddim, place_);
} else {
LOG(ERROR) << "unsupported feed type " << inputs[i].dtype;
return false;
}
if (platform::is_cpu_place(place_)) {
// TODO(panyx0718): Init LoDTensor from existing memcpy to save a copy.
std::memcpy(static_cast<void *>(input_ptr), inputs[i].data.data(),
inputs[i].data.length());
} else {
#ifdef PADDLE_WITH_CUDA
auto dst_gpu_place = boost::get<platform::CUDAPlace>(place_);
memory::Copy(dst_gpu_place, static_cast<void *>(input_ptr),
platform::CPUPlace(), inputs[i].data.data(),
inputs[i].data.length(),
0); // stream 0 for sync copy
#else
PADDLE_THROW("Not compile with CUDA, should not reach here.");
#endif
}
// TODO(Superjomn) Low performance, need optimization for heavy LoD copy.
framework::LoD lod;
for (auto &level : inputs[i].lod) {
......
......@@ -46,8 +46,6 @@ if(WITH_GPU)
endif()
endif(NOT WIN32)
endif()
include_directories("D:/Paddle/")
include_directories("${PADDLE_LIB}")
include_directories("${PADDLE_LIB}/third_party/install/protobuf/include")
include_directories("${PADDLE_LIB}/third_party/install/glog/include")
......
......@@ -15,10 +15,6 @@
#pragma once
#include <glog/logging.h>
#if !defined(_WIN32)
#include <sys/time.h>
#else
#endif
#include <algorithm>
#include <chrono> // NOLINT
......@@ -28,6 +24,7 @@
#include <string>
#include <vector>
#include "paddle/fluid/inference/api/paddle_inference_api.h"
#include "paddle/fluid/platform/port.h"
#include "paddle/fluid/string/printf.h"
namespace paddle {
......
......@@ -51,9 +51,9 @@ struct AnalysisConfig : public NativeConfig {
int max_batch_size = 1);
bool use_tensorrt() const { return use_tensorrt_; }
void EnableMKLDNN();
// NOTE this is just for internal development, please not use it.
// NOT stable yet.
void EnableMKLDNN();
bool use_mkldnn() const { return use_mkldnn_; }
friend class ::paddle::AnalysisPredictor;
......
......@@ -186,6 +186,19 @@ struct NativeConfig : public PaddlePredictor::Config {
// Specify the variable's name of each input if input tensors don't follow the
// `feeds` and `fetches` of the phase `save_inference_model`.
bool specify_input_name{false};
// Set and get the number of cpu math library threads.
void SetCpuMathLibraryNumThreads(int cpu_math_library_num_threads) {
cpu_math_library_num_threads_ = cpu_math_library_num_threads;
}
int cpu_math_library_num_threads() const {
return cpu_math_library_num_threads_;
}
protected:
// number of cpu math library (such as MKL, OpenBlas) threads for each
// instance.
int cpu_math_library_num_threads_{1};
};
// A factory to help create different predictors.
......
......@@ -19,9 +19,6 @@ namespace paddle {
namespace inference {
namespace tensorrt {
/*
* SplitOp.
*/
class SplitOpConverter : public OpConverter {
public:
void operator()(const framework::proto::OpDesc& op,
......@@ -40,16 +37,11 @@ class SplitOpConverter : public OpConverter {
int axis = boost::get<int>(op_desc.GetAttr("axis"));
std::vector<int> output_lengths =
boost::get<std::vector<int>>(op_desc.GetAttr("sections"));
// split on batch is not supported in TensorRT
PADDLE_ENFORCE(axis != 0);
if (axis < 0) {
axis += input_dims.nbDims;
} else {
axis -= 1;
}
axis += (axis < 0) ? input_dims.nbDims : -1;
PADDLE_ENFORCE(output_lengths.size() == output_num);
//
plugin::SplitPlugin* plugin = new plugin::SplitPlugin(axis, output_lengths);
nvinfer1::IPluginLayer* layer =
engine_->AddPlugin(&input, input_num, plugin);
......
......@@ -20,30 +20,92 @@ namespace paddle {
namespace inference {
namespace tensorrt {
TEST(split_op, test) {
template <int BatchSize, int Axis>
void TensorRTSplitTest(const std::vector<int> &in_shape,
const std::vector<int> &sections) {
std::unordered_set<std::string> parameters({""});
framework::Scope scope;
TRTConvertValidation validator(10, parameters, scope, 1000);
validator.DeclInputVar("split_input", nvinfer1::DimsCHW(3, 2, 2));
validator.DeclOutputVar("split_out1", nvinfer1::DimsCHW(2, 2, 2));
validator.DeclOutputVar("split_out2", nvinfer1::DimsCHW(1, 2, 2));
TRTConvertValidation validator(BatchSize + 1, parameters, scope, 10000);
auto make_dim = [](const std::vector<int> &shape) {
nvinfer1::DimsCHW dim;
dim.c() = shape[0];
dim.h() = shape[1];
dim.w() = shape[2];
return dim;
};
validator.DeclInputVar("split_input", make_dim(in_shape));
std::vector<std::string> output_vars;
for (size_t i = 0; i < sections.size(); ++i) {
auto out_shape = in_shape;
out_shape[Axis - 1] = sections[i];
std::string output_name = "split_out" + std::to_string(i);
validator.DeclOutputVar(output_name, make_dim(out_shape));
output_vars.push_back(output_name);
}
// Prepare Op description
framework::OpDesc desc;
desc.SetType("split");
desc.SetInput("X", {"split_input"});
desc.SetOutput("Out", {"split_out1", "split_out2"});
desc.SetOutput("Out", output_vars);
int num = 0;
int axis = 1;
std::vector<int> output_lengths = {2, 1};
desc.SetAttr("axis", axis);
desc.SetAttr("num", num);
desc.SetAttr("sections", output_lengths);
desc.SetAttr("axis", Axis);
desc.SetAttr("num", 0);
desc.SetAttr("sections", sections);
validator.SetOp(*desc.Proto());
validator.Execute(1);
validator.Execute(BatchSize);
}
// batch = 0, axis = 1, same shape
TEST(split_op, test_same_shape_axis1_batch1) {
TensorRTSplitTest<1, 1>({4, 2, 2}, {2, 2});
}
// batch = 0, axis = 1, different shape
TEST(split_op, test_different_shape_axis1_batch1) {
TensorRTSplitTest<1, 1>({3, 2, 2}, {2, 1});
}
// batch = 10, axis = 1, same shape
TEST(split_op, test_same_shape_axis1_batch10) {
TensorRTSplitTest<10, 1>({4, 2, 2}, {2, 2});
}
// batch = 10, axis = 1, different shape
TEST(split_op, test_different_shape_axis1_batch10) {
TensorRTSplitTest<10, 1>({3, 2, 2}, {2, 1});
}
// batch = 0, axis = 2, same shape
TEST(split_op, test_same_shape_axis2_batch1) {
TensorRTSplitTest<1, 2>({3, 4, 2}, {2, 2});
}
// batch = 0, axis = 2, different shape
TEST(split_op, test_different_shape_axis2_batch1) {
TensorRTSplitTest<1, 2>({3, 3, 2}, {2, 1});
}
// batch = 10, axis = 2, same shape
TEST(split_op, test_same_shape_axis2_batch10) {
TensorRTSplitTest<10, 2>({3, 4, 2}, {2, 2});
}
// batch = 10, axis = 2, different shape
TEST(split_op, test_different_shape_axis2_batch10) {
TensorRTSplitTest<10, 2>({3, 3, 2}, {2, 1});
}
// batch = 0, axis = 3, same shape
TEST(split_op, test_same_shape_axis3_batch1) {
TensorRTSplitTest<1, 3>({3, 2, 4}, {2, 2});
}
// batch = 0, axis = 3, different shape
TEST(split_op, test_different_shape_axis3_batch1) {
TensorRTSplitTest<1, 3>({3, 2, 3}, {2, 1});
}
// batch = 10, axis = 3, same shape
TEST(split_op, test_same_shape_axis3_batch10) {
TensorRTSplitTest<10, 3>({3, 2, 4}, {2, 2});
}
// batch = 10, axis = 3, different shape
TEST(split_op, test_different_shape_axis3_batch10) {
TensorRTSplitTest<10, 3>({3, 2, 3}, {2, 1});
}
} // namespace tensorrt
......
......@@ -12,6 +12,8 @@
// See the License for the specific language governing permissions and
// limitations under the License.
#include <cuda_fp16.h>
#include <algorithm>
#include "paddle/fluid/inference/tensorrt/plugin/split_op_plugin.h"
namespace paddle {
......@@ -19,6 +21,52 @@ namespace inference {
namespace tensorrt {
namespace plugin {
// copied from operators::math::SplitFunctor
template <typename T>
__global__ void SplitKernel(const T* input_data, const int in_row,
const int in_col, const int* out_cols,
int out_cols_size, T** outputs_data) {
int tid_x = blockIdx.x * blockDim.x + threadIdx.x;
int curr_segment = 0;
int curr_offset = out_cols[0];
for (; tid_x < in_col; tid_x += blockDim.x * gridDim.x) {
int curr_col_offset = out_cols[curr_segment + 1];
while (curr_col_offset <= tid_x) {
curr_offset = curr_col_offset;
++curr_segment;
curr_col_offset = out_cols[curr_segment + 1];
}
int local_col = tid_x - curr_offset;
int segment_width = curr_col_offset - curr_offset;
T* output_ptr = outputs_data[curr_segment];
if (output_ptr != nullptr) {
int tid_y = blockIdx.y * blockDim.y + threadIdx.y;
for (; tid_y < in_row; tid_y += blockDim.y * gridDim.y)
output_ptr[tid_y * segment_width + local_col] =
input_data[tid_y * in_col + tid_x];
}
}
}
template <typename T>
__global__ void SplitKernel(const T* input_data, const int in_row,
const int in_col, const int fixed_out_col,
T** outputs_data) {
int tid_x = blockIdx.x * blockDim.x + threadIdx.x;
for (; tid_x < in_col; tid_x += blockDim.x * gridDim.x) {
int split = tid_x / fixed_out_col;
int in_offset = tid_x - split * fixed_out_col;
T* output_ptr = outputs_data[split];
if (output_ptr != nullptr) {
int tid_y = blockIdx.y * blockDim.y + threadIdx.y;
for (; tid_y < in_row; tid_y += blockDim.y * gridDim.y)
output_ptr[tid_y * fixed_out_col + in_offset] =
input_data[tid_y * in_col + tid_x];
}
}
}
nvinfer1::Dims SplitPlugin::getOutputDimensions(
int index, const nvinfer1::Dims* input_dims, int num_inputs) {
PADDLE_ENFORCE_EQ(num_inputs, 1);
......@@ -31,48 +79,96 @@ nvinfer1::Dims SplitPlugin::getOutputDimensions(
int SplitPlugin::initialize() {
PADDLE_ENFORCE_LE(axis_, nvinfer1::Dims::MAX_DIMS);
// notice input dims is [C, H, W]
nvinfer1::Dims dims = this->getInputDims(0);
outer_rows_ = 1;
inner_cols_ = 1;
for (int i = 0; i < axis_; ++i) {
outer_rows_ *= dims.d[i];
}
for (int i = axis_ + 1; i < dims.nbDims; ++i) {
inner_cols_ *= dims.d[i];
}
same_shape_ = true;
std::vector<int> segment_offsets(1, 0);
for (int i = 0; i < this->getNbOutputs(); ++i) {
segment_offsets.push_back(segment_offsets.back() + output_length_[i]);
}
segment_offsets_ = segment_offsets;
nvinfer1::Dims dims = this->getInputDims(0);
nx_ = 1;
for (int i = dims.nbDims - 1; i > axis_; --i) {
nx_ *= dims.d[i];
if (output_length_[i] != output_length_[0]) {
same_shape_ = false;
}
ny_ = dims.d[axis_];
nz_ = 1;
for (int i = axis_ - 1; i >= 0; --i) {
nz_ *= dims.d[i];
segment_offsets.push_back(segment_offsets.back() +
output_length_[i] * inner_cols_);
}
inner_cols_ *= dims.d[axis_];
d_segment_offsets_ = segment_offsets;
segment_offsets_ = std::move(segment_offsets);
d_output_ptrs_.resize(this->getNbOutputs(), nullptr);
return 0;
}
template <typename T>
inline void Split(cudaStream_t stream, const bool same_shape,
const int outer_rows, const int inner_cols,
const std::vector<int>& segment_offsets,
const int* d_segment_offsets, const T* input, T** outputs) {
const int kThreadsPerBlock = 1024;
const int kMaxBlocks = 65535;
int block_cols = kThreadsPerBlock;
if (inner_cols < kThreadsPerBlock) { // block_cols is aligned by 32.
block_cols = ((inner_cols + 31) >> 5) << 5;
}
int block_rows = kThreadsPerBlock / block_cols;
dim3 block_size = dim3(block_cols, block_rows, 1);
int grid_cols =
std::min((inner_cols + block_cols - 1) / block_cols, kMaxBlocks);
int grid_rows =
std::min(kMaxBlocks / grid_cols, std::max(outer_rows / block_rows, 1));
dim3 grid_size = dim3(grid_cols, grid_rows, 1);
if (same_shape) {
SplitKernel<<<grid_size, block_size, 0, stream>>>(
input, outer_rows, inner_cols, segment_offsets[1], outputs);
} else {
SplitKernel<<<grid_size, block_size, 0, stream>>>(
input, outer_rows, inner_cols, d_segment_offsets,
static_cast<int>(segment_offsets.size()), outputs);
}
}
int SplitPlugin::enqueue(int batchSize, const void* const* inputs,
void** outputs, void* workspace, cudaStream_t stream) {
auto const& input_dims = this->getInputDims(0);
int input_size = 0;
float const* idata = reinterpret_cast<float const*>(inputs[0]);
float** odatas = reinterpret_cast<float**>(outputs);
// kernel impl here.
int inputBatchOffset = nx_ * ny_ * nz_;
for (size_t i = 0; i < this->getNbOutputs(); i++) {
for (size_t j = 0; j < batchSize; j++) {
float const* input_ptr = reinterpret_cast<float const*>(inputs[0]);
if (((batchSize == 1 && axis_ == 0) || axis_ == -1) &&
this->getNbOutputs() < 10) {
float** output_ptrs = reinterpret_cast<float**>(outputs);
int data_type_size = (this->getDataType() == nvinfer1::DataType::kFLOAT)
? sizeof(float)
: sizeof(__half);
for (int i = 0; i < this->getNbOutputs(); ++i) {
PADDLE_ENFORCE(
cudaMemcpyAsync(
odatas[i] +
j * (segment_offsets_[i + 1] - segment_offsets_[i]) * nx_ *
sizeof(float),
inputs[0] +
(inputBatchOffset * j + segment_offsets_[i] * nx_) *
sizeof(float),
(segment_offsets_[i + 1] - segment_offsets_[i]) * nx_ * sizeof(float),
cudaMemcpyDeviceToDevice, stream);
output_ptrs[i], input_ptr + segment_offsets_[i],
(segment_offsets_[i + 1] - segment_offsets_[i]) * data_type_size,
cudaMemcpyDeviceToDevice, stream) == cudaSuccess);
}
} else {
outer_rows_ *= batchSize;
const int* d_segment_offsets_ptr =
thrust::raw_pointer_cast(&d_segment_offsets_[0]);
float** output_ptrs = thrust::raw_pointer_cast(&d_output_ptrs_[0]);
PADDLE_ENFORCE(cudaMemcpyAsync(output_ptrs, outputs,
this->getNbOutputs() * sizeof(float*),
cudaMemcpyHostToDevice,
stream) == cudaSuccess);
if (this->getDataType() == nvinfer1::DataType::kFLOAT) {
Split(stream, same_shape_, outer_rows_, inner_cols_, segment_offsets_,
d_segment_offsets_ptr, input_ptr, output_ptrs);
} else {
Split(stream, same_shape_, outer_rows_, inner_cols_, segment_offsets_,
d_segment_offsets_ptr, (__half*)input_ptr, // NOLINT
(__half**)output_ptrs); // NOLINT
}
}
return cudaGetLastError() != cudaSuccess;
}
......
......@@ -14,6 +14,7 @@
#pragma once
#include <thrust/device_vector.h>
#include <vector>
#include "paddle/fluid/inference/tensorrt/plugin/trt_plugin.h"
......@@ -25,7 +26,7 @@ namespace plugin {
class SplitPlugin : public PluginTensorRT {
public:
SplitPlugin(int axis, std::vector<int> const &output_lengths)
: axis_(axis), output_length_(output_lengths) {}
: axis_(axis), same_shape_(true), output_length_(output_lengths) {}
SplitPlugin(void const *serial_data, size_t serial_length) {
deserializeBase(serial_data, serial_length);
......@@ -60,9 +61,13 @@ class SplitPlugin : public PluginTensorRT {
}
int axis_;
int outer_rows_;
int inner_cols_;
bool same_shape_;
std::vector<int> output_length_;
int nx_, ny_, nz_;
std::vector<int> segment_offsets_;
thrust::device_vector<int> d_segment_offsets_;
thrust::device_vector<float *> d_output_ptrs_;
};
} // namespace plugin
......
......@@ -13,7 +13,6 @@ See the License for the specific language governing permissions and
limitations under the License. */
#include <gflags/gflags.h>
#include <sys/time.h>
#include <time.h>
#include <algorithm>
#include <fstream>
......
......@@ -27,6 +27,7 @@ void SetConfig(AnalysisConfig *cfg) {
cfg->device = 0;
cfg->enable_ir_optim = true;
cfg->specify_input_name = true;
cfg->SetCpuMathLibraryNumThreads(FLAGS_paddle_num_threads);
}
void SetInput(std::vector<std::vector<PaddleTensor>> *inputs) {
......
......@@ -53,6 +53,8 @@ std::ostream &operator<<(std::ostream &os, const NativeConfig &config) {
os << GenSpaces(num_spaces) << "param_file: " << config.param_file << "\n";
os << GenSpaces(num_spaces)
<< "specify_input_name: " << config.specify_input_name << "\n";
os << GenSpaces(num_spaces)
<< "cpu_num_threads: " << config.cpu_math_library_num_threads() << "\n";
num_spaces--;
os << GenSpaces(num_spaces) << "}\n";
return os;
......
......@@ -42,6 +42,7 @@ DEFINE_bool(use_analysis, true,
"Running the inference program in analysis mode.");
DECLARE_bool(profile);
DECLARE_int32(paddle_num_threads);
namespace paddle {
namespace inference {
......@@ -177,11 +178,9 @@ void TestOneThreadPrediction(
warmup_timer.tic();
predictor->Run(inputs[0], outputs, batch_size);
PrintTime(batch_size, 1, 1, 0, warmup_timer.toc(), 1);
#if !defined(_WIN32)
if (FLAGS_profile) {
paddle::platform::ResetProfiler();
}
#endif
}
LOG(INFO) << "Run " << num_times << " times...";
......@@ -206,22 +205,23 @@ void TestMultiThreadPrediction(
int batch_size = FLAGS_batch_size;
int num_times = FLAGS_repeat;
std::vector<std::thread> threads;
std::vector<std::unique_ptr<PaddlePredictor>> predictors;
predictors.emplace_back(CreateTestPredictor(config, use_analysis));
for (int tid = 1; tid < num_threads; ++tid) {
predictors.emplace_back(predictors.front()->Clone());
}
auto main_predictor = CreateTestPredictor(config, use_analysis);
size_t total_time{0};
for (int tid = 0; tid < num_threads; ++tid) {
threads.emplace_back([&, tid]() {
#ifdef PADDLE_WITH_MKLDNN
platform::set_cur_thread_id(static_cast<int>(tid) + 1);
#endif
// Each thread should have local inputs and outputs.
// The inputs of each thread are all the same.
std::vector<PaddleTensor> outputs_tid;
auto &predictor = predictors[tid];
// To ensure the thread binding correctly,
// please clone inside the threadpool.
auto predictor = main_predictor->Clone();
#ifdef PADDLE_WITH_MKLDNN
if (use_analysis) {
static_cast<AnalysisPredictor *>(predictor.get())
->SetMkldnnThreadID(static_cast<int>(tid) + 1);
}
#endif
// warmup run
LOG(INFO) << "Running thread " << tid << ", warm up run...";
......@@ -230,11 +230,9 @@ void TestMultiThreadPrediction(
warmup_timer.tic();
predictor->Run(inputs[0], outputs, batch_size);
PrintTime(batch_size, 1, num_threads, tid, warmup_timer.toc(), 1);
#if !defined(_WIN32)
if (FLAGS_profile) {
paddle::platform::ResetProfiler();
}
#endif
}
LOG(INFO) << "Thread " << tid << " run " << num_times << " times...";
......
......@@ -12,7 +12,6 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <sys/time.h>
#include <time.h>
#include <fstream>
#include <thread> // NOLINT
......
......@@ -20,6 +20,7 @@ limitations under the License. */
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/inference/io.h"
#include "paddle/fluid/platform/port.h"
#include "paddle/fluid/platform/profiler.h"
DECLARE_bool(use_mkldnn);
......
cc_library(benchmark SRCS benchmark.cc DEPS enforce)
cc_test(test_benchmark SRCS benchmark_tester.cc DEPS benchmark)
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/inference/utils/benchmark.h"
#include <sstream>
#include "paddle/fluid/platform/enforce.h"
namespace paddle {
namespace inference {
std::string Benchmark::SerializeToString() const {
std::stringstream ss;
ss << "-----------------------------------------------------\n";
ss << "name\t";
ss << "batch_size\t";
ss << "num_threads\t";
ss << "latency\t";
ss << "qps";
ss << '\n';
ss << name_ << "\t";
ss << batch_size_ << "\t";
ss << num_threads_ << "\t";
ss << latency_ << "\t";
ss << 1000 / latency_;
ss << '\n';
return ss.str();
}
void Benchmark::PersistToFile(const std::string &path) const {
std::ofstream file(path, std::ios::app);
PADDLE_ENFORCE(file.is_open(), "Can not open %s to add benchmark", path);
file << SerializeToString();
file.flush();
file.close();
}
} // namespace inference
} // namespace paddle
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <fstream>
#include <iostream>
namespace paddle {
namespace inference {
/*
* Helper class to calculate the performance.
*/
struct Benchmark {
int batch_size() const { return batch_size_; }
void SetBatchSize(int x) { batch_size_ = x; }
int num_threads() const { return num_threads_; }
void SetNumThreads(int x) { num_threads_ = x; }
bool use_gpu() const { return use_gpu_; }
void SetUseGpu() { use_gpu_ = true; }
int latency() const { return latency_; }
void SetLatency(int x) { latency_ = x; }
const std::string& name() const { return name_; }
void SetName(const std::string& name) { name_ = name; }
std::string SerializeToString() const;
void PersistToFile(const std::string& path) const;
private:
bool use_gpu_{false};
int batch_size_{0};
int latency_;
int num_threads_{1};
std::string name_;
};
} // namespace inference
} // namespace paddle
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/inference/utils/benchmark.h"
#include <glog/logging.h>
#include <gtest/gtest.h>
using namespace paddle::inference;
TEST(Benchmark, basic) {
Benchmark benchmark;
benchmark.SetName("key0");
benchmark.SetBatchSize(10);
benchmark.SetUseGpu();
benchmark.SetLatency(220);
LOG(INFO) << "benchmark:\n" << benchmark.SerializeToString();
}
TEST(Benchmark, PersistToFile) {
Benchmark benchmark;
benchmark.SetName("key0");
benchmark.SetBatchSize(10);
benchmark.SetUseGpu();
benchmark.SetLatency(220);
benchmark.PersistToFile("1.log");
benchmark.PersistToFile("1.log");
benchmark.PersistToFile("1.log");
}
\ No newline at end of file
......@@ -99,9 +99,8 @@ TEST(BestFitAllocator, test_concurrent_cpu_allocation) {
LockedAllocator locked_allocator(std::move(best_fit_allocator));
auto th_main = [&] {
std::random_device dev;
std::default_random_engine engine(dev());
auto th_main = [&](std::random_device::result_type seed) {
std::default_random_engine engine(seed);
std::uniform_int_distribution<size_t> dist(1U, 1024U);
for (size_t i = 0; i < 128; ++i) {
......@@ -125,7 +124,8 @@ TEST(BestFitAllocator, test_concurrent_cpu_allocation) {
{
std::vector<std::thread> threads;
for (size_t i = 0; i < 1024; ++i) {
threads.emplace_back(th_main);
std::random_device dev;
threads.emplace_back(th_main, dev());
}
for (auto& th : threads) {
th.join();
......
......@@ -41,9 +41,8 @@ TEST(BestFitAllocator, concurrent_cuda) {
LockedAllocator concurrent_allocator(
std::unique_ptr<Allocator>(new BestFitAllocator(cuda_allocation.get())));
auto th_main = [&] {
std::random_device dev;
std::default_random_engine engine(dev());
auto th_main = [&](std::random_device::result_type seed) {
std::default_random_engine engine(seed);
std::uniform_int_distribution<size_t> dist(1U, 1024U);
platform::CUDAPlace gpu(0);
platform::CUDADeviceContext dev_ctx(gpu);
......@@ -75,7 +74,8 @@ TEST(BestFitAllocator, concurrent_cuda) {
{
std::vector<std::thread> threads;
for (size_t i = 0; i < 1024; ++i) {
threads.emplace_back(th_main);
std::random_device dev;
threads.emplace_back(th_main, dev());
}
for (auto& th : threads) {
th.join();
......
......@@ -41,7 +41,7 @@ TEST(RetryAllocator, RetryAllocator) {
size_t thread_num = 32;
size_t sleep_time = 40;
size_t extra_time = 2;
size_t extra_time = 10;
// Reserve to perform more tests in the future
std::vector<std::shared_ptr<Allocator>> allocators;
......
......@@ -46,7 +46,7 @@ void CreateInput(LoDTensor* ids, LoDTensor* scores) {
auto* scores_data = scores->mutable_data<float>(place);
vector<int64_t> _ids({4, 2, 5, 2, 1, 3, 3, 5, 2, 8, 2, 1});
vector<float> _scores(
{0.5, 0.3, 0.2, 0.6, 0.3, 0.1, 0.9, 0.5, 0.1, 0.7, 0.5, 0.1});
{0.5f, 0.3f, 0.2f, 0.6f, 0.3f, 0.1f, 0.9f, 0.5f, 0.1f, 0.7f, 0.5f, 0.1f});
for (int i = 0; i < 12; i++) {
ids_data[i] = _ids[i];
......@@ -80,7 +80,7 @@ TEST(DISABLED_beam_search_op, run) {
ASSERT_EQ(sids.lod(), sscores.lod());
vector<int> tids({4, 2, 3, 8});
vector<float> tscores({0.5, 0.6, 0.9, 0.7});
vector<float> tscores({0.5f, 0.6f, 0.9f, 0.7f});
for (int i = 0; i < 4; i++) {
ASSERT_EQ(tids[i], sids.data<int64_t>()[i]);
......
......@@ -22,7 +22,7 @@ iou_similarity_op.cu)
detection_library(mine_hard_examples_op SRCS mine_hard_examples_op.cc)
detection_library(multiclass_nms_op SRCS multiclass_nms_op.cc poly_util.cc gpc.cc)
detection_library(prior_box_op SRCS prior_box_op.cc prior_box_op.cu)
detection_library(density_prior_box_op SRCS density_prior_box_op.cc)
detection_library(density_prior_box_op SRCS density_prior_box_op.cc density_prior_box_op.cu)
detection_library(anchor_generator_op SRCS anchor_generator_op.cc
anchor_generator_op.cu)
detection_library(target_assign_op SRCS target_assign_op.cc
......
......@@ -39,17 +39,15 @@ class DensityPriorBoxOp : public framework::OperatorWithKernel {
auto fixed_sizes = ctx->Attrs().Get<std::vector<float>>("fixed_sizes");
auto fixed_ratios = ctx->Attrs().Get<std::vector<float>>("fixed_ratios");
auto densities = ctx->Attrs().Get<std::vector<int>>("densities");
bool flatten = ctx->Attrs().Get<bool>("flatten_to_2d");
PADDLE_ENFORCE_EQ(fixed_sizes.size(), densities.size(),
"The number of fixed_sizes and densities must be equal.");
size_t num_priors = 0;
if ((fixed_sizes.size() > 0) && (densities.size() > 0)) {
for (size_t i = 0; i < densities.size(); ++i) {
if (fixed_ratios.size() > 0) {
num_priors += (fixed_ratios.size()) * (pow(densities[i], 2));
}
}
}
if (!flatten) {
std::vector<int64_t> dim_vec(4);
dim_vec[0] = input_dims[2];
dim_vec[1] = input_dims[3];
......@@ -57,6 +55,11 @@ class DensityPriorBoxOp : public framework::OperatorWithKernel {
dim_vec[3] = 4;
ctx->SetOutputDim("Boxes", framework::make_ddim(dim_vec));
ctx->SetOutputDim("Variances", framework::make_ddim(dim_vec));
} else {
int64_t dim0 = input_dims[2] * input_dims[3] * num_priors;
ctx->SetOutputDim("Boxes", {dim0, 4});
ctx->SetOutputDim("Variances", {dim0, 4});
}
}
protected:
......@@ -64,7 +67,7 @@ class DensityPriorBoxOp : public framework::OperatorWithKernel {
const framework::ExecutionContext& ctx) const override {
return framework::OpKernelType(
framework::ToDataType(ctx.Input<framework::Tensor>("Input")->type()),
platform::CPUPlace());
ctx.GetPlace());
}
};
......@@ -101,7 +104,10 @@ class DensityPriorBoxOpMaker : public framework::OpProtoAndCheckerMaker {
});
AddAttr<bool>("clip", "(bool) Whether to clip out-of-boundary boxes.")
.SetDefault(true);
AddAttr<bool>("flatten_to_2d",
"(bool) Whether to flatten to 2D and "
"the second dim is 4.")
.SetDefault(false);
AddAttr<float>(
"step_w",
"Density prior boxes step across width, 0.0 for auto calculation.")
......
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/detection/density_prior_box_op.h"
namespace paddle {
namespace operators {
template <typename T>
static __device__ inline T Clip(T in) {
return min(max(in, 0.), 1.);
}
template <typename T>
static __global__ void GenDensityPriorBox(
const int height, const int width, const int im_height, const int im_width,
const T offset, const T step_width, const T step_height,
const int num_priors, const T* ratios_shift, bool is_clip, const T var_xmin,
const T var_ymin, const T var_xmax, const T var_ymax, T* out, T* var) {
int gidx = blockIdx.x * blockDim.x + threadIdx.x;
int gidy = blockIdx.y * blockDim.y + threadIdx.y;
int step_x = blockDim.x * gridDim.x;
int step_y = blockDim.y * gridDim.y;
const T* width_ratio = ratios_shift;
const T* height_ratio = ratios_shift + num_priors;
const T* width_shift = ratios_shift + 2 * num_priors;
const T* height_shift = ratios_shift + 3 * num_priors;
for (int j = gidy; j < height; j += step_y) {
for (int i = gidx; i < width * num_priors; i += step_x) {
int h = j;
int w = i / num_priors;
int k = i % num_priors;
T center_x = (w + offset) * step_width;
T center_y = (h + offset) * step_height;
T center_x_temp = center_x + width_shift[k];
T center_y_temp = center_y + height_shift[k];
T box_width_ratio = width_ratio[k] / 2.;
T box_height_ratio = height_ratio[k] / 2.;
T xmin = max((center_x_temp - box_width_ratio) / im_width, 0.);
T ymin = max((center_y_temp - box_height_ratio) / im_height, 0.);
T xmax = min((center_x_temp + box_width_ratio) / im_width, 1.);
T ymax = min((center_y_temp + box_height_ratio) / im_height, 1.);
int out_offset = (j * width * num_priors + i) * 4;
out[out_offset] = is_clip ? Clip<T>(xmin) : xmin;
out[out_offset + 1] = is_clip ? Clip<T>(ymin) : ymin;
out[out_offset + 2] = is_clip ? Clip<T>(xmax) : xmax;
out[out_offset + 3] = is_clip ? Clip<T>(ymax) : ymax;
var[out_offset] = var_xmin;
var[out_offset + 1] = var_ymin;
var[out_offset + 2] = var_xmax;
var[out_offset + 3] = var_ymax;
}
}
}
template <typename T>
class DensityPriorBoxOpCUDAKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
auto* input = ctx.Input<paddle::framework::Tensor>("Input");
auto* image = ctx.Input<paddle::framework::Tensor>("Image");
auto* boxes = ctx.Output<paddle::framework::Tensor>("Boxes");
auto* vars = ctx.Output<paddle::framework::Tensor>("Variances");
auto variances = ctx.Attr<std::vector<float>>("variances");
auto is_clip = ctx.Attr<bool>("clip");
auto fixed_sizes = ctx.Attr<std::vector<float>>("fixed_sizes");
auto fixed_ratios = ctx.Attr<std::vector<float>>("fixed_ratios");
auto densities = ctx.Attr<std::vector<int>>("densities");
T step_w = static_cast<T>(ctx.Attr<float>("step_w"));
T step_h = static_cast<T>(ctx.Attr<float>("step_h"));
T offset = static_cast<T>(ctx.Attr<float>("offset"));
auto img_width = image->dims()[3];
auto img_height = image->dims()[2];
auto feature_width = input->dims()[3];
auto feature_height = input->dims()[2];
T step_width, step_height;
if (step_w == 0 || step_h == 0) {
step_width = static_cast<T>(img_width) / feature_width;
step_height = static_cast<T>(img_height) / feature_height;
} else {
step_width = step_w;
step_height = step_h;
}
int num_priors = 0;
for (size_t i = 0; i < densities.size(); ++i) {
num_priors += (fixed_ratios.size()) * (pow(densities[i], 2));
}
int step_average = static_cast<int>((step_width + step_height) * 0.5);
framework::Tensor h_temp;
T* tdata = h_temp.mutable_data<T>({num_priors * 4}, platform::CPUPlace());
int idx = 0;
for (size_t s = 0; s < fixed_sizes.size(); ++s) {
auto fixed_size = fixed_sizes[s];
int density = densities[s];
for (size_t r = 0; r < fixed_ratios.size(); ++r) {
float ar = fixed_ratios[r];
int shift = step_average / density;
float box_width_ratio = fixed_size * sqrt(ar);
float box_height_ratio = fixed_size / sqrt(ar);
for (int di = 0; di < density; ++di) {
for (int dj = 0; dj < density; ++dj) {
float center_x_temp = shift / 2. + dj * shift - step_average / 2.;
float center_y_temp = shift / 2. + di * shift - step_average / 2.;
tdata[idx] = box_width_ratio;
tdata[num_priors + idx] = box_height_ratio;
tdata[2 * num_priors + idx] = center_x_temp;
tdata[3 * num_priors + idx] = center_y_temp;
idx++;
}
}
}
}
boxes->mutable_data<T>(ctx.GetPlace());
vars->mutable_data<T>(ctx.GetPlace());
framework::Tensor d_temp;
framework::TensorCopySync(h_temp, ctx.GetPlace(), &d_temp);
// At least use 32 threads, at most 512 threads.
// blockx is multiple of 32.
int blockx = std::min(((feature_width * num_priors + 31) >> 5) << 5, 512L);
int gridx = (feature_width * num_priors + blockx - 1) / blockx;
dim3 threads(blockx, 1);
dim3 grids(gridx, feature_height);
auto stream =
ctx.template device_context<platform::CUDADeviceContext>().stream();
GenDensityPriorBox<T><<<grids, threads, 0, stream>>>(
feature_height, feature_width, img_height, img_width, offset,
step_width, step_height, num_priors, d_temp.data<T>(), is_clip,
variances[0], variances[1], variances[2], variances[3],
boxes->data<T>(), vars->data<T>());
}
}; // namespace operators
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OP_CUDA_KERNEL(density_prior_box,
ops::DensityPriorBoxOpCUDAKernel<float>,
ops::DensityPriorBoxOpCUDAKernel<double>);
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
......@@ -52,18 +52,16 @@ class DensityPriorBoxOpKernel : public framework::OpKernel<T> {
step_height = step_h;
}
int num_priors = 0;
if (fixed_sizes.size() > 0 && densities.size() > 0) {
for (size_t i = 0; i < densities.size(); ++i) {
if (fixed_ratios.size() > 0) {
num_priors += (fixed_ratios.size()) * (pow(densities[i], 2));
}
}
}
boxes->mutable_data<T>(ctx.GetPlace());
vars->mutable_data<T>(ctx.GetPlace());
auto e_boxes = framework::EigenTensor<T, 4>::From(*boxes).setConstant(0.0);
auto box_dim = vars->dims();
boxes->Resize({feature_height, feature_width, num_priors, 4});
auto e_boxes = framework::EigenTensor<T, 4>::From(*boxes).setConstant(0.0);
int step_average = static_cast<int>((step_width + step_height) * 0.5);
for (int h = 0; h < feature_height; ++h) {
......@@ -76,7 +74,6 @@ class DensityPriorBoxOpKernel : public framework::OpKernel<T> {
auto fixed_size = fixed_sizes[s];
int density = densities[s];
// Generate density prior boxes with fixed ratios.
if (fixed_ratios.size() > 0) {
for (size_t r = 0; r < fixed_ratios.size(); ++r) {
float ar = fixed_ratios[r];
int shift = step_average / density;
......@@ -111,7 +108,6 @@ class DensityPriorBoxOpKernel : public framework::OpKernel<T> {
}
}
}
}
if (clip) {
platform::Transform<platform::CPUDeviceContext> trans;
ClipFunctor<T> clip_func;
......@@ -139,6 +135,7 @@ class DensityPriorBoxOpKernel : public framework::OpKernel<T> {
e_vars = var_et.broadcast(Eigen::DSizes<int, 2>(box_num, 1));
vars->Resize(var_dim);
boxes->Resize(box_dim);
}
}; // namespace operators
......
......@@ -12,7 +12,6 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <sys/time.h>
#include <limits>
#include "glog/logging.h" // For VLOG
......@@ -20,8 +19,11 @@ limitations under the License. */
#include "paddle/fluid/operators/distributed/grpc_client.h"
#include "paddle/fluid/operators/distributed/grpc_serde.h"
#include "paddle/fluid/operators/distributed/request_handler.h"
#include "paddle/fluid/platform/port.h"
#include "paddle/fluid/platform/profiler.h"
DECLARE_bool(rpc_disable_reuse_port);
namespace paddle {
namespace operators {
namespace distributed {
......@@ -386,6 +388,9 @@ std::shared_ptr<grpc::Channel> GRPCClient::GetChannel(const std::string& ep) {
// Channel configurations:
grpc::ChannelArguments args;
args.SetInt(GRPC_ARG_MAX_RECONNECT_BACKOFF_MS, 2000);
if (FLAGS_rpc_disable_reuse_port) {
args.SetInt(GRPC_ARG_ALLOW_REUSEPORT, 0);
}
args.SetCompressionAlgorithm(GRPC_COMPRESS_NONE);
args.SetMaxSendMessageSize(std::numeric_limits<int>::max());
args.SetMaxReceiveMessageSize(std::numeric_limits<int>::max());
......
......@@ -15,7 +15,6 @@ limitations under the License. */
#ifdef PADDLE_WITH_CUDA
#include <nccl.h>
#endif
#include <sys/time.h>
#include <thread> // NOLINT
#include "google/protobuf/io/coded_stream.h"
......@@ -26,6 +25,7 @@ limitations under the License. */
#include "paddle/fluid/operators/distributed/grpc_variable_response.h"
#include "paddle/fluid/operators/distributed/proto_encoder_helper.h"
#include "paddle/fluid/operators/distributed/sendrecvop_utils.h"
#include "paddle/fluid/platform/port.h"
#include "paddle/fluid/platform/profiler.h"
namespace paddle {
......
......@@ -13,7 +13,7 @@ See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <sys/time.h>
#include <iostream>
#include <string>
#include <vector>
......@@ -25,6 +25,7 @@ limitations under the License. */
#include "paddle/fluid/framework/tensor_util.h"
#include "paddle/fluid/framework/var_type.h"
#include "paddle/fluid/operators/distributed/sendrecvop_utils.h"
#include "paddle/fluid/platform/port.h"
#include "paddle/fluid/operators/distributed/send_recv.grpc.pb.h"
#include "paddle/fluid/operators/distributed/send_recv.pb.h"
......
......@@ -20,6 +20,8 @@ limitations under the License. */
using ::grpc::ServerAsyncResponseWriter;
DECLARE_bool(rpc_disable_reuse_port);
namespace paddle {
namespace operators {
namespace distributed {
......@@ -253,6 +255,20 @@ void AsyncGRPCServer::WaitServerReady() {
VLOG(40) << "AsyncGRPCServer WaitSeverReady";
}
// Define an option subclass in order to disable SO_REUSEPORT for the
// server socket.
// Come from:
// https://github.com/tensorflow/tensorflow/blob/master/tensorflow/core/distributed_runtime/rpc/grpc_server_lib.cc
class NoReusePortOption : public ::grpc::ServerBuilderOption {
public:
void UpdateArguments(::grpc::ChannelArguments* args) override {
args->SetInt(GRPC_ARG_ALLOW_REUSEPORT, 0);
}
void UpdatePlugins(std::vector<std::unique_ptr<::grpc::ServerBuilderPlugin>>*
plugins) override {}
};
void AsyncGRPCServer::StartServer() {
::grpc::ServerBuilder builder;
builder.AddListeningPort(bind_address_, ::grpc::InsecureServerCredentials(),
......@@ -260,6 +276,10 @@ void AsyncGRPCServer::StartServer() {
builder.SetMaxSendMessageSize(std::numeric_limits<int>::max());
builder.SetMaxReceiveMessageSize(std::numeric_limits<int>::max());
if (FLAGS_rpc_disable_reuse_port) {
builder.SetOption(
std::unique_ptr<::grpc::ServerBuilderOption>(new NoReusePortOption));
}
builder.RegisterService(&service_);
for (auto t : rpc_call_map_) {
......
......@@ -15,12 +15,14 @@ limitations under the License. */
#ifdef PADDLE_WITH_CUDA
#include <nccl.h>
#endif
#include <sys/time.h>
#include <thread> // NOLINT
#include "paddle/fluid/framework/data_type.h"
#include "paddle/fluid/operators/distributed/sendrecvop_utils.h"
#include "paddle/fluid/operators/distributed/variable_response.h"
#include "paddle/fluid/platform/port.h"
DEFINE_bool(rpc_disable_reuse_port, false, "Disable SO_REUSEPORT or not.");
namespace paddle {
namespace operators {
......
......@@ -13,7 +13,6 @@ See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <sys/time.h>
#include <iostream>
#include <string>
#include <vector>
......@@ -24,6 +23,7 @@ limitations under the License. */
#include "paddle/fluid/framework/selected_rows.h"
#include "paddle/fluid/framework/tensor_util.h"
#include "paddle/fluid/framework/var_type.h"
#include "paddle/fluid/platform/port.h"
#include "paddle/fluid/operators/distributed/send_recv.pb.h"
......
include(operators)
register_operators()
register_operators(EXCLUDES fusion_transpose_flatten_concat_op)
if (WITH_GPU)
op_library(fusion_transpose_flatten_concat_op)
file(APPEND ${pybind_file} "USE_CUDA_ONLY_OP(fusion_transpose_flatten_concat);\n")
endif()
......@@ -192,11 +192,14 @@ class FusionGRUKernel : public framework::OpKernel<T> {
const int M = x_dims[1]; \
const int D = wh_dims[0]; \
const int D2 = D * 2; \
const auto& ker = math::jitkernel::KernelPool::Instance() \
const math::jitkernel::gru_attr_t attr( \
D, ctx.Attr<std::string>("gate_activation"), \
ctx.Attr<std::string>("activation")); \
math::jitkernel::gru_t one_step; \
const auto& ker = \
math::jitkernel::KernelPool::Instance() \
.template Get<math::jitkernel::GRUKernel<T>, \
const std::string&, const std::string&>( \
ctx.Attr<std::string>("gate_activation"), \
ctx.Attr<std::string>("activation"), D); \
const math::jitkernel::gru_attr_t&>(attr); \
const T* x_data = x->data<T>(); \
const T* wx_data = wx->data<T>(); \
const T* wh_data = wh->data<T>(); \
......@@ -237,7 +240,9 @@ class FusionGRUKernel : public framework::OpKernel<T> {
if (h0_data) {
prev_hidden_data = h0_data + bid * D;
} else {
ker->ComputeH1(xx_data, hidden_out_data);
one_step.gates = xx_data;
one_step.ht = hidden_out_data;
ker->ComputeH1(&one_step, &attr);
prev_hidden_data = hidden_out_data;
tstart = 1;
move_step();
......@@ -247,12 +252,15 @@ class FusionGRUKernel : public framework::OpKernel<T> {
blas.GEMM(CblasNoTrans, CblasNoTrans, 1, D2, D, static_cast<T>(1),
prev_hidden_data, D, wh_data, D2, static_cast<T>(1), xx_data,
D3);
ker->ComputeHtPart1(xx_data, prev_hidden_data, hidden_out_data);
one_step.gates = xx_data;
one_step.ht_1 = prev_hidden_data;
one_step.ht = hidden_out_data;
ker->ComputeHtPart1(&one_step, &attr);
// gemm rt * Ws
blas.GEMM(CblasNoTrans, CblasNoTrans, 1, D, D, static_cast<T>(1),
hidden_out_data, D, wh_state_data, D, static_cast<T>(1),
xx_data + D2, D3);
ker->ComputeHtPart2(xx_data, prev_hidden_data, hidden_out_data);
ker->ComputeHtPart2(&one_step, &attr);
// save prev
prev_hidden_data = hidden_out_data;
move_step();
......@@ -314,7 +322,9 @@ class FusionGRUKernel : public framework::OpKernel<T> {
T* cur_out_data = batched_out_data;
// W: {W_update, W_reset; W_state}
for (int i = 0; i < max_bs; ++i) {
ker->ComputeH1(cur_in_data, cur_out_data);
one_step.gates = cur_in_data;
one_step.ht = cur_out_data;
ker->ComputeH1(&one_step, &attr);
// add offset
cur_in_data += D3;
cur_out_data += D;
......@@ -339,8 +349,11 @@ class FusionGRUKernel : public framework::OpKernel<T> {
T* cur_out_data = batched_out_data;
T* cur_prev_hidden_data = prev_hidden_data;
for (int i = 0; i < cur_bs; ++i) {
ker->ComputeHtPart1(cur_batched_data, cur_prev_hidden_data,
cur_out_data);
one_step.gates = cur_batched_data;
one_step.ht_1 = cur_prev_hidden_data;
one_step.ht = cur_out_data;
ker->ComputeHtPart1(&one_step, &attr);
cur_batched_data += D3;
cur_prev_hidden_data += D;
cur_out_data += D;
......@@ -354,8 +367,10 @@ class FusionGRUKernel : public framework::OpKernel<T> {
cur_prev_hidden_data = prev_hidden_data;
for (int i = 0; i < cur_bs; ++i) {
ker->ComputeHtPart2(cur_batched_data, cur_prev_hidden_data,
cur_out_data);
one_step.gates = cur_batched_data;
one_step.ht_1 = cur_prev_hidden_data;
one_step.ht = cur_out_data;
ker->ComputeHtPart2(&one_step, &attr);
cur_batched_data += D3;
cur_prev_hidden_data += D;
cur_out_data += D;
......
......@@ -250,13 +250,17 @@ class FuisonLSTMKernel : public framework::OpKernel<T> {
auto* checked_cell = ctx.Output<Tensor>("CheckedCell"); \
checked_cell_data = checked_cell->mutable_data<T>(place); \
} \
const math::jitkernel::lstm_attr_t attr( \
D, ctx.Attr<std::string>("gate_activation"), \
ctx.Attr<std::string>("candidate_activation"), \
ctx.Attr<std::string>("cell_activation"), use_peepholes); \
math::jitkernel::lstm_t one_step; \
one_step.wp = wp_data; \
one_step.checked = checked_cell_data; \
const auto& ker = \
math::jitkernel::KernelPool::Instance() \
.template Get<math::jitkernel::LSTMKernel<T>, const std::string&, \
const std::string&, const std::string&>( \
ctx.Attr<std::string>("gate_activation"), \
ctx.Attr<std::string>("candidate_activation"), \
ctx.Attr<std::string>("cell_activation"), D, use_peepholes)
.template Get<math::jitkernel::LSTMKernel<T>, \
const math::jitkernel::lstm_attr_t&>(attr)
// Wh GEMM
#define GEMM_WH_ADDON(bs, prev, out) \
......@@ -299,7 +303,10 @@ class FuisonLSTMKernel : public framework::OpKernel<T> {
prev_h_data = h0_data + bid * D;
prev_c_data = c0_data + bid * D;
} else {
ker->ComputeC1H1(xx_data, c_out_data, h_out_data, wp_data);
one_step.gates = xx_data;
one_step.ct = c_out_data;
one_step.ht = h_out_data;
ker->ComputeC1H1(&one_step, &attr);
tstart = 1;
// move one step
prev_h_data = h_out_data;
......@@ -310,8 +317,12 @@ class FuisonLSTMKernel : public framework::OpKernel<T> {
}
for (int step = tstart; step < seq_len; ++step) {
GEMM_WH_ADDON(1, prev_h_data, xx_data);
ker->ComputeCtHt(xx_data, prev_c_data, c_out_data, h_out_data, wp_data,
checked_cell_data);
one_step.gates = xx_data;
one_step.ct_1 = prev_c_data;
one_step.ct = c_out_data;
one_step.ht = h_out_data;
ker->ComputeCtHt(&one_step, &attr);
// move one step
prev_h_data = h_out_data;
prev_c_data = c_out_data;
......@@ -388,7 +399,11 @@ class FuisonLSTMKernel : public framework::OpKernel<T> {
T* cur_h_out_data = batched_h_out_data;
T* cur_c_out_data = batched_c_out_data;
for (int i = 0; i < max_bs; ++i) {
ker->ComputeC1H1(cur_in_data, cur_c_out_data, cur_h_out_data, wp_data);
one_step.gates = cur_in_data;
one_step.ct = cur_c_out_data;
one_step.ht = cur_h_out_data;
ker->ComputeC1H1(&one_step, &attr);
cur_in_data += D4;
cur_c_out_data += D;
cur_h_out_data += D;
......@@ -413,8 +428,12 @@ class FuisonLSTMKernel : public framework::OpKernel<T> {
T* cur_c_out_data = batched_c_out_data;
T* cur_h_out_data = batched_h_out_data;
for (int i = 0; i < cur_bs; ++i) {
ker->ComputeCtHt(cur_in_data, cur_prev_c_data, cur_c_out_data,
cur_h_out_data, wp_data, checked_cell_data);
one_step.gates = cur_in_data;
one_step.ct_1 = cur_prev_c_data;
one_step.ct = cur_c_out_data;
one_step.ht = cur_h_out_data;
ker->ComputeCtHt(&one_step, &attr);
// move one batch
cur_in_data += D4;
cur_prev_c_data += D;
......
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/fused/fusion_transpose_flatten_concat_op.h"
#include <string>
#include <vector>
#include "paddle/fluid/framework/op_registry.h"
namespace paddle {
namespace operators {
using framework::Tensor;
class TransposeFlattenConcatFusionOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
void InferShape(framework::InferShapeContext *ctx) const override {
PADDLE_ENFORCE_GE(ctx->Inputs("X").size(), 1UL,
"Inputs(X) of ConcatOp should be empty.");
PADDLE_ENFORCE(ctx->HasOutput("Out"),
"Output(Out) of ConcatOp should not be null.");
auto ins = ctx->GetInputsDim("X");
const size_t n = ins.size();
PADDLE_ENFORCE_GT(n, 0, "Input tensors count should > 0.");
std::vector<int> trans_axis =
ctx->Attrs().Get<std::vector<int>>("trans_axis");
int flatten_axis = ctx->Attrs().Get<int>("flatten_axis");
int concat_axis = ctx->Attrs().Get<int>("concat_axis");
size_t x_rank = ins[0].size();
size_t trans_axis_size = trans_axis.size();
PADDLE_ENFORCE_EQ(x_rank, trans_axis_size,
"The input tensor's rank(%d) "
"should be equal to the permutation axis's size(%d)",
x_rank, trans_axis_size);
auto dims0 =
GetFlattenShape(flatten_axis, GetPermuteShape(trans_axis, ins[0]));
std::vector<int> out_dims(dims0);
for (size_t i = 1; i < n; i++) {
auto dimsi =
GetFlattenShape(flatten_axis, GetPermuteShape(trans_axis, ins[i]));
for (int j = 0; j < static_cast<int>(dims0.size()); j++) {
if (j == concat_axis) {
out_dims[concat_axis] += dimsi[j];
} else {
PADDLE_ENFORCE_EQ(out_dims[j], dimsi[j],
"After flatting, the %d-th dim should be save "
"except the specify axis.",
j);
}
}
}
if (out_dims[concat_axis] < 0) {
out_dims[concat_axis] = -1;
}
ctx->SetOutputDim("Out", framework::make_ddim(out_dims));
}
};
class TransposeFlattenConcatFusionOpMaker
: public framework::OpProtoAndCheckerMaker {
public:
void Make() override {
AddInput(
"X",
"(Tensor) The input tensor, tensors with rank up to 6 are supported.")
.AsDuplicable();
AddOutput("Out", "(Tensor)The output tensor.");
AddAttr<std::vector<int>>(
"trans_axis",
"(vector<int>) A list of values, and the size of the list should be "
"the same with the input tensor rank. This operator permutes the input "
"tensor's axes according to the values given.");
AddAttr<int>("flatten_axis",
"(int)"
"Indicate up to which input dimensions (exclusive) should be"
"flattened to the outer dimension of the output. The value"
"for axis must be in the range [0, R], where R is the rank of"
"the input tensor. When axis = 0, the shape of the output"
"tensor is (1, (d_0 X d_1 ... d_n), where the shape of the"
"input tensor is (d_0, d_1, ... d_n).");
AddAttr<int>("concat_axis",
"The axis along which the input tensors will be concatenated. "
"It should be 0 or 1, since the tensor is 2D after flatting.");
AddComment(R"DOC(
)DOC");
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OPERATOR(fusion_transpose_flatten_concat,
ops::TransposeFlattenConcatFusionOp,
ops::TransposeFlattenConcatFusionOpMaker,
paddle::framework::EmptyGradOpMaker);
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/fused/fusion_transpose_flatten_concat_op.h"
#include <vector>
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/platform/cudnn_helper.h"
namespace paddle {
namespace operators {
template <typename T>
using CudnnDataType = platform::CudnnDataType<T>;
template <typename T>
class TransposeFlattenConcatFusionKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
auto ins = ctx.MultiInput<framework::Tensor>("X");
auto* out = ctx.Output<framework::Tensor>("Out");
out->mutable_data<T>(ctx.GetPlace());
auto odims = out->dims();
std::vector<int> trans_axis = ctx.Attr<std::vector<int>>("trans_axis");
int flatten_axis = ctx.Attr<int>("flatten_axis");
int concat_axis = ctx.Attr<int>("concat_axis");
int rank = ins[0]->dims().size();
// use at least 4D in cudnnTransformTensor
int max_dim = rank < 4 ? 4 : rank;
std::vector<int> stride_x(max_dim, 0);
std::vector<int> stride_y(max_dim, 0);
std::vector<int> dims_y(max_dim, 0);
cudnnTensorDescriptor_t in_desc;
cudnnTensorDescriptor_t out_desc;
CUDNN_ENFORCE(platform::dynload::cudnnCreateTensorDescriptor(&in_desc));
CUDNN_ENFORCE(platform::dynload::cudnnCreateTensorDescriptor(&out_desc));
cudnnDataType_t cudnn_dtype = CudnnDataType<T>::type;
auto& dev_ctx = ctx.template device_context<platform::CUDADeviceContext>();
auto handle = dev_ctx.cudnn_handle();
T* odata = out->data<T>();
for (size_t k = 0; k < ins.size(); ++k) {
auto perm_shape = GetPermuteShape(trans_axis, ins[k]->dims());
int osize = 1;
auto idims = ins[k]->dims();
for (int i = 0; i < rank; i++) {
stride_x[i] = 1;
for (int j = trans_axis[i] + 1; j < rank; j++) {
stride_x[i] *= idims[j];
}
dims_y[i] = perm_shape[i];
osize *= perm_shape[i];
}
stride_y[rank - 1] = 1;
for (int i = rank - 2; i >= 0; i--) {
if (((i + 1) == flatten_axis) && (concat_axis == 1)) {
stride_y[i] = odims[1];
} else {
stride_y[i] = stride_y[i + 1] * perm_shape[i + 1];
}
}
// Since concat is aftern flatten, the output is 2D tensor.
// If concat_axis is 0, each input's permutated tensor is continuous.
// If concat_axis is 1, the stride of 0-th dim of each input's
// permutated tensor is odims()[1].
for (int i = rank; i < max_dim; i++) {
stride_x[i] = 1;
stride_y[i] = 1;
dims_y[i] = 1;
}
CUDNN_ENFORCE(platform::dynload::cudnnSetTensorNdDescriptor(
in_desc, cudnn_dtype, max_dim, dims_y.data(), stride_x.data()));
CUDNN_ENFORCE(platform::dynload::cudnnSetTensorNdDescriptor(
out_desc, cudnn_dtype, max_dim, dims_y.data(), stride_y.data()));
CUDNN_ENFORCE(platform::dynload::cudnnTransformTensor(
handle, CudnnDataType<T>::kOne(), in_desc,
static_cast<const void*>(ins[k]->data<T>()),
CudnnDataType<T>::kZero(), out_desc, static_cast<void*>(odata)));
if (concat_axis == 0) {
odata += osize;
} else {
auto flat_shape = GetFlattenShape(flatten_axis, perm_shape);
odata += flat_shape[1];
}
}
CUDNN_ENFORCE(platform::dynload::cudnnDestroyTensorDescriptor(in_desc));
CUDNN_ENFORCE(platform::dynload::cudnnDestroyTensorDescriptor(out_desc));
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OP_CUDA_KERNEL(fusion_transpose_flatten_concat,
ops::TransposeFlattenConcatFusionKernel<float>,
ops::TransposeFlattenConcatFusionKernel<double>);
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <string>
#include <vector>
#include "paddle/fluid/framework/ddim.h"
namespace paddle {
namespace operators {
inline std::vector<int32_t> GetPermuteShape(const std::vector<int>& axis,
const framework::DDim& in_dims) {
std::vector<int32_t> out_dims(in_dims.size());
for (size_t i = 0; i < axis.size(); i++) {
out_dims[i] = in_dims[axis[i]];
}
return out_dims;
}
inline std::vector<int32_t> GetFlattenShape(const int axis,
const std::vector<int>& in_dims) {
int64_t outer = 1, inner = 1;
for (int i = 0; i < static_cast<int>(in_dims.size()); ++i) {
if (i < axis) {
outer *= in_dims[i];
} else {
inner *= in_dims[i];
}
}
std::vector<int32_t> out_shape(2);
out_shape[0] = outer;
out_shape[1] = inner;
return out_shape;
}
} // namespace operators
} // namespace paddle
......@@ -76,11 +76,12 @@ class InterpolateOpMaker : public framework::OpProtoAndCheckerMaker {
AddAttr<int>("out_h", "output height of interpolate op.");
AddAttr<int>("out_w", "output width of interpolate op.");
AddAttr<std::string>(
"interp_method",
"(string), interpolation method, can be \"bilinear\" for "
AddAttr<std::string>("interp_method",
"(string, default \"bilinear\"), interpolation "
"method, can be \"bilinear\" for "
"bilinear interpolation and \"nearest\" for nearest "
"neighbor interpolation.");
"neighbor interpolation.")
.SetDefault("bilinear");
AddComment(R"DOC(
This operator samples input X to given output shape by using specified
interpolation method, the interpolation methods can be \"nearest\"
......@@ -132,11 +133,19 @@ class InterpolateOpGrad : public framework::OperatorWithKernel {
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OPERATOR(interpolate, ops::InterpolateOp, ops::InterpolateOpMaker,
REGISTER_OPERATOR(bilinear_interp, ops::InterpolateOp, ops::InterpolateOpMaker,
paddle::framework::DefaultGradOpDescMaker<true>);
REGISTER_OPERATOR(interpolate_grad, ops::InterpolateOpGrad);
REGISTER_OP_CPU_KERNEL(interpolate, ops::InterpolateKernel<float>,
REGISTER_OPERATOR(bilinear_interp_grad, ops::InterpolateOpGrad);
REGISTER_OPERATOR(nearest_interp, ops::InterpolateOp, ops::InterpolateOpMaker,
paddle::framework::DefaultGradOpDescMaker<true>);
REGISTER_OPERATOR(nearest_interp_grad, ops::InterpolateOpGrad);
REGISTER_OP_CPU_KERNEL(bilinear_interp, ops::InterpolateKernel<float>,
ops::InterpolateKernel<double>,
ops::InterpolateKernel<uint8_t>);
REGISTER_OP_CPU_KERNEL(bilinear_interp_grad, ops::InterpolateGradKernel<float>,
ops::InterpolateGradKernel<double>);
REGISTER_OP_CPU_KERNEL(nearest_interp, ops::InterpolateKernel<float>,
ops::InterpolateKernel<double>,
ops::InterpolateKernel<uint8_t>);
REGISTER_OP_CPU_KERNEL(interpolate_grad, ops::InterpolateGradKernel<float>,
REGISTER_OP_CPU_KERNEL(nearest_interp_grad, ops::InterpolateGradKernel<float>,
ops::InterpolateGradKernel<double>);
......@@ -284,9 +284,15 @@ class InterpolateGradOpCUDAKernel : public framework::OpKernel<T> {
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OP_CUDA_KERNEL(interpolate, ops::InterpolateOpCUDAKernel<float>,
REGISTER_OP_CUDA_KERNEL(bilinear_interp, ops::InterpolateOpCUDAKernel<float>,
ops::InterpolateOpCUDAKernel<double>,
ops::InterpolateOpCUDAKernel<int>);
REGISTER_OP_CUDA_KERNEL(interpolate_grad,
REGISTER_OP_CUDA_KERNEL(bilinear_interp_grad,
ops::InterpolateGradOpCUDAKernel<float>,
ops::InterpolateGradOpCUDAKernel<double>);
REGISTER_OP_CUDA_KERNEL(nearest_interp, ops::InterpolateOpCUDAKernel<float>,
ops::InterpolateOpCUDAKernel<double>,
ops::InterpolateOpCUDAKernel<int>);
REGISTER_OP_CUDA_KERNEL(nearest_interp_grad,
ops::InterpolateGradOpCUDAKernel<float>,
ops::InterpolateGradOpCUDAKernel<double>);
......@@ -67,6 +67,7 @@ class LookupSparseTableOp : public framework::OperatorBase {
framework::proto::VarType::FP32,
"The sparse table only support FP32");
w_t->Get(ids_t, out_t, true, is_test);
out_t->set_lod(ids_t.lod());
}
};
......
......@@ -16,6 +16,9 @@
#include "paddle/fluid/operators/math/math_function.h"
#include "paddle/fluid/platform/dynload/cublas.h"
#include "paddle/fluid/platform/gpu_info.h"
DECLARE_bool(enable_cublas_tensor_op_math);
namespace paddle {
namespace operators {
......@@ -42,11 +45,44 @@ struct CUBlas<float> {
}
template <typename... ARGS>
static void GEMM_BATCH(ARGS... args) {
static void GEMM_STRIDED_BATCH(ARGS... args) {
#if CUDA_VERSION >= 8000
PADDLE_ENFORCE(platform::dynload::cublasSgemmStridedBatched(args...));
#else
PADDLE_THROW("SgemmStridedBatched is not supported on cuda <= 7.5");
#endif
}
// NOTES: GEMM_EX can use Tensor Core to accelerate matrix multiply.
// https://docs.nvidia.com/cuda/cublas/index.html#cublassetmathmode
template <typename... ARGS>
static void GEMM_EX(platform::CUDADeviceContext *dev_ctx,
cublasOperation_t transa, cublasOperation_t transb, int m,
int n, int k, const float *alpha, const void *A,
cudaDataType_t Atype, int lda, const void *B,
cudaDataType_t Btype, int ldb, const float *beta, void *C,
cudaDataType_t Ctype, int ldc) {
// Because the gcc 4.8 doesn't expand template parameter pack that
// appears in a lambda-expression, I can not use template parameter pack
// here.
auto cublas_call = [&]() {
#if CUDA_VERSION >= 8000
VLOG(5) << "use_tensor_op_math: "
<< (platform::TensorCoreAvailable() ? "True" : "False");
PADDLE_ENFORCE(platform::dynload::cublasSgemmEx(
dev_ctx->cublas_handle(), transa, transb, m, n, k, alpha, A, Atype,
lda, B, Btype, ldb, beta, C, Ctype, ldc));
#else
PADDLE_THROW("cublasSgemmEx is supported on cuda >= 8.0");
#endif
};
#if CUDA_VERSION >= 9000
// NOTES: To use Tensor Core, we should change the cublas config,
// but the cublas may be hold by multi-thread.
dev_ctx->CublasCall(cublas_call, CUBLAS_TENSOR_OP_MATH);
#else
cublas_call();
#endif
}
};
......@@ -69,13 +105,18 @@ struct CUBlas<double> {
}
template <typename... ARGS>
static void GEMM_BATCH(ARGS... args) {
static void GEMM_STRIDED_BATCH(ARGS... args) {
#if CUDA_VERSION >= 8000
PADDLE_ENFORCE(platform::dynload::cublasDgemmStridedBatched(args...));
#else
PADDLE_THROW("DgemmStridedBatched is not supported on cuda <= 7.5");
#endif
}
template <typename... ARGS>
static void GEMM_EX(ARGS... args) {
PADDLE_THROW("Currently there are not cublasDgemmEx.");
}
};
template <>
......@@ -96,10 +137,12 @@ struct CUBlas<platform::float16> {
reinterpret_cast<__half *>(C), ldc));
}
static void GEMM_BATCH(cublasHandle_t handle, cublasOperation_t transa,
static void GEMM_STRIDED_BATCH(cublasHandle_t handle,
cublasOperation_t transa,
cublasOperation_t transb, int m, int n, int k,
const float16 *alpha, const float16 *A, int lda,
long long int strideA, const float16 *B, // NOLINT
const float16 *alpha, const float16 *A,
int lda, long long int strideA, // NOLINT
const float16 *B, // NOLINT
int ldb, long long int strideB, // NOLINT
const float16 *beta, float16 *C, int ldc,
long long int strideC, // NOLINT
......@@ -114,6 +157,45 @@ struct CUBlas<platform::float16> {
ldc, strideC, batchCount));
#else
PADDLE_THROW("HgemmStridedBatched is not supported on cuda <= 7.5");
#endif
}
// NOTES: GEMM_EX can use Tensor Core to accelerate matrix multiply.
// https://docs.nvidia.com/cuda/cublas/index.html#cublassetmathmode
template <typename... ARGS>
static void GEMM_EX(platform::CUDADeviceContext *dev_ctx,
cublasOperation_t transa, cublasOperation_t transb, int m,
int n, int k, const void *alpha, const void *A,
cudaDataType_t Atype, int lda, const void *B,
cudaDataType_t Btype, int ldb, const void *beta, void *C,
cudaDataType_t Ctype, int ldc,
cudaDataType_t computeType) {
auto cublas_call = [&]() {
#if CUDA_VERSION >= 8000
cublasGemmAlgo_t algo = CUBLAS_GEMM_DFALT;
#if CUDA_VERSION >= 9000
bool use_tensor_op_math = platform::TensorCoreAvailable();
if (use_tensor_op_math) {
algo = CUBLAS_GEMM_DFALT_TENSOR_OP;
}
VLOG(5) << "use_tensor_op_math: "
<< (use_tensor_op_math ? "True" : "False");
#endif // CUDA_VERSION >= 9000
PADDLE_ENFORCE(platform::dynload::cublasGemmEx(
dev_ctx->cublas_handle(), transa, transb, m, n, k, alpha, A, Atype,
lda, B, Btype, ldb, beta, C, Ctype, ldc, computeType, algo));
#else
PADDLE_THROW("cublasGemmEx is supported on cuda >= 8.0");
#endif
};
#if CUDA_VERSION >= 9000
// NOTES: To use Tensor Core, we should change the cublas config,
// but the cublas may be hold by multi-thread.
dev_ctx->CublasCall(cublas_call, CUBLAS_TENSOR_OP_MATH);
#else
cublas_call();
#endif
}
};
......@@ -133,8 +215,21 @@ void Blas<platform::CUDADeviceContext>::GEMM(CBLAS_TRANSPOSE transA,
cublasOperation_t cuTransB =
(transB == CblasNoTrans) ? CUBLAS_OP_N : CUBLAS_OP_T;
CUBlas<T>::GEMM(context_.cublas_handle(), cuTransB, cuTransA, N, M, K, &alpha,
B, ldb, A, lda, &beta, C, N);
#if CUDA_VERSION >= 8000
if (FLAGS_enable_cublas_tensor_op_math && std::is_same<T, float>::value) {
auto &cuda_ctx = const_cast<platform::CUDADeviceContext &>(context_);
CUBlas<T>::GEMM_EX(&cuda_ctx, cuTransB, cuTransA, N, M, K, &alpha, B,
CUDA_R_32F, ldb, A, CUDA_R_32F, lda, &beta, C,
CUDA_R_32F, N);
} else {
#endif // CUDA_VERSION >= 8000
CUBlas<T>::GEMM(context_.cublas_handle(), cuTransB, cuTransA, N, M, K,
&alpha, B, ldb, A, lda, &beta, C, N);
#if CUDA_VERSION >= 8000
}
#endif // CUDA_VERSION >= 8000
}
template <>
......@@ -157,30 +252,18 @@ inline void Blas<platform::CUDADeviceContext>::GEMM(
PADDLE_ENFORCE_GE(context_.GetComputeCapability(), 53,
"cublas fp16 gemm requires GPU compute capability >= 53");
#if CUDA_VERSION >= 8000
float h_alpha = static_cast<float>(alpha);
float h_beta = static_cast<float>(beta);
cublasGemmAlgo_t algo = CUBLAS_GEMM_DFALT;
#if CUDA_VERSION >= 9000
if (context_.GetComputeCapability() >= 70) {
PADDLE_ENFORCE(platform::dynload::cublasSetMathMode(
context_.cublas_handle(), CUBLAS_TENSOR_OP_MATH));
algo = CUBLAS_GEMM_DFALT_TENSOR_OP;
} else {
PADDLE_ENFORCE(platform::dynload::cublasSetMathMode(
context_.cublas_handle(), CUBLAS_DEFAULT_MATH));
}
#endif // CUDA_VERSION >= 9000
#if CUDA_VERSION >= 8000
// cublasHgemm does true FP16 computation which is slow for non-Volta
// GPUs. So use cublasGemmEx instead which does pesudo FP16 computation:
// input/output in fp16, computation in fp32, which can also be accelerated
// using tensor cores in volta GPUs.
PADDLE_ENFORCE(platform::dynload::cublasGemmEx(
context_.cublas_handle(), cuTransB, cuTransA, N, M, K, &h_alpha, B,
CUDA_R_16F, ldb, A, CUDA_R_16F, lda, &h_beta, C, CUDA_R_16F, N,
CUDA_R_32F, algo));
auto &cuda_ctx = const_cast<platform::CUDADeviceContext &>(context_);
CUBlas<platform::float16>::GEMM_EX(
&cuda_ctx, cuTransB, cuTransA, N, M, K, &h_alpha, B, CUDA_R_16F, ldb, A,
CUDA_R_16F, lda, &h_beta, C, CUDA_R_16F, N, CUDA_R_32F);
#else
// CUDA 7.5 does not support cublasGemmEx, hence we fall back to use hgemm
CUBlas<platform::float16>::GEMM(context_.cublas_handle(), cuTransB, cuTransA,
......@@ -199,8 +282,38 @@ void Blas<platform::CUDADeviceContext>::GEMM(bool transA, bool transB, int M,
// the cblas convention.
cublasOperation_t cuTransA = transA ? CUBLAS_OP_T : CUBLAS_OP_N;
cublasOperation_t cuTransB = transB ? CUBLAS_OP_T : CUBLAS_OP_N;
CUBlas<T>::GEMM(context_.cublas_handle(), cuTransB, cuTransA, N, M, K, &alpha,
B, ldb, A, lda, &beta, C, ldc);
#if CUDA_VERSION >= 8000
if (FLAGS_enable_cublas_tensor_op_math && std::is_same<T, float>::value) {
auto &cuda_ctx = const_cast<platform::CUDADeviceContext &>(context_);
CUBlas<T>::GEMM_EX(&cuda_ctx, cuTransB, cuTransA, N, M, K, &alpha, B,
CUDA_R_32F, ldb, A, CUDA_R_32F, lda, &beta, C,
CUDA_R_32F, ldc);
} else {
#endif // CUDA_VERSION >= 8000
CUBlas<T>::GEMM(context_.cublas_handle(), cuTransB, cuTransA, N, M, K,
&alpha, B, ldb, A, lda, &beta, C, ldc);
#if CUDA_VERSION >= 8000
}
#endif // CUDA_VERSION >= 8000
}
template <>
template <>
inline void Blas<platform::CUDADeviceContext>::GEMM(
bool transA, bool transB, int M, int N, int K, platform::float16 alpha,
const platform::float16 *A, int lda, const platform::float16 *B, int ldb,
platform::float16 beta, platform::float16 *C, int ldc) const {
// Note that cublas follows fortran order, so the order is different from
// the cblas convention.
cublasOperation_t cuTransA = transA ? CUBLAS_OP_T : CUBLAS_OP_N;
cublasOperation_t cuTransB = transB ? CUBLAS_OP_T : CUBLAS_OP_N;
CUBlas<platform::float16>::GEMM(context_.cublas_handle(), cuTransB, cuTransA,
N, M, K, &alpha, B, ldb, A, lda, &beta, C,
ldc);
}
template <>
......@@ -238,9 +351,34 @@ void Blas<platform::CUDADeviceContext>::BatchedGEMM(
(transB == CblasNoTrans) ? CUBLAS_OP_N : CUBLAS_OP_T;
const int64_t strideC = M * N;
CUBlas<T>::GEMM_BATCH(context_.cublas_handle(), cuTransB, cuTransA, N, M, K,
&alpha, B, ldb, strideB, A, lda, strideA, &beta, C, ldc,
strideC, batchCount);
#if CUDA_VERSION >= 9010
if (FLAGS_enable_cublas_tensor_op_math && std::is_same<T, float>::value) {
auto cublas_call = [&]() {
cublasGemmAlgo_t algo = CUBLAS_GEMM_DFALT;
bool use_tensor_op_math = platform::TensorCoreAvailable();
if (use_tensor_op_math) {
algo = CUBLAS_GEMM_DFALT_TENSOR_OP;
}
VLOG(5) << "use_tensor_op_math: "
<< (use_tensor_op_math ? "True" : "False");
PADDLE_ENFORCE(platform::dynload::cublasGemmStridedBatchedEx(
context_.cublas_handle(), cuTransB, cuTransA, N, M, K, &alpha, B,
CUDA_R_32F, ldb, strideB, A, CUDA_R_32F, lda, strideA, &beta, C,
CUDA_R_32F, ldc, strideC, batchCount, CUDA_R_32F, algo));
};
auto &dev_ctx = const_cast<platform::CUDADeviceContext &>(context_);
dev_ctx.CublasCall(cublas_call, CUBLAS_TENSOR_OP_MATH);
} else {
#endif // CUDA_VERSION >= 9010
CUBlas<T>::GEMM_STRIDED_BATCH(context_.cublas_handle(), cuTransB, cuTransA,
N, M, K, &alpha, B, ldb, strideB, A, lda,
strideA, &beta, C, ldc, strideC, batchCount);
#if CUDA_VERSION >= 9010
}
#endif // CUDA_VERSION >= 9010
}
} // namespace math
......
......@@ -12,7 +12,6 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <sys/time.h>
#include <cmath>
#include <cstring>
#include <random>
......@@ -22,6 +21,7 @@ limitations under the License. */
#include "gtest/gtest.h"
#include "paddle/fluid/operators/math/cpu_vec.h"
#include "paddle/fluid/platform/port.h"
inline double GetCurrentUS() {
struct timeval time;
......
......@@ -17,8 +17,6 @@ limitations under the License. */
#include "paddle/fluid/operators/math/blas.h"
#include "paddle/fluid/operators/math/jit_kernel.h"
DECLARE_int32(paddle_num_threads);
namespace paddle {
namespace operators {
namespace math {
......@@ -43,7 +41,7 @@ inline void FCCompute(const BlasT<DeviceContext, T>& blas, const int M,
.template Get<jitkernel::VAddKernel<T>>(N);
#ifdef PADDLE_WITH_MKLML
#pragma omp parallel for if (FLAGS_paddle_num_threads > 1)
#pragma omp parallel for
#endif
for (int i = 0; i < M; i++) {
T* dst = Y + i * N;
......
......@@ -14,9 +14,9 @@ limitations under the License. */
#include "paddle/fluid/operators/math/im2col.h"
#include <gtest/gtest.h>
#include <sys/time.h>
#include <vector>
#include "paddle/fluid/operators/math/im2col_cfo_cpu.h"
#include "paddle/fluid/platform/port.h"
template <typename DeviceContext, typename Place>
void testIm2col() {
......
......@@ -13,6 +13,7 @@ See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/math/jit_code.h"
#include <stddef.h> // offsetof
#include "paddle/fluid/operators/math/jit_kernel.h" // TODO(TJ): remove me
namespace paddle {
......@@ -139,32 +140,10 @@ bool VActJitCode::init(int d, operand_type type) {
}
void VActJitCode::generate() {
xmm_t xmm_zero = xmm_t(2);
ymm_t ymm_zero = ymm_t(2);
if (type_ == operand_type::relu) {
vxorps(ymm_zero, ymm_zero, ymm_zero);
}
int offset = 0;
for (int i = 0; i < num_ / YMM_FLOAT_BLOCK; ++i) {
vmovups(ymm_src, ptr[param1 + offset]);
switch (type_) {
case operand_type::relu:
relu_jmm<ymm_t>(ymm_dst, ymm_src, ymm_zero);
break;
case operand_type::exp:
exp_jmm<ymm_t>(ymm_dst, ymm_src, 2, 3, 4, 5);
break;
case operand_type::sigmoid:
sigmoid_jmm<ymm_t>(ymm_dst, ymm_src, 2, 3, 4, 5);
break;
case operand_type::tanh:
tanh_jmm<ymm_t>(ymm_dst, ymm_src, 2, 3, 4, 5);
break;
case operand_type::identity:
break;
default:
break;
}
act<ymm_t>(ymm_dst, ymm_src, type_);
vmovups(ptr[param2 + offset], ymm_dst);
offset += sizeof(float) * YMM_FLOAT_BLOCK;
}
......@@ -181,22 +160,7 @@ void VActJitCode::generate() {
block = 1;
vmovss(xmm_src, ptr[param1 + offset]);
}
switch (type_) {
case operand_type::relu:
relu_jmm<xmm_t>(xmm_dst, xmm_src, xmm_zero);
break;
case operand_type::exp:
exp_jmm<xmm_t>(xmm_dst, xmm_src, 2, 3, 4, 5);
break;
case operand_type::sigmoid:
sigmoid_jmm<xmm_t>(xmm_dst, xmm_src, 2, 3, 4, 5);
break;
case operand_type::tanh:
tanh_jmm<xmm_t>(xmm_dst, xmm_src, 2, 3, 4, 5);
break;
default:
break;
}
act<xmm_t>(xmm_dst, xmm_src, type_);
if (rest >= 4) {
vmovups(ptr[param2 + offset], xmm_dst);
} else if (rest >= 2) {
......@@ -210,6 +174,158 @@ void VActJitCode::generate() {
ret();
}
bool LSTMJitCode::init(int d) { return MayIUse(avx) && d % 8 == 0; }
void LSTMJitCode::generate() {
if (use_peephole_) {
preCode();
}
reg64_t reg_ptr_gates = rax;
reg64_t reg_ptr_ct_1 = r9;
reg64_t reg_ptr_ct = r10;
reg64_t reg_ptr_ht = r11;
reg64_t reg_ptr_wp = r12;
mov(reg_ptr_gates, ptr[param1 + offsetof(lstm_t, gates)]);
mov(reg_ptr_ct_1, ptr[param1 + offsetof(lstm_t, ct_1)]);
mov(reg_ptr_ct, ptr[param1 + offsetof(lstm_t, ct)]);
mov(reg_ptr_ht, ptr[param1 + offsetof(lstm_t, ht)]);
if (use_peephole_) {
mov(reg_ptr_wp, ptr[param1 + offsetof(lstm_t, wp)]);
}
int offset = 0;
int d = num_ * sizeof(float);
for (int i = 0; i < num_ / YMM_FLOAT_BLOCK; ++i) {
/* gates: W_ch, W_ih, W_fh, W_oh */
ymm_t ymm_c = ymm_t(0);
ymm_t ymm_i = ymm_t(1);
ymm_t ymm_f = ymm_t(2);
ymm_t ymm_o = ymm_t(3);
ymm_t ymm_ct_1 = ymm_t(4);
ymm_t ymm_wp0 = ymm_t(5);
ymm_t ymm_wp1 = ymm_t(6);
ymm_t ymm_wp2 = ymm_t(7);
vmovups(ymm_c, ptr[reg_ptr_gates + offset]);
vmovups(ymm_i, ptr[reg_ptr_gates + offset + d]);
vmovups(ymm_f, ptr[reg_ptr_gates + offset + 2 * d]);
vmovups(ymm_o, ptr[reg_ptr_gates + offset + 3 * d]);
if (!compute_c1h1_) {
vmovups(ymm_ct_1, ptr[reg_ptr_ct_1 + offset]);
}
if (use_peephole_) {
vmovups(ymm_wp0, ptr[reg_ptr_wp + offset]);
vmovups(ymm_wp1, ptr[reg_ptr_wp + offset + d]);
vmovups(ymm_wp2, ptr[reg_ptr_wp + offset + 2 * d]);
}
/* C_t = act_cand(c) * act_gate(i) + C_t-1 * act_gate(f) */
// act_cand(c)
act<ymm_t>(ymm_c, ymm_c, act_cand_);
// act_gate(i) or act_gate(ct_1 * wp0 + i)
if (!compute_c1h1_ && use_peephole_) {
vmulps(ymm_wp0, ymm_ct_1, ymm_wp0);
vaddps(ymm_i, ymm_i, ymm_wp0);
}
act<ymm_t>(ymm_i, ymm_i, act_gate_);
vmulps(ymm_c, ymm_c, ymm_i);
if (!compute_c1h1_) {
// act_gate(f) or act_gate(ct_1 * wp1 + f)
if (use_peephole_) {
vmulps(ymm_wp1, ymm_ct_1, ymm_wp1);
vaddps(ymm_f, ymm_f, ymm_wp1);
}
act<ymm_t>(ymm_f, ymm_f, act_gate_);
// ct
vmulps(ymm_f, ymm_f, ymm_ct_1);
vaddps(ymm_f, ymm_f, ymm_c);
}
/* H_t = act_cell(C_t) * act_gate(o) */
// act_cell(C_t)
ymm_t ymm_ct = compute_c1h1_ ? ymm_c : ymm_f;
ymm_t ymm_tmp = ymm_i;
act<ymm_t>(ymm_tmp, ymm_ct, act_cell_);
// act_gate(o) or act_gate(ct * wp2 + o)
if (use_peephole_) {
vmulps(ymm_wp2, ymm_ct, ymm_wp2);
vaddps(ymm_o, ymm_o, ymm_wp2);
}
act<ymm_t>(ymm_o, ymm_o, act_gate_);
// ht
vmulps(ymm_o, ymm_o, ymm_tmp);
// save ct and ht
vmovups(ptr[reg_ptr_ct + offset], ymm_ct);
vmovups(ptr[reg_ptr_ht + offset], ymm_o);
offset += sizeof(float) * YMM_FLOAT_BLOCK;
}
if (use_peephole_) {
postCode();
} else {
ret();
}
}
bool GRUJitCode::init(int d) { return MayIUse(avx) && d % 8 == 0; }
void GRUJitCode::generate() {
reg64_t reg_ptr_gates = rax;
reg64_t reg_ptr_ht_1 = r9;
reg64_t reg_ptr_ht = r10;
mov(reg_ptr_gates, ptr[param1 + offsetof(gru_t, gates)]);
mov(reg_ptr_ht_1, ptr[param1 + offsetof(gru_t, ht_1)]);
mov(reg_ptr_ht, ptr[param1 + offsetof(gru_t, ht)]);
ymm_t ymm_one = ymm_t(0);
if (id_ == 2) {
reg64_t reg_ptr_tmp = r11;
mov(reg_ptr_tmp, reinterpret_cast<size_t>(exp_float_consts));
vmovaps(ymm_one, ptr[reg_ptr_tmp + OFFSET_EXP_ONE]);
}
int offset = 0;
int d = num_ * sizeof(float);
for (int i = 0; i < num_ / YMM_FLOAT_BLOCK; ++i) {
ymm_t ymm_u = ymm_t(1);
ymm_t ymm_r = ymm_t(2);
ymm_t ymm_s = ymm_t(3);
ymm_t ymm_ht_1 = ymm_t(4);
// W: {W_update, W_reset; W_state}
if (id_ == 0 || id_ == 2) {
vmovups(ymm_u, ptr[reg_ptr_gates + offset]);
vmovups(ymm_s, ptr[reg_ptr_gates + offset + 2 * d]);
}
if (id_ == 1) {
vmovups(ymm_r, ptr[reg_ptr_gates + offset + d]);
}
if (id_ == 1 || id_ == 2) {
vmovups(ymm_ht_1, ptr[reg_ptr_ht_1 + offset]);
}
if (id_ == 0) {
// ht = act_gate(u) * act_cand(s)
act<ymm_t>(ymm_u, ymm_u, act_gate_);
act<ymm_t>(ymm_s, ymm_s, act_cand_);
vmulps(ymm_s, ymm_s, ymm_u);
vmovups(ptr[reg_ptr_ht + offset], ymm_s);
} else if (id_ == 1) {
// ht = act_gate(r) * ht_1
act<ymm_t>(ymm_r, ymm_r, act_gate_);
vmulps(ymm_r, ymm_r, ymm_ht_1);
vmovups(ptr[reg_ptr_ht + offset], ymm_r);
} else if (id_ == 2) {
// ht = act_gate(u) * act_cand(s) + (1-act_gate(u)) * ht_1
ymm_t ymm_one_inner = ymm_t(ymm_one.getIdx());
act<ymm_t>(ymm_u, ymm_u, act_gate_);
act<ymm_t>(ymm_s, ymm_s, act_cand_);
vmulps(ymm_s, ymm_s, ymm_u);
vsubps(ymm_u, ymm_one_inner, ymm_u);
vmulps(ymm_u, ymm_ht_1, ymm_u);
vaddps(ymm_u, ymm_s, ymm_u);
vmovups(ptr[reg_ptr_ht + offset], ymm_u);
}
offset += sizeof(float) * YMM_FLOAT_BLOCK;
}
ret();
}
} // namespace gen
} // namespace jitkernel
} // namespace math
......
......@@ -16,6 +16,7 @@ limitations under the License. */
#include <string>
#include "paddle/fluid/operators/math/jit_gen.h"
#include "paddle/fluid/operators/math/jit_kernel_impl.h"
#include "paddle/fluid/platform/cpu_info.h"
namespace paddle {
......@@ -46,14 +47,6 @@ extern const float exp_float_consts[];
extern const int exp_int_0x7f[];
extern int g_tmp_mem[];
// TODO(TJ): move these to some proper place
#define SIGMOID_THRESHOLD_MIN -40.0
#define SIGMOID_THRESHOLD_MAX 13.0
#define EXP_MAX_INPUT 40.0
#define XMM_FLOAT_BLOCK 4
#define YMM_FLOAT_BLOCK 8
#define ZMM_FLOAT_BLOCK 16
#define ALIGN32 __attribute__((aligned(32)))
#define EXP_HIG 88.3762626647949f
#define EXP_LOW -88.3762626647949f
......@@ -176,31 +169,34 @@ class VActJitCode : public JitCode {
protected:
// compute relu with ymm, xmm
template <typename JMM>
void relu_jmm(JMM& dst, JMM& src, JMM& zero) { // NOLINT
void relu_jmm(JMM& dst, JMM& src, int zero_idx = 15) { // NOLINT
JMM zero = JMM(zero_idx);
vxorps(zero, zero, zero);
vmaxps(dst, src, zero);
}
// compute exp with ymm, xmm
template <typename JMM>
void exp_jmm(JMM& dst, JMM& src, int fx_idx = 2, int fy_idx = 3, // NOLINT
int mask_idx = 4, int tmp_idx = 5) {
void exp_jmm(JMM& dst, JMM& src, int src_idx = 11, int fx_idx = 12, // NOLINT
int fy_idx = 13, int mask_idx = 14, int tmp_idx = 15) {
using namespace platform::jit; // NOLINT
assert(src.getIdx() != dst.getIdx()); // TODO(TJ): use enfore
// check all idx can not equal
JMM jmm_src = JMM(src_idx);
JMM jmm_fx = JMM(fx_idx);
JMM jmm_fy = JMM(fy_idx);
JMM jmm_mask = JMM(mask_idx);
JMM jmm_tmp = JMM(tmp_idx);
reg64_t reg_ptr_global = rax;
push(reg_ptr_global);
vmovaps(jmm_src, src);
mov(reg_ptr_global, reinterpret_cast<size_t>(exp_float_consts));
vmovaps(jmm_tmp, ptr[reg_ptr_global + OFFSET_EXP_HIG]);
vminps(src, src, jmm_tmp);
vminps(jmm_src, jmm_src, jmm_tmp);
vmovaps(jmm_tmp, ptr[reg_ptr_global + OFFSET_EXP_LOW]);
vmaxps(src, src, jmm_tmp);
vmaxps(jmm_src, jmm_src, jmm_tmp);
// express exp(x) as exp(g + n*log(2))
vmovaps(jmm_tmp, ptr[reg_ptr_global + OFFSET_EXP_LOG2EF]);
vmulps(jmm_fx, src, jmm_tmp);
vmulps(jmm_fx, jmm_src, jmm_tmp);
vmovaps(jmm_tmp, ptr[reg_ptr_global + OFFSET_EXP_0P5]);
vaddps(jmm_fx, jmm_fx, jmm_tmp);
vroundps(jmm_fy, jmm_fx, 0x01);
......@@ -214,21 +210,21 @@ class VActJitCode : public JitCode {
vmovaps(jmm_tmp, ptr[reg_ptr_global + OFFSET_EXP_C2]);
JMM ymm_z = JMM(jmm_mask.getIdx());
vmulps(ymm_z, jmm_fx, jmm_tmp);
vsubps(src, src, jmm_fy);
vsubps(src, src, ymm_z);
vmulps(ymm_z, src, src);
vsubps(jmm_src, jmm_src, jmm_fy);
vsubps(jmm_src, jmm_src, ymm_z);
vmulps(ymm_z, jmm_src, jmm_src);
vmovaps(jmm_tmp, ptr[reg_ptr_global + OFFSET_EXP_P0]);
vmulps(dst, src, jmm_tmp);
vmulps(dst, jmm_src, jmm_tmp);
for (size_t i = OFFSET_EXP_P1; i < OFFSET_EXP_P5;
i += (YMM_FLOAT_BLOCK * sizeof(float))) {
vmovaps(jmm_tmp, ptr[reg_ptr_global + i]); // P1~P4
vaddps(dst, dst, jmm_tmp);
vmulps(dst, dst, src);
vmulps(dst, dst, jmm_src);
}
vmovaps(jmm_tmp, ptr[reg_ptr_global + OFFSET_EXP_P5]);
vaddps(dst, dst, jmm_tmp);
vmulps(dst, dst, ymm_z);
vaddps(dst, dst, src);
vaddps(dst, dst, jmm_src);
vmovaps(jmm_tmp, ptr[reg_ptr_global]);
vaddps(dst, dst, jmm_tmp);
// build 2^n
......@@ -265,20 +261,23 @@ class VActJitCode : public JitCode {
// compute sigmoid with ymm, xmm
template <typename JMM>
void sigmoid_jmm(JMM& dst, JMM& src, int fx_idx = 2, // NOLINT
int fy_idx = 3, int mask_idx = 4, int tmp_idx = 5) {
void sigmoid_jmm(JMM& dst, JMM& src, int src_idx = 11, // NOLINT
int fx_idx = 12, int fy_idx = 13, int mask_idx = 14,
int tmp_idx = 15) {
// y = 1 / (1 + e^-x)
JMM jmm_tmp = JMM(tmp_idx);
JMM jmm_src = JMM(src_idx);
reg64_t reg_ptr_global = rax;
push(reg_ptr_global);
vmovaps(jmm_src, src);
mov(reg_ptr_global, reinterpret_cast<size_t>(exp_float_consts));
vmovaps(jmm_tmp, ptr[reg_ptr_global + OFFSET_SIGMOID_MAX]);
vminps(src, src, jmm_tmp);
vminps(jmm_src, jmm_src, jmm_tmp);
vmovaps(jmm_tmp, ptr[reg_ptr_global + OFFSET_SIGMOID_MIN]);
vmaxps(src, src, jmm_tmp);
vmaxps(jmm_src, jmm_src, jmm_tmp);
vxorps(jmm_tmp, jmm_tmp, jmm_tmp);
vsubps(src, jmm_tmp, src);
exp_jmm<JMM>(dst, src, fx_idx, fy_idx, mask_idx, tmp_idx);
vsubps(jmm_src, jmm_tmp, jmm_src);
exp_jmm<JMM>(dst, jmm_src, src_idx, fx_idx, fy_idx, mask_idx, tmp_idx);
vmovaps(jmm_tmp, ptr[reg_ptr_global + OFFSET_EXP_ONE]);
vaddps(dst, dst, jmm_tmp);
vdivps(dst, jmm_tmp, dst);
......@@ -287,19 +286,22 @@ class VActJitCode : public JitCode {
// compute tanh with ymm, xmm
template <typename JMM>
void tanh_jmm(JMM& dst, JMM& src, int fx_idx = 2, int fy_idx = 3, // NOLINT
int mask_idx = 4, int tmp_idx = 5) {
void tanh_jmm(JMM& dst, JMM& src, int src_idx = 11, // NOLINT
int fx_idx = 12, int fy_idx = 13, int mask_idx = 14,
int tmp_idx = 15) {
// y = 2 / (1 + e^(-2x)) - 1
JMM jmm_src = JMM(src_idx);
JMM jmm_tmp = JMM(tmp_idx);
JMM jmm_zero = JMM(mask_idx);
reg64_t reg_ptr_global = rax;
push(reg_ptr_global);
vmovaps(jmm_src, src);
mov(reg_ptr_global, reinterpret_cast<size_t>(exp_float_consts));
vmovaps(jmm_tmp, ptr[reg_ptr_global + OFFSET_EXP_TWO]);
vxorps(jmm_zero, jmm_zero, jmm_zero);
vsubps(jmm_tmp, jmm_zero, jmm_tmp);
vmulps(src, src, jmm_tmp);
exp_jmm<JMM>(dst, src, fx_idx, fy_idx, mask_idx, tmp_idx);
vmulps(jmm_src, jmm_src, jmm_tmp);
exp_jmm<JMM>(dst, jmm_src, src_idx, fx_idx, fy_idx, mask_idx, tmp_idx);
vmovaps(jmm_tmp, ptr[reg_ptr_global + OFFSET_EXP_ONE]);
vaddps(dst, dst, jmm_tmp);
vmovaps(jmm_tmp, ptr[reg_ptr_global + OFFSET_EXP_TWO]);
......@@ -309,6 +311,30 @@ class VActJitCode : public JitCode {
pop(reg_ptr_global);
}
template <typename JMM>
void act(JMM& dst, JMM& src, operand_type type) { // NOLINT
// use 11~15
switch (type) {
case operand_type::relu:
relu_jmm<JMM>(dst, src, 15);
break;
case operand_type::exp:
exp_jmm<JMM>(dst, src, 11, 12, 13, 14, 15);
break;
case operand_type::sigmoid:
sigmoid_jmm<JMM>(dst, src, 11, 12, 13, 14, 15);
break;
case operand_type::tanh:
tanh_jmm<JMM>(dst, src, 11, 12, 13, 14, 15);
break;
case operand_type::identity:
break;
default:
// throw error
break;
}
}
protected:
int num_;
operand_type type_;
......@@ -322,6 +348,148 @@ class VActJitCode : public JitCode {
ymm_t ymm_dst = ymm_t(1);
};
class LSTMJitCode : public VActJitCode {
public:
const char* name() const override {
std::string base = "LSTMJitCode";
if (use_peephole_) {
base += "_Peephole";
}
if (compute_c1h1_) {
base += "_C1H1";
}
auto AddTypeStr = [&](operand_type type) {
switch (type) {
case operand_type::relu:
base += "_Relu";
break;
case operand_type::exp:
base += "_Exp";
break;
case operand_type::sigmoid:
base += "_Sigmoid";
break;
case operand_type::tanh:
base += "_Tanh";
break;
case operand_type::identity:
base += "_Identity";
break;
default:
break;
}
};
AddTypeStr(act_gate_);
AddTypeStr(act_cand_);
AddTypeStr(act_cell_);
return base.c_str();
}
explicit LSTMJitCode(bool compute_c1h1, const lstm_attr_t& attr,
size_t code_size = 256 * 1024, void* code_ptr = nullptr)
: VActJitCode(attr.d, operand_type::sigmoid /* this is bugy*/, code_size,
code_ptr),
compute_c1h1_(compute_c1h1) {
auto typeExchange = [](const std::string& type) -> gen::operand_type {
if (type == "sigmoid") {
return operand_type::sigmoid;
} else if (type == "relu") {
return operand_type::relu;
} else if (type == "tanh") {
return operand_type::tanh;
} else if (type == "identity" || type == "") {
return operand_type::identity;
} // else throw error
return operand_type::identity;
};
num_ = attr.d;
use_peephole_ = attr.use_peephole;
act_gate_ = typeExchange(attr.act_gate);
act_cand_ = typeExchange(attr.act_cand);
act_cell_ = typeExchange(attr.act_cell);
}
static bool init(int d);
void generate() override;
protected:
int num_;
bool compute_c1h1_;
bool use_peephole_;
operand_type act_gate_;
operand_type act_cand_;
operand_type act_cell_;
reg64_t param1{abi_param1};
};
class GRUJitCode : public VActJitCode {
public:
const char* name() const override {
std::string base = "GRUJitCode";
if (id_ == 0) {
base += "_H1";
} else if (id_ == 1) {
base += "_HtPart1";
} else if (id_ == 2) {
base += "_HtPart2";
}
auto AddTypeStr = [&](operand_type type) {
switch (type) {
case operand_type::relu:
base += "_Relu";
break;
case operand_type::exp:
base += "_Exp";
break;
case operand_type::sigmoid:
base += "_Sigmoid";
break;
case operand_type::tanh:
base += "_Tanh";
break;
case operand_type::identity:
base += "_Identity";
break;
default:
break;
}
};
AddTypeStr(act_gate_);
AddTypeStr(act_cand_);
return base.c_str();
}
explicit GRUJitCode(int id, const gru_attr_t& attr,
size_t code_size = 256 * 1024, void* code_ptr = nullptr)
: VActJitCode(attr.d, operand_type::sigmoid /* this is bugy*/, code_size,
code_ptr),
id_(id) {
auto typeExchange = [](const std::string& type) -> gen::operand_type {
if (type == "sigmoid") {
return operand_type::sigmoid;
} else if (type == "relu") {
return operand_type::relu;
} else if (type == "tanh") {
return operand_type::tanh;
} else if (type == "identity" || type == "") {
return operand_type::identity;
} // else throw error
return operand_type::identity;
};
num_ = attr.d;
act_gate_ = typeExchange(attr.act_gate);
act_cand_ = typeExchange(attr.act_cand);
}
static bool init(int d);
void generate() override;
protected:
int id_;
int num_;
operand_type act_gate_;
operand_type act_cand_;
reg64_t param1{abi_param1};
};
#ifdef PADDLE_WITH_MKLDNN
struct EltwiseMulnChw16cNC : public Xbyak::CodeGenerator {
explicit EltwiseMulnChw16cNC(size_t code_size = 256 * 1024)
......
......@@ -17,6 +17,7 @@ limitations under the License. */
#include <memory> // for shared_ptr
#include <string>
#include <unordered_map>
#include "paddle/fluid/operators/math/jit_kernel_impl.h"
#include "paddle/fluid/platform/cpu_info.h"
#include "paddle/fluid/platform/macros.h"
......@@ -26,14 +27,7 @@ namespace operators {
namespace math {
namespace jitkernel {
// TODO(TJ): move these to some proper place
#define SIGMOID_THRESHOLD_MIN -40.0
#define SIGMOID_THRESHOLD_MAX 13.0
#define EXP_MAX_INPUT 40.0
#define XMM_FLOAT_BLOCK 4
#define YMM_FLOAT_BLOCK 8
#define ZMM_FLOAT_BLOCK 16
// TODO(TJ): remove me
typedef enum { kLT8, kEQ8, kGT8LT16, kEQ16, kGT16 } jit_block;
class Kernel {
......@@ -128,24 +122,18 @@ class VTanhKernel : public VActKernel<T> {};
template <typename T>
class LSTMKernel : public Kernel {
public:
virtual void ComputeCtHt(T *gates, const T *ct_1, T *ct, T *ht,
/* below only used in peephole*/
const T *wp_data = nullptr,
T *checked = nullptr) const = 0;
// compute c1 and h1 without c0 or h0
virtual void ComputeC1H1(T *gates, T *ct, T *ht,
/* below only used in peephole*/
const T *wp_data = nullptr) const = 0;
void (*ComputeC1H1)(lstm_t *, const lstm_attr_t *);
void (*ComputeCtHt)(lstm_t *, const lstm_attr_t *);
};
template <typename T>
class GRUKernel : public Kernel {
public:
// compute h1 without h0
virtual void ComputeH1(T *gates, T *ht) const = 0;
virtual void ComputeHtPart1(T *gates, const T *ht_1, T *ht) const = 0;
virtual void ComputeHtPart2(T *gates, const T *ht_1, T *ht) const = 0;
void (*ComputeH1)(gru_t *, const gru_attr_t *);
void (*ComputeHtPart1)(gru_t *, const gru_attr_t *);
void (*ComputeHtPart2)(gru_t *, const gru_attr_t *);
};
template <typename T>
......
......@@ -15,6 +15,7 @@ limitations under the License. */
#include "paddle/fluid/operators/math/jit_kernel.h"
#include <string>
#include "paddle/fluid/operators/math/jit_kernel_macro.h"
#include "paddle/fluid/operators/math/jit_kernel_refer.h"
#include "paddle/fluid/platform/enforce.h"
#ifdef PADDLE_WITH_XBYAK
......@@ -31,49 +32,6 @@ namespace math {
namespace jitkernel {
namespace jit = platform::jit;
template <typename T>
void VMulRefer(const T* x, const T* y, T* z, int n) {
for (int i = 0; i < n; ++i) {
z[i] = x[i] * y[i];
}
}
template <typename T>
void VAddRefer(const T* x, const T* y, T* z, int n) {
for (int i = 0; i < n; ++i) {
z[i] = x[i] + y[i];
}
}
template <typename T>
void VAddReluRefer(const T* x, const T* y, T* z, int n) {
for (int i = 0; i < n; ++i) {
z[i] = x[i] + y[i];
z[i] = z[i] > 0 ? z[i] : 0;
}
}
template <typename T>
void VScalRefer(const T* a, const T* x, T* y, int n) {
for (int i = 0; i < n; ++i) {
y[i] = a[0] * x[i];
}
}
template <typename T>
void VAddBiasRefer(const T* a, const T* x, T* y, int n) {
for (int i = 0; i < n; ++i) {
y[i] = a[0] + x[i];
}
}
template <typename T>
void VReluRefer(const T* x, T* y, int n) {
for (int i = 0; i < n; ++i) {
y[i] = x[i] > 0 ? x[i] : 0;
}
}
#ifdef PADDLE_WITH_MKLML
template <typename T>
void VMulMKL(const T* x, const T* y, T* z, int n);
......@@ -109,7 +67,7 @@ void VScalMKL<float>(const float* a, const float* x, float* y, int n) {
if (x == y) {
platform::dynload::cblas_sscal(n, *a, y, 1);
} else {
VScalRefer<float>(a, x, y, n);
refer::VScal<float>(a, x, y, n);
}
}
......@@ -118,7 +76,7 @@ void VScalMKL<double>(const double* a, const double* x, double* y, int n) {
if (x == y) {
platform::dynload::cblas_dscal(n, *a, y, 1);
} else {
VScalRefer<double>(a, x, y, n);
refer::VScal<double>(a, x, y, n);
}
}
......@@ -147,7 +105,7 @@ class VMulKernelImpl : public VMulKernel<T> {
return;
}
#endif
this->Compute = VMulRefer<T>;
this->Compute = refer::VMul<T>;
}
#ifdef PADDLE_WITH_XBYAK
......@@ -198,7 +156,7 @@ class VAddKernelImpl : public VAddKernel<T> {
return;
}
#endif
this->Compute = VAddRefer<T>;
this->Compute = refer::VAdd<T>;
}
#ifdef PADDLE_WITH_XBYAK
......@@ -280,7 +238,7 @@ class VAddReluKernelImpl : public VAddReluKernel<T> {
return;
}
#endif
this->Compute = VAddReluRefer<T>;
this->Compute = refer::VAddRelu<T>;
}
#ifdef PADDLE_WITH_XBYAK
......@@ -318,7 +276,7 @@ class VScalKernelImpl : public VScalKernel<T> {
return;
}
#endif
this->Compute = VScalRefer<T>;
this->Compute = refer::VScal<T>;
}
#ifdef PADDLE_WITH_XBYAK
......@@ -362,7 +320,7 @@ class VAddBiasKernelImpl : public VAddBiasKernel<T> {
}
#endif
this->Compute = VAddBiasRefer<T>;
this->Compute = refer::VAddBias<T>;
}
#ifdef PADDLE_WITH_XBYAK
......@@ -396,7 +354,7 @@ class VReluKernelImpl : public VReluKernel<T> {
}
#endif
this->Compute = VReluRefer<T>;
this->Compute = refer::VRelu<T>;
}
#ifdef PADDLE_WITH_XBYAK
......@@ -412,16 +370,13 @@ bool VReluKernelImpl<float>::useJIT(int d) {
}
#endif
template <typename T>
inline void VIdentityRefer(const T* x, T* y, int n) {}
/* An empty JitKernel */
template <typename T>
class VIdentityKernelImpl : public VIdentityKernel<T> {
public:
JITKERNEL_DECLARE_STATIC_FUNC;
explicit VIdentityKernelImpl(int d) : VIdentityKernel<T>() {
this->Compute = VIdentityRefer<T>;
this->Compute = refer::VIdentity<T>;
}
};
......
......@@ -13,9 +13,9 @@ See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/math/jit_kernel.h"
#include <cmath> // for exp
#include <string>
#include "paddle/fluid/operators/math/jit_kernel_macro.h"
#include "paddle/fluid/operators/math/jit_kernel_refer.h"
#ifdef PADDLE_WITH_XBYAK
#include "paddle/fluid/operators/math/jit_code.h"
......@@ -25,48 +25,12 @@ limitations under the License. */
#include "paddle/fluid/platform/dynload/mklml.h"
#endif
#ifdef __AVX__
#include <immintrin.h>
#endif
namespace paddle {
namespace operators {
namespace math {
namespace jitkernel {
namespace jit = platform::jit;
// TODO(TJ): move refer codes to one file
// Refer code only focus on correctness
template <typename T>
void VExpRefer(const T* x, T* y, int n) {
for (int i = 0; i < n; ++i) {
y[i] = std::exp(x[i]);
}
}
template <typename T>
void VSigmoidRefer(const T* x, T* y, int n) {
// y = 1 / (1 + e^-x)
const T min = SIGMOID_THRESHOLD_MIN;
const T max = SIGMOID_THRESHOLD_MAX;
for (int i = 0; i < n; ++i) {
T tmp = (x[i] < min) ? min : ((x[i] > max) ? max : x[i]);
y[i] = static_cast<T>(1) / (static_cast<T>(1) + std::exp(-tmp));
}
}
template <typename T>
void VTanhRefer(const T* x, T* y, int n) {
// y = 2 * sigmoid(2x) - 1
for (int i = 0; i < n; ++i) {
y[i] = static_cast<T>(2) * x[i];
}
VSigmoidRefer(y, y, n);
for (int i = 0; i < n; ++i) {
y[i] = static_cast<T>(2) * y[i] - static_cast<T>(1);
}
}
#ifdef PADDLE_WITH_MKLML
// try to use MKL to speedup
template <typename T>
......@@ -129,7 +93,7 @@ class VExpKernelImpl : public VExpKernel<T> {
return;
}
#endif
this->Compute = VExpRefer<T>;
this->Compute = refer::VExp<T>;
}
#ifdef PADDLE_WITH_XBYAK
......@@ -182,7 +146,7 @@ class VSigmoidKernelImpl : public VSigmoidKernel<T> {
return;
}
#endif
this->Compute = VSigmoidRefer<T>;
this->Compute = refer::VSigmoid<T>;
}
#ifdef PADDLE_WITH_XBYAK
......@@ -234,7 +198,7 @@ class VTanhKernelImpl : public VTanhKernel<T> {
return;
}
#endif
this->Compute = VTanhRefer<T>;
this->Compute = refer::VTanh<T>;
}
#ifdef PADDLE_WITH_XBYAK
......@@ -267,154 +231,6 @@ REGISTER_JITKERNEL(vexp, VExpKernel);
REGISTER_JITKERNEL(vsigmoid, VSigmoidKernel);
REGISTER_JITKERNEL(vtanh, VTanhKernel);
namespace detail {
#ifdef __AVX__
#define ALIGN32 __attribute__((aligned(32)))
#define _PS256_CONST(Name, Val) \
static const float _ps256_##Name[8] ALIGN32 = {Val, Val, Val, Val, \
Val, Val, Val, Val}
#define _PI256_CONST(Name, Val) \
static const int _pi256_##Name[8] ALIGN32 = {Val, Val, Val, Val, \
Val, Val, Val, Val}
_PI256_CONST(0x7f, 0x7f);
_PS256_CONST(one, 1.f);
_PS256_CONST(0p5, 0.5f);
_PS256_CONST(exp_hi, 88.3762626647949f);
_PS256_CONST(exp_lo, -88.3762626647949f);
_PS256_CONST(cephes_LOG2EF, 1.44269504088896341);
_PS256_CONST(cephes_exp_C1, 0.693359375);
_PS256_CONST(cephes_exp_C2, -2.12194440e-4);
_PS256_CONST(cephes_exp_p0, 1.9875691500E-4);
_PS256_CONST(cephes_exp_p1, 1.3981999507E-3);
_PS256_CONST(cephes_exp_p2, 8.3334519073E-3);
_PS256_CONST(cephes_exp_p3, 4.1665795894E-2);
_PS256_CONST(cephes_exp_p4, 1.6666665459E-1);
_PS256_CONST(cephes_exp_p5, 5.0000001201E-1);
typedef union imm_xmm_union {
__m256i imm;
__m128i xmm[2];
} imm_xmm_union;
#define COPY_IMM_TO_XMM(imm_, xmm0_, xmm1_) \
{ \
imm_xmm_union u ALIGN32; \
u.imm = imm_; \
xmm0_ = u.xmm[0]; \
xmm1_ = u.xmm[1]; \
}
#define COPY_XMM_TO_IMM(xmm0_, xmm1_, imm_) \
{ \
imm_xmm_union u ALIGN32; \
u.xmm[0] = xmm0_; \
u.xmm[1] = xmm1_; \
imm_ = u.imm; \
}
#define AVX2_BITOP_USING_SSE2(fn) \
static inline __m256i avx2_mm256_##fn(__m256i x, int y) { \
/* use SSE2 to perform the bitop AVX2 */ \
__m128i x1, x2; \
__m256i ret; \
COPY_IMM_TO_XMM(x, x1, x2); \
x1 = _mm_##fn(x1, y); \
x2 = _mm_##fn(x2, y); \
COPY_XMM_TO_IMM(x1, x2, ret); \
return ret; \
}
#define AVX2_INTOP_USING_SSE2(fn) \
static inline __m256i avx2_mm256_add_epi32(__m256i x, __m256i y) { \
/* use SSE2 to perform the AVX2 integer operation */ \
__m128i x1, x2; \
__m128i y1, y2; \
__m256i ret; \
COPY_IMM_TO_XMM(x, x1, x2); \
COPY_IMM_TO_XMM(y, y1, y2); \
x1 = _mm_##fn(x1, y1); \
x2 = _mm_##fn(x2, y2); \
COPY_XMM_TO_IMM(x1, x2, ret); \
return ret; \
}
AVX2_BITOP_USING_SSE2(slli_epi32);
AVX2_INTOP_USING_SSE2(add_epi32);
#define AVXEXP_BASE \
__m256 tmp = _mm256_setzero_ps(), fx; \
__m256 one = *reinterpret_cast<const __m256*>(_ps256_one); \
__m256i imm0; \
x = _mm256_min_ps(x, *reinterpret_cast<const __m256*>(_ps256_exp_hi)); \
x = _mm256_max_ps(x, *reinterpret_cast<const __m256*>(_ps256_exp_lo)); \
/* express exp(x) as exp(g + n*log(2)) */ \
fx = _mm256_mul_ps(x, \
*reinterpret_cast<const __m256*>(_ps256_cephes_LOG2EF)); \
fx = _mm256_add_ps(fx, *reinterpret_cast<const __m256*>(_ps256_0p5)); \
tmp = _mm256_floor_ps(fx); \
/* if greater, substract 1 */ \
__m256 mask = _mm256_cmp_ps(tmp, fx, _CMP_GT_OS); \
mask = _mm256_and_ps(mask, one); \
fx = _mm256_sub_ps(tmp, mask); \
tmp = _mm256_mul_ps(fx, \
*reinterpret_cast<const __m256*>(_ps256_cephes_exp_C1)); \
__m256 z = _mm256_mul_ps( \
fx, *reinterpret_cast<const __m256*>(_ps256_cephes_exp_C2)); \
x = _mm256_sub_ps(x, tmp); \
x = _mm256_sub_ps(x, z); \
z = _mm256_mul_ps(x, x); \
__m256 y = *reinterpret_cast<const __m256*>(_ps256_cephes_exp_p0); \
y = _mm256_mul_ps(y, x); \
y = _mm256_add_ps(y, \
*reinterpret_cast<const __m256*>(_ps256_cephes_exp_p1)); \
y = _mm256_mul_ps(y, x); \
y = _mm256_add_ps(y, \
*reinterpret_cast<const __m256*>(_ps256_cephes_exp_p2)); \
y = _mm256_mul_ps(y, x); \
y = _mm256_add_ps(y, \
*reinterpret_cast<const __m256*>(_ps256_cephes_exp_p3)); \
y = _mm256_mul_ps(y, x); \
y = _mm256_add_ps(y, \
*reinterpret_cast<const __m256*>(_ps256_cephes_exp_p4)); \
y = _mm256_mul_ps(y, x); \
y = _mm256_add_ps(y, \
*reinterpret_cast<const __m256*>(_ps256_cephes_exp_p5)); \
y = _mm256_mul_ps(y, z); \
y = _mm256_add_ps(y, x); \
y = _mm256_add_ps(y, one); \
/* build 2^n */ \
imm0 = _mm256_cvttps_epi32(fx)
__m256 ExpAVX(__m256 x) {
AVXEXP_BASE;
// two AVX2 instructions using SSE2
imm0 = avx2_mm256_add_epi32(imm0,
*reinterpret_cast<const __m256i*>(_pi256_0x7f));
imm0 = avx2_mm256_slli_epi32(imm0, 23);
__m256 pow2n = _mm256_castsi256_ps(imm0);
y = _mm256_mul_ps(y, pow2n);
return y;
}
#endif
#ifdef __AVX2__
__m256 ExpAVX2(__m256 x) {
AVXEXP_BASE;
// two AVX2 instructions
imm0 = _mm256_add_epi32(imm0, *reinterpret_cast<const __m256i*>(_pi256_0x7f));
imm0 = _mm256_slli_epi32(imm0, 23);
__m256 pow2n = _mm256_castsi256_ps(imm0);
y = _mm256_mul_ps(y, pow2n);
return y;
}
#endif
} // namespace detail
} // namespace jitkernel
} // namespace math
} // namespace operators
......
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <string>
#include <type_traits>
namespace paddle {
namespace operators {
namespace math {
namespace jitkernel {
#define SIGMOID_THRESHOLD_MIN -40.0
#define SIGMOID_THRESHOLD_MAX 13.0
#define EXP_MAX_INPUT 40.0
#define XMM_FLOAT_BLOCK 4
#define YMM_FLOAT_BLOCK 8
#define ZMM_FLOAT_BLOCK 16
typedef struct {
void* gates; // gates: W_ch, W_ih, W_fh, W_oh
const void* ct_1;
void* ct;
void* ht;
/* weight_peephole and checked data are only used in peephole*/
const void* wp{nullptr};
void* checked{nullptr};
} lstm_t;
typedef struct {
void* gates; // gates: {W_update, W_reset; W_state}
const void* ht_1;
void* ht;
} gru_t;
struct rnn_attr_s {
int d;
std::string act_gate, act_cand;
rnn_attr_s() = default;
rnn_attr_s(int _d, const std::string& _act_gate, const std::string& _act_cand)
: d(_d), act_gate(_act_gate), act_cand(_act_cand) {}
};
struct lstm_attr_s : public rnn_attr_s {
bool use_peephole;
std::string act_cell;
lstm_attr_s() = default;
lstm_attr_s(int _d, const std::string& _act_gate,
const std::string& _act_cand, const std::string& _act_cell,
bool _use_peephole = false)
: rnn_attr_s(_d, _act_gate, _act_cand),
use_peephole(_use_peephole),
act_cell(_act_cell) {}
};
typedef struct rnn_attr_s gru_attr_t;
typedef struct lstm_attr_s lstm_attr_t;
} // namespace jitkernel
} // namespace math
} // namespace operators
} // namespace paddle
......@@ -82,10 +82,10 @@ namespace jitkernel {
#define REGISTER_JITKERNEL_ARGS(ker_key, ker_class, marco_define_name, \
marco_declare, macro_find_key, macro_impl) \
marco_define_name(ker_key, ker_class); \
REGISTER_JITKERNEL_WITH_DTYPE(ker_class, float, JITKERNEL_DECLARE, \
JITKERNEL_FIND_KEY, JITKERNEL_IMPL); \
REGISTER_JITKERNEL_WITH_DTYPE(ker_class, double, JITKERNEL_DECLARE, \
JITKERNEL_FIND_KEY, JITKERNEL_IMPL)
REGISTER_JITKERNEL_WITH_DTYPE(ker_class, float, marco_declare, \
macro_find_key, macro_impl); \
REGISTER_JITKERNEL_WITH_DTYPE(ker_class, double, marco_declare, \
macro_find_key, macro_impl)
#define REGISTER_JITKERNEL(ker_key, ker_class) \
REGISTER_JITKERNEL_ARGS(ker_key, ker_class, JITKERNEL_DEFINE_NAME, \
......
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <cmath>
#include <string>
#include "paddle/fluid/operators/math/jit_kernel_impl.h"
#include "paddle/fluid/platform/enforce.h"
namespace paddle {
namespace operators {
namespace math {
namespace jitkernel {
namespace refer {
/* Refer code only focus on correctness */
template <typename T>
void VMul(const T* x, const T* y, T* z, int n) {
for (int i = 0; i < n; ++i) {
z[i] = x[i] * y[i];
}
}
template <typename T>
void VAdd(const T* x, const T* y, T* z, int n) {
for (int i = 0; i < n; ++i) {
z[i] = x[i] + y[i];
}
}
template <typename T>
void VAddRelu(const T* x, const T* y, T* z, int n) {
for (int i = 0; i < n; ++i) {
z[i] = x[i] + y[i];
z[i] = z[i] > 0 ? z[i] : 0;
}
}
template <typename T>
void VScal(const T* a, const T* x, T* y, int n) {
for (int i = 0; i < n; ++i) {
y[i] = a[0] * x[i];
}
}
template <typename T>
void VAddBias(const T* a, const T* x, T* y, int n) {
for (int i = 0; i < n; ++i) {
y[i] = a[0] + x[i];
}
}
template <typename T>
void VRelu(const T* x, T* y, int n) {
for (int i = 0; i < n; ++i) {
y[i] = x[i] > 0 ? x[i] : 0;
}
}
template <typename T>
inline void VIdentity(const T* x, T* y, int n) {}
template <typename T>
void VExp(const T* x, T* y, int n) {
for (int i = 0; i < n; ++i) {
y[i] = std::exp(x[i]);
}
}
template <typename T>
void VSigmoid(const T* x, T* y, int n) {
// y = 1 / (1 + e^-x)
const T min = SIGMOID_THRESHOLD_MIN;
const T max = SIGMOID_THRESHOLD_MAX;
for (int i = 0; i < n; ++i) {
T tmp = (x[i] < min) ? min : ((x[i] > max) ? max : x[i]);
y[i] = static_cast<T>(1) / (static_cast<T>(1) + std::exp(-tmp));
}
}
template <typename T>
void VTanh(const T* x, T* y, int n) {
// y = 2 * sigmoid(2x) - 1
for (int i = 0; i < n; ++i) {
y[i] = static_cast<T>(2) * x[i];
}
VSigmoid(y, y, n);
for (int i = 0; i < n; ++i) {
y[i] = static_cast<T>(2) * y[i] - static_cast<T>(1);
}
}
template <typename T>
void (*getActFunc(const std::string& type))(const T*, T*, int) { // NOLINT
if (type == "sigmoid") {
return VSigmoid<T>;
} else if (type == "relu") {
return VRelu<T>;
} else if (type == "tanh") {
return VTanh<T>;
} else if (type == "identity" || type == "") {
return VIdentity<T>;
}
PADDLE_THROW("Not support type: %s", type);
return nullptr;
}
// compute ct and ht
template <typename T>
void LSTMCtHt(lstm_t* step, const lstm_attr_t* attr) {
T* gates = reinterpret_cast<T*>(step->gates);
const T* ct_1 = reinterpret_cast<const T*>(step->ct_1);
T* ct = reinterpret_cast<T*>(step->ct);
T* ht = reinterpret_cast<T*>(step->ht);
const T* wp = reinterpret_cast<const T*>(step->wp);
T* checked = reinterpret_cast<T*>(step->checked);
auto act_gate = getActFunc<T>(attr->act_gate);
auto act_cand = getActFunc<T>(attr->act_cand);
auto act_cell = getActFunc<T>(attr->act_cell);
int d = attr->d;
int d2 = d * 2;
int d3 = d * 3;
// gates: W_ch, W_ih, W_fh, W_oh
if (attr->use_peephole) {
VMul(wp, ct_1, checked, d);
VMul(wp + d, ct_1, checked + d, d);
VAdd(checked, gates + d, gates + d, d2);
act_gate(gates + d, gates + d, d2);
} else {
act_gate(gates + d, gates + d, d3);
}
// C_t = C_t-1 * fgated + cand_gated * igated
act_cand(gates, gates, d);
VMul(gates, gates + d, gates + d, d);
VMul(ct_1, gates + d2, gates + d2, d);
VAdd(gates + d, gates + d2, ct, d);
if (attr->use_peephole) {
// get ogated
VMul(wp + d2, ct, gates + d, d);
VAdd(gates + d, gates + d3, gates + d3, d);
act_gate(gates + d3, gates + d3, d);
}
// H_t = act_cell(C_t) * ogated
act_cell(ct, gates + d2, d);
VMul(gates + d2, gates + d3, ht, d);
}
// compute c1 and h1 without c0 or h0
template <typename T>
void LSTMC1H1(lstm_t* step, const lstm_attr_t* attr) {
T* gates = reinterpret_cast<T*>(step->gates);
T* ct = reinterpret_cast<T*>(step->ct);
T* ht = reinterpret_cast<T*>(step->ht);
auto act_gate = getActFunc<T>(attr->act_gate);
auto act_cand = getActFunc<T>(attr->act_cand);
auto act_cell = getActFunc<T>(attr->act_cell);
int d = attr->d;
int d2 = d * 2;
int d3 = d * 3;
/* C_t = igated * cgated*/
act_gate(gates + d, gates + d, d);
act_cand(gates, gates, d);
VMul(gates, gates + d, ct, d);
if (attr->use_peephole) {
// get outgated, put W_oc * C_t on igated
const T* wp = reinterpret_cast<const T*>(step->wp);
VMul(wp + d2, ct, gates + d, d);
VAdd(gates + d, gates + d3, gates + d3, d);
}
/* H_t = act_cell(C_t) * ogated */
act_gate(gates + d3, gates + d3, d);
act_cell(ct, gates + d2, d);
VMul(gates + d2, gates + d3, ht, d);
}
// compute h1 without h0
template <typename T>
void GRUH1(gru_t* step, const gru_attr_t* attr) {
T* gates = reinterpret_cast<T*>(step->gates);
T* ht = reinterpret_cast<T*>(step->ht);
auto act_gate = getActFunc<T>(attr->act_gate);
auto act_cand = getActFunc<T>(attr->act_cand);
int d = attr->d;
int d2 = d * 2;
act_gate(gates, gates, d);
act_cand(gates + d2, gates + d2, d);
VMul(gates, gates + d2, ht, d);
}
// compute the first part of GRU: ht = act_gate(r) * ht_1
template <typename T>
void GRUHtPart1(gru_t* step, const gru_attr_t* attr) {
// W: {W_update, W_reset; W_state}
T* gates = reinterpret_cast<T*>(step->gates);
T* ht = reinterpret_cast<T*>(step->ht);
const T* ht_1 = reinterpret_cast<const T*>(step->ht_1);
auto act_gate = getActFunc<T>(attr->act_gate);
act_gate(gates + attr->d, gates + attr->d, attr->d);
VMul(ht_1, gates + attr->d, ht, attr->d);
}
// compute the second part of GRU:
// ht = act_gate(u) * act_cand(s) + (1-act_gate(u)) * ht_1
template <typename T>
void GRUHtPart2(gru_t* step, const gru_attr_t* attr) {
T* gates = reinterpret_cast<T*>(step->gates);
T* ht = reinterpret_cast<T*>(step->ht);
const T* ht_1 = reinterpret_cast<const T*>(step->ht_1);
auto act_gate = getActFunc<T>(attr->act_gate);
auto act_cand = getActFunc<T>(attr->act_cand);
int d = attr->d;
T* y = gates + d * 2;
act_gate(gates, gates, d);
act_cand(y, y, d);
// out = zt*ht~ + (1-zt)*ht_1
for (int i = 0; i < d; ++i) {
ht[i] = gates[i] * y[i] + (static_cast<T>(1) - gates[i]) * ht_1[i];
}
}
} // namespace refer
} // namespace jitkernel
} // namespace math
} // namespace operators
} // namespace paddle
......@@ -15,470 +15,248 @@ limitations under the License. */
#include "paddle/fluid/operators/math/jit_kernel.h"
#include <string>
#include "paddle/fluid/operators/math/jit_kernel_macro.h"
#include "paddle/fluid/operators/math/jit_kernel_refer.h"
#include "paddle/fluid/platform/enforce.h"
#include "paddle/fluid/platform/macros.h"
#ifdef __AVX__
#include <immintrin.h>
#ifdef PADDLE_WITH_XBYAK
#include "paddle/fluid/operators/math/jit_code.h"
#endif
namespace paddle {
namespace operators {
namespace math {
namespace jitkernel {
namespace detail {
#ifdef __AVX__
__m256 ExpAVX(__m256 x);
#endif
#ifdef __AVX2__
__m256 ExpAVX2(__m256 x);
#endif
} // namespace detail
namespace jit = platform::jit;
#ifdef __AVX__
typedef enum { kSigmoid, kRelu, kTanh, kIdentity } act_type;
class AVXAct {
public:
virtual ~AVXAct() = default;
virtual __m256 Compute(__m256 x) const = 0;
};
template <act_type type, jit::cpu_isa_t isa>
class AVXActImpl : public AVXAct {
/* LSTM JitKernel */
template <typename T>
class LSTMKernelImpl : public LSTMKernel<T> {
public:
__m256 Compute(__m256 x) const override { PADDLE_THROW("Unkown type!"); }
};
#define AVX_SIGMOID(isa, expisa) \
template <> \
__m256 AVXActImpl<kSigmoid, isa>::Compute(__m256 x) const { \
__m256 ones = _mm256_set1_ps(1.0f); \
x = _mm256_max_ps(x, _mm256_set1_ps(SIGMOID_THRESHOLD_MIN)); \
x = _mm256_min_ps(x, _mm256_set1_ps(SIGMOID_THRESHOLD_MAX)); \
x = _mm256_sub_ps(_mm256_set1_ps(0.0f), x); \
x = expisa(x); \
x = _mm256_add_ps(ones, x); \
return _mm256_div_ps(ones, x); \
}
#define AVX_TANH(isa, expisa) \
template <> \
__m256 AVXActImpl<kTanh, isa>::Compute(__m256 x) const { \
__m256 ones = _mm256_set1_ps(1.0f); \
x = _mm256_mul_ps(_mm256_set1_ps(-2.0f), x); \
x = _mm256_min_ps(x, _mm256_set1_ps(EXP_MAX_INPUT)); \
x = expisa(x); \
x = _mm256_add_ps(ones, x); \
x = _mm256_div_ps(_mm256_set1_ps(2.0f), x); \
return _mm256_sub_ps(x, ones); \
static inline std::string name(const lstm_attr_t& attr) {
PADDLE_THROW("DType should be either float or double");
}
#define AVX_RELU(isa) \
template <> \
__m256 AVXActImpl<kRelu, isa>::Compute(__m256 x) const { \
return _mm256_max_ps(x, _mm256_setzero_ps()); \
static inline bool useJIT(int d) { return false; }
static inline bool useMKL(int d) { return false; }
explicit LSTMKernelImpl(const lstm_attr_t& attr) : LSTMKernel<T>() {
#ifdef PADDLE_WITH_XBYAK
if (useJIT(attr.d)) {
size_t sz = 96 + attr.d / YMM_FLOAT_BLOCK * 90 * 4 * 8;
jitcode0_.reset(new gen::LSTMJitCode(false, attr, sz > 4096 ? sz : 4096));
this->ComputeCtHt =
jitcode0_->getCode<void (*)(lstm_t*, const lstm_attr_t*)>();
jitcode1_.reset(new gen::LSTMJitCode(true, attr, sz > 4096 ? sz : 4096));
this->ComputeC1H1 =
jitcode1_->getCode<void (*)(lstm_t*, const lstm_attr_t*)>();
return;
}
#endif
#define AVX_IDENTITY(isa) \
template <> \
__m256 AVXActImpl<kIdentity, isa>::Compute(__m256 x) const { \
return x; \
this->ComputeCtHt = refer::LSTMCtHt<T>;
this->ComputeC1H1 = refer::LSTMC1H1<T>;
}
#define FOR_EACH_AVX_ISA(macro_) \
macro_(jit::avx); \
macro_(jit::avx2); \
macro_(jit::avx512f)
FOR_EACH_AVX_ISA(AVX_RELU);
FOR_EACH_AVX_ISA(AVX_IDENTITY);
AVX_SIGMOID(jit::avx, detail::ExpAVX);
AVX_TANH(jit::avx, detail::ExpAVX);
#ifdef PADDLE_WITH_XBYAK
#ifdef __AVX2__
AVX_SIGMOID(jit::avx2, detail::ExpAVX2);
AVX_SIGMOID(jit::avx512f, detail::ExpAVX2);
AVX_TANH(jit::avx2, detail::ExpAVX2);
AVX_TANH(jit::avx512f, detail::ExpAVX2);
private:
std::unique_ptr<gen::LSTMJitCode> jitcode0_{nullptr}, jitcode1_{nullptr};
#endif
};
#undef FOR_EACH_AVX_ISA
#undef AVX_IDENTITY
#undef AVX_RELU
#undef AVX_TANH
#undef AVX_SIGMOID
#ifdef PADDLE_WITH_XBYAK
template <>
bool LSTMKernelImpl<float>::useJIT(int d) {
return gen::LSTMJitCode::init(d);
}
#endif
/* Peephole JitKernel */
template <typename T>
static std::shared_ptr<const VActKernel<T>> GetActKernel(
const std::string& type, int n) {
if (type == "sigmoid") {
return std::dynamic_pointer_cast<const VActKernel<T>>(
KernelPool::Instance().template Get<VSigmoidKernel<T>>(n));
} else if (type == "relu") {
return std::dynamic_pointer_cast<const VActKernel<T>>(
KernelPool::Instance().template Get<VReluKernel<T>>(n));
} else if (type == "tanh") {
return std::dynamic_pointer_cast<const VActKernel<T>>(
KernelPool::Instance().template Get<VTanhKernel<T>>(n));
} else if (type == "identity" || type == "") {
return std::dynamic_pointer_cast<const VActKernel<T>>(
KernelPool::Instance().template Get<VIdentityKernel<T>>(n));
class PeepholeKernelImpl : public LSTMKernel<T> {
public:
static inline std::string name(const lstm_attr_t& attr) {
PADDLE_THROW("DType should be either float or double");
}
PADDLE_THROW("Not support type: %s", type);
return nullptr;
}
#ifdef __AVX__
template <jit::cpu_isa_t isa>
static std::unique_ptr<AVXAct> GetAVXAct(const std::string& type) {
if (type == "sigmoid") {
return std::unique_ptr<AVXAct>(new AVXActImpl<kSigmoid, isa>());
} else if (type == "relu") {
return std::unique_ptr<AVXAct>(new AVXActImpl<kRelu, isa>());
} else if (type == "tanh") {
return std::unique_ptr<AVXAct>(new AVXActImpl<kTanh, isa>());
} else if (type == "identity" || type == "") {
return std::unique_ptr<AVXAct>(new AVXActImpl<kIdentity, isa>());
static inline bool useJIT(int d) { return false; }
static inline bool useMKL(int d) { return false; }
explicit PeepholeKernelImpl(const lstm_attr_t& attr) : LSTMKernel<T>() {
#ifdef PADDLE_WITH_XBYAK
if (useJIT(attr.d)) {
size_t sz = 96 + attr.d / YMM_FLOAT_BLOCK * 96 * 4 * 8;
jitcode0_.reset(new gen::LSTMJitCode(false, attr, sz > 4096 ? sz : 4096));
this->ComputeCtHt =
jitcode0_->getCode<void (*)(lstm_t*, const lstm_attr_t*)>();
jitcode1_.reset(new gen::LSTMJitCode(true, attr, sz > 4096 ? sz : 4096));
this->ComputeC1H1 =
jitcode1_->getCode<void (*)(lstm_t*, const lstm_attr_t*)>();
return;
}
PADDLE_THROW("Not support type: %s", type);
return nullptr;
}
#endif
/* LSTM JitKernel */
template <typename T, jit::cpu_isa_t isa, jit_block>
class LSTMKernelImpl : public LSTMKernel<T> {
public:
explicit LSTMKernelImpl(const std::string& act_gate,
const std::string& act_cand,
const std::string& act_cell, int d)
: LSTMKernel<T>() {
d_ = d;
d2_ = d * 2;
d3_ = d * 3;
act_gate_d3_ = GetActKernel<T>(act_gate, d3_);
act_gate_d_ = GetActKernel<T>(act_gate, d);
act_cand_d_ = GetActKernel<T>(act_cand, d);
act_cell_d_ = GetActKernel<T>(act_cell, d);
vmul_d_ = KernelPool::Instance().template Get<VMulKernel<T>>(d);
vadd_d_ = KernelPool::Instance().template Get<VAddKernel<T>>(d);
this->ComputeCtHt = refer::LSTMCtHt<T>;
this->ComputeC1H1 = refer::LSTMC1H1<T>;
}
void ComputeCtHt(T* gates, const T* ct_1, T* ct, T* ht, const T* wp_data,
T* checked) const override {
// gates: W_ch, W_ih, W_fh, W_oh
act_gate_d3_->Compute(gates + d_, gates + d_, d3_);
/* C_t = C_t-1 * fgated + cand_gated * igated */
act_cand_d_->Compute(gates, gates, d_);
vmul_d_->Compute(gates, gates + d_, gates + d_, d_);
vmul_d_->Compute(ct_1, gates + d2_, gates + d2_, d_);
vadd_d_->Compute(gates + d_, gates + d2_, ct, d_);
/* H_t = act_cell(C_t) * ogated */
act_cell_d_->Compute(ct, gates + d2_, d_);
vmul_d_->Compute(gates + d2_, gates + d3_, ht, d_);
}
void ComputeC1H1(T* gates, T* ct, T* ht, const T* wp_data) const override {
/* C_t = igated * cgated*/
act_gate_d_->Compute(gates + d_, gates + d_, d_);
act_cand_d_->Compute(gates, gates, d_);
vmul_d_->Compute(gates, gates + d_, ct, d_);
/* H_t = act_cell(C_t) * ogated */
act_gate_d_->Compute(gates + d3_, gates + d3_, d_);
act_cell_d_->Compute(ct, gates + d2_, d_);
vmul_d_->Compute(gates + d2_, gates + d3_, ht, d_);
}
#ifdef PADDLE_WITH_XBYAK
private:
int d_, d2_, d3_;
std::shared_ptr<const VActKernel<T>> act_gate_d3_, act_gate_d_, act_cand_d_,
act_cell_d_;
std::shared_ptr<const VMulKernel<T>> vmul_d_;
std::shared_ptr<const VAddKernel<T>> vadd_d_;
#ifdef __AVX__
std::unique_ptr<const AVXAct> avx_act_gate_, avx_act_cand_, avx_act_cell_;
std::unique_ptr<gen::LSTMJitCode> jitcode0_{nullptr}, jitcode1_{nullptr};
#endif
};
#define INTRI8_FLOAT(isa) \
#ifdef PADDLE_WITH_XBYAK
template <>
bool PeepholeKernelImpl<float>::useJIT(int d) {
return gen::LSTMJitCode::init(d);
}
#endif
#define JITKERNEL_DEFINE_NAME_LSTM(ker_key, ker_class) \
template <> \
LSTMKernelImpl<float, isa, kEQ8>::LSTMKernelImpl( \
const std::string& act_gate, const std::string& act_cand, \
const std::string& act_cell, int d) \
: LSTMKernel<float>() { \
avx_act_gate_ = GetAVXAct<isa>(act_gate); \
avx_act_cand_ = GetAVXAct<isa>(act_cand); \
avx_act_cell_ = GetAVXAct<isa>(act_cell); \
std::string ker_class##Impl<float>::name(const lstm_attr_t& attr) { \
std::string key(#ker_key "f"); \
key += (attr.act_gate + attr.act_cand + attr.act_cell + \
(attr.use_peephole ? "p" : "n")); \
if (useJIT(attr.d)) { \
/* only jit code need record d*/ \
return key + "jit" + std::to_string(attr.d); \
} else if (useMKL(attr.d)) { \
return key + "mkl"; \
} else { \
return key + "any"; \
} \
template <> \
void LSTMKernelImpl<float, isa, kEQ8>::ComputeCtHt( \
float* gates, const float* ct_1, float* ct, float* ht, \
const float* wp_data, float* checked) const { \
/* gates: W_ch, W_ih, W_fh, W_oh */ \
__m256 c, i, f, o; \
c = _mm256_loadu_ps(gates); \
i = _mm256_loadu_ps(gates + 8); \
f = _mm256_loadu_ps(gates + 16); \
o = _mm256_loadu_ps(gates + 24); \
/* C_t = C_t-1 * fgated + cand_gated * igated*/ \
c = _mm256_mul_ps(avx_act_cand_->Compute(c), avx_act_gate_->Compute(i)); \
i = _mm256_loadu_ps(ct_1); \
f = _mm256_mul_ps(i, avx_act_gate_->Compute(f)); \
f = _mm256_add_ps(c, f); \
_mm256_storeu_ps(ct, f); \
/* H_t = act_cell(C_t) * ogated */ \
o = _mm256_mul_ps(avx_act_cell_->Compute(f), avx_act_gate_->Compute(o)); \
_mm256_storeu_ps(ht, o); \
} \
template <> \
void LSTMKernelImpl<float, isa, kEQ8>::ComputeC1H1( \
float* gates, float* ct, float* ht, const float* wp_data) const { \
__m256 c, i, o; \
c = _mm256_loadu_ps(gates); \
i = _mm256_loadu_ps(gates + 8); \
o = _mm256_loadu_ps(gates + 24); \
/* C_t = igated * cgated*/ \
c = _mm256_mul_ps(avx_act_gate_->Compute(i), avx_act_cand_->Compute(c)); \
_mm256_storeu_ps(ct, c); \
/* H_t = act_cell(C_t) * ogated */ \
o = _mm256_mul_ps(avx_act_cell_->Compute(c), avx_act_gate_->Compute(o)); \
_mm256_storeu_ps(ht, o); \
}
// TODO(TJ): optimize keq16
#ifdef __AVX__
INTRI8_FLOAT(jit::avx);
#endif
#ifdef __AVX2__
INTRI8_FLOAT(jit::avx2);
#endif
#ifdef __AVX512F__
INTRI8_FLOAT(jit::avx512f);
#endif
/* Peephole JitKernel */
template <typename T, jit::cpu_isa_t isa, jit_block>
class PeepholeKernelImpl : public LSTMKernel<T> {
public:
explicit PeepholeKernelImpl(const std::string& act_gate,
const std::string& act_cand,
const std::string& act_cell, int d)
: LSTMKernel<T>() {
d_ = d;
d2_ = d * 2;
d3_ = d * 3;
act_gate_d_ = GetActKernel<T>(act_gate, d);
act_cand_d_ = GetActKernel<T>(act_cand, d);
act_cell_d_ = GetActKernel<T>(act_cell, d);
vmul_d_ = KernelPool::Instance().template Get<VMulKernel<T>>(d);
vadd_d_ = KernelPool::Instance().template Get<VAddKernel<T>>(d);
vadd_d2_ = KernelPool::Instance().template Get<VAddKernel<T>>(d2_);
act_gate_d2_ = GetActKernel<T>(act_gate, d2_);
}
void ComputeCtHt(T* gates, const T* ct_1, T* ct, T* ht, const T* wp_data,
T* checked) const override {
/* get fgated and igated*/
vmul_d_->Compute(wp_data, ct_1, checked, d_);
vmul_d_->Compute(wp_data + d_, ct_1, checked + d_, d_);
vadd_d2_->Compute(checked, gates + d_, gates + d_, d2_);
act_gate_d2_->Compute(gates + d_, gates + d_, d2_);
/* C_t = C_t-1 * fgated + cand_gated * igated*/
act_cand_d_->Compute(gates, gates, d_);
vmul_d_->Compute(gates, gates + d_, gates + d_, d_);
vmul_d_->Compute(ct_1, gates + d2_, gates + d2_, d_);
vadd_d_->Compute(gates + d_, gates + d2_, ct, d_);
/* get ogated*/
vmul_d_->Compute(wp_data + d2_, ct, gates + d_, d_);
vadd_d_->Compute(gates + d_, gates + d3_, gates + d3_, d_);
act_gate_d_->Compute(gates + d3_, gates + d3_, d_);
/* H_t = act_cell(C_t) * ogated */
act_cell_d_->Compute(ct, gates + d2_, d_);
vmul_d_->Compute(gates + d2_, gates + d3_, ht, d_);
}
void ComputeC1H1(T* gates, T* ct, T* ht, const T* wp_data) const override {
/* C_t = igated * cgated*/
act_gate_d_->Compute(gates + d_, gates + d_, d_);
act_cand_d_->Compute(gates, gates, d_);
vmul_d_->Compute(gates, gates + d_, ct, d_);
/* get outgated, put W_oc * C_t on igated */
vmul_d_->Compute(wp_data + d2_, ct, gates + d_, d_);
vadd_d_->Compute(gates + d_, gates + d3_, gates + d3_, d_);
/* H_t = act_cell(C_t) * ogated */
act_gate_d_->Compute(gates + d3_, gates + d3_, d_);
act_cell_d_->Compute(ct, gates + d2_, d_);
vmul_d_->Compute(gates + d2_, gates + d3_, ht, d_);
std::string ker_class##Impl<double>::name(const lstm_attr_t& attr) { \
std::string key(#ker_key "d"); \
/* jit code do not support double yet*/ \
if (useMKL(attr.d)) { \
return key + "mkl"; \
} else { \
return key + "any"; \
} \
}
private:
int d_, d2_, d3_;
std::shared_ptr<const VActKernel<T>> act_gate_d2_, act_gate_d_, act_cand_d_,
act_cell_d_;
std::shared_ptr<const VMulKernel<T>> vmul_d_;
std::shared_ptr<const VAddKernel<T>> vadd_d_, vadd_d2_;
};
#define JITKERNEL_DECLARE_LSTM(ker_class, ker_dtype) \
template <> \
std::shared_ptr<const LSTMKernel<ker_dtype>> \
KernelPool::Get<LSTMKernel<ker_dtype>, const std::string&, \
const std::string&, const std::string&, int, bool>( \
const std::string& act_gate, const std::string& act_cand, \
const std::string& act_cell, int d, bool use_peephole)
KernelPool::Get<LSTMKernel<ker_dtype>, const lstm_attr_t&>( \
const lstm_attr_t& attr)
#define JITKERNEL_KEY_LSTM(ker_key, dtype_key) \
#ker_key #dtype_key + std::to_string(d) + act_gate + act_cand + act_cell + \
(use_peephole ? "p" : "n")
#define JITKERNEL_FIND_KEY_LSTM(ker_class, ker_dtype) \
std::string key = ker_class##Impl<ker_dtype>::name(attr)
#define JITKERNEL_NEW_LSTM_IMPL(ker, dtype, isa, k) \
if (use_peephole) { \
#define JITKERNEL_LSTM_IMPL(ker, dtype) \
if (attr.use_peephole) { \
p = std::dynamic_pointer_cast<ker<dtype>>( \
std::make_shared<PeepholeKernelImpl<dtype, isa, k>>( \
act_gate, act_cand, act_cell, d)); \
std::make_shared<PeepholeKernelImpl<dtype>>(attr)); \
} else { \
p = std::dynamic_pointer_cast<ker<dtype>>( \
std::make_shared<ker##Impl<dtype, isa, k>>(act_gate, act_cand, \
act_cell, d)); \
std::make_shared<ker##Impl<dtype>>(attr)); \
}
REGISTER_JITKERNEL_ARGS_DEPRECATED(lstm, LSTMKernel, JITKERNEL_DECLARE_LSTM,
JITKERNEL_KEY_LSTM, JITKERNEL_NEW_LSTM_IMPL);
REGISTER_JITKERNEL_ARGS(lstm, LSTMKernel, JITKERNEL_DEFINE_NAME_LSTM,
JITKERNEL_DECLARE_LSTM, JITKERNEL_FIND_KEY_LSTM,
JITKERNEL_LSTM_IMPL);
#undef INTRI8_FLOAT
#undef JITKERNEL_LSTM_IMPL
#undef JITKERNEL_FIND_KEY_LSTM
#undef JITKERNEL_DECLARE_LSTM
#undef JITKERNEL_KEY_LSTM
#undef JITKERNEL_NEW_LSTM_IMPL
#undef JITKERNEL_DEFINE_NAME_LSTM
/* GRU JitKernel */
template <typename T, jit::cpu_isa_t isa, jit_block>
template <typename T>
class GRUKernelImpl : public GRUKernel<T> {
public:
explicit GRUKernelImpl(const std::string& act_gate,
const std::string& act_state, int d)
: GRUKernel<T>() {
d_ = d;
d2_ = d * 2;
act_gate_d2_ = GetActKernel<T>(act_gate, d2_);
act_gate_d_ = GetActKernel<T>(act_gate, d);
act_state_d_ = GetActKernel<T>(act_state, d);
vmul_d_ = KernelPool::Instance().template Get<VMulKernel<T>>(d);
}
void ComputeH1(T* gates, T* ht) const override {
act_gate_d_->Compute(gates, gates, d_);
act_state_d_->Compute(gates + d2_, gates + d2_, d_);
vmul_d_->Compute(gates, gates + d2_, ht, d_);
static inline std::string name(const gru_attr_t& attr) {
PADDLE_THROW("DType should be either float or double");
}
void ComputeHtPart1(T* gates, const T* ht_1, T* ht) const override {
// W: {W_update, W_reset; W_state}
act_gate_d2_->Compute(gates, gates, d2_);
vmul_d_->Compute(ht_1, gates + d_, ht, d_);
}
void ComputeHtPart2(T* gates, const T* ht_1, T* ht) const override {
T* y = gates + d2_;
act_state_d_->Compute(y, y, d_);
// out = zt*ht~ + (1-zt)*ht_1
for (int i = 0; i < d_; ++i) {
ht[i] = gates[i] * y[i] + (static_cast<T>(1) - gates[i]) * ht_1[i];
static inline bool useJIT(int d) { return false; }
static inline bool useMKL(int d) { return false; }
explicit GRUKernelImpl(const gru_attr_t& attr) : GRUKernel<T>() {
#ifdef PADDLE_WITH_XBYAK
if (useJIT(attr.d)) {
size_t sz = 96 + attr.d / YMM_FLOAT_BLOCK * 96 * 2 * 8;
jitcode0_.reset(new gen::GRUJitCode(0, attr, sz > 4096 ? sz : 4096));
this->ComputeH1 =
jitcode0_->getCode<void (*)(gru_t*, const gru_attr_t*)>();
jitcode1_.reset(new gen::GRUJitCode(1, attr, sz > 4096 ? sz : 4096));
this->ComputeHtPart1 =
jitcode1_->getCode<void (*)(gru_t*, const gru_attr_t*)>();
jitcode2_.reset(new gen::GRUJitCode(2, attr, sz > 4096 ? sz : 4096));
this->ComputeHtPart2 =
jitcode2_->getCode<void (*)(gru_t*, const gru_attr_t*)>();
return;
}
#endif
this->ComputeH1 = refer::GRUH1<T>;
this->ComputeHtPart1 = refer::GRUHtPart1<T>;
this->ComputeHtPart2 = refer::GRUHtPart2<T>;
}
#ifdef PADDLE_WITH_XBYAK
private:
int d_, d2_;
std::shared_ptr<const VActKernel<T>> act_gate_d2_, act_gate_d_, act_state_d_;
std::shared_ptr<const VMulKernel<T>> vmul_d_;
#ifdef __AVX__
std::unique_ptr<const AVXAct> avx_act_gate_, avx_act_state_;
std::unique_ptr<gen::GRUJitCode> jitcode0_{nullptr}, jitcode1_{nullptr},
jitcode2_{nullptr};
#endif
};
#define INTRI8_FLOAT(isa) \
#ifdef PADDLE_WITH_XBYAK
template <>
bool GRUKernelImpl<float>::useJIT(int d) {
return gen::GRUJitCode::init(d);
}
#endif
#define JITKERNEL_DEFINE_NAME_GRU(ker_key, ker_class) \
template <> \
GRUKernelImpl<float, isa, kEQ8>::GRUKernelImpl( \
const std::string& act_gate, const std::string& act_state, int d) \
: GRUKernel<float>() { \
avx_act_gate_ = GetAVXAct<isa>(act_gate); \
avx_act_state_ = GetAVXAct<isa>(act_state); \
std::string ker_class##Impl<float>::name(const gru_attr_t& attr) { \
std::string key(#ker_key "f"); \
key += (attr.act_gate + attr.act_cand); \
if (useJIT(attr.d)) { \
/* only jit code need record d*/ \
return key + "jit" + std::to_string(attr.d); \
} else if (useMKL(attr.d)) { \
return key + "mkl"; \
} else { \
return key + "any"; \
} \
template <> \
void GRUKernelImpl<float, isa, kEQ8>::ComputeH1(float* gates, float* ht) \
const { \
__m256 u, s; \
/* W: {W_update, W_reset; W_state} */ \
u = _mm256_loadu_ps(gates); \
s = _mm256_loadu_ps(gates + 16); \
s = _mm256_mul_ps(avx_act_gate_->Compute(u), avx_act_state_->Compute(s)); \
_mm256_storeu_ps(ht, s); \
} \
template <> \
void GRUKernelImpl<float, isa, kEQ8>::ComputeHtPart1( \
float* gates, const float* ht_1, float* ht) const { \
/* not exactly equal the any implementation */ \
__m256 r, ht0; \
r = _mm256_loadu_ps(gates + 8); \
ht0 = _mm256_loadu_ps(ht_1); \
r = _mm256_mul_ps(avx_act_gate_->Compute(r), ht0); \
_mm256_storeu_ps(ht, r); \
std::string ker_class##Impl<double>::name(const gru_attr_t& attr) { \
std::string key(#ker_key "d"); \
/* jit code do not support double yet*/ \
if (useMKL(attr.d)) { \
return key + "mkl"; \
} else { \
return key + "any"; \
} \
template <> \
void GRUKernelImpl<float, isa, kEQ8>::ComputeHtPart2( \
float* gates, const float* ht_1, float* ht) const { \
/* not exactly equal the any implementation */ \
__m256 u, s, ht0; \
u = _mm256_loadu_ps(gates); \
s = _mm256_loadu_ps(gates + 16); \
ht0 = _mm256_loadu_ps(ht_1); \
u = avx_act_gate_->Compute(u); \
s = _mm256_mul_ps(u, avx_act_state_->Compute(s)); \
u = _mm256_sub_ps(_mm256_set1_ps(1.f), u); \
u = _mm256_mul_ps(u, ht0); \
u = _mm256_add_ps(s, u); \
_mm256_storeu_ps(ht, u); \
}
#ifdef __AVX__
INTRI8_FLOAT(jit::avx);
#endif
#ifdef __AVX2__
INTRI8_FLOAT(jit::avx2);
#endif
#ifdef __AVX512F__
INTRI8_FLOAT(jit::avx512f);
#endif
#define JITKERNEL_DECLARE_GRU(ker_class, ker_dtype) \
template <> \
std::shared_ptr<const GRUKernel<ker_dtype>> KernelPool::Get< \
GRUKernel<ker_dtype>, const std::string&, const std::string&, int>( \
const std::string& act_gate, const std::string& act_state, int d)
std::shared_ptr<const ker_class<ker_dtype>> \
KernelPool::Get<ker_class<ker_dtype>, const gru_attr_t&>( \
const gru_attr_t& attr)
#define JITKERNEL_KEY_GRU(ker_key, dtype_key) \
#ker_key #dtype_key + std::to_string(d) + act_gate + act_state
#define JITKERNEL_FIND_KEY_GRU(ker_class, ker_dtype) \
std::string key = ker_class##Impl<ker_dtype>::name(attr)
#define JITKERNEL_NEW_GRU_IMPL(ker, dtype, isa, k) \
#define JITKERNEL_GRU_IMPL(ker, dtype) \
p = std::dynamic_pointer_cast<ker<dtype>>( \
std::make_shared<ker##Impl<dtype, isa, k>>(act_gate, act_state, d));
std::make_shared<ker##Impl<dtype>>(attr));
REGISTER_JITKERNEL_ARGS_DEPRECATED(gru, GRUKernel, JITKERNEL_DECLARE_GRU,
JITKERNEL_KEY_GRU, JITKERNEL_NEW_GRU_IMPL);
REGISTER_JITKERNEL_ARGS(gru, GRUKernel, JITKERNEL_DEFINE_NAME_GRU,
JITKERNEL_DECLARE_GRU, JITKERNEL_FIND_KEY_GRU,
JITKERNEL_GRU_IMPL);
#undef INTRI8_FLOAT
#undef JITKERNEL_NEW_GRU_IMPL
#undef JITKERNEL_KEY_GRU
#undef JITKERNEL_GRU_IMPL
#undef JITKERNEL_FIND_KEY_GRU
#undef JITKERNEL_DECLARE_GRU
#undef JITKERNEL_DEFINE_NAME_GRU
} // namespace jitkernel
} // namespace math
} // namespace operators
......
......@@ -13,7 +13,6 @@ See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/math/jit_kernel.h"
#include <sys/time.h>
#include <cmath> // for exp
#include <cstring> // for memcpy
#include <random>
......@@ -22,6 +21,8 @@ limitations under the License. */
#include "gflags/gflags.h"
#include "glog/logging.h"
#include "gtest/gtest.h"
#include "paddle/fluid/operators/math/jit_kernel_refer.h"
#include "paddle/fluid/platform/port.h"
#ifdef PADDLE_WITH_MKLML
#include "paddle/fluid/platform/dynload/mklml.h"
......@@ -53,12 +54,6 @@ void RandomVec(const int n, T* a, const T lower = static_cast<T>(-20.f),
}
}
void vrelu_ref(const int n, const float* x, float* y) {
for (int i = 0; i < n; ++i) {
y[i] = x[i] > 0.f ? x[i] : 0.f;
}
}
#if defined __AVX__ || defined __AVX2__
void vrelu_intri8(const int n, const float* x, float* y) {
__m256 tmp = _mm256_loadu_ps(x);
......@@ -69,6 +64,7 @@ void vrelu_intri8(const int n, const float* x, float* y) {
TEST(JitKernel, vrelu) {
namespace jit = paddle::operators::math::jitkernel;
namespace refer = paddle::operators::math::jitkernel::refer;
for (int d : {3, 7, 8, 15, 16, 30, 256, 512}) {
std::vector<float> x(d);
std::vector<float> zref(d), ztgt(d);
......@@ -80,7 +76,7 @@ TEST(JitKernel, vrelu) {
float* zref_data = zref.data();
auto trefs = GetCurrentUS();
for (int i = 0; i < repeat; ++i) {
vrelu_ref(d, x_data, zref_data);
refer::VRelu<float>(x_data, zref_data, d);
}
auto trefe = GetCurrentUS();
#if defined __AVX__ || defined __AVX2__
......@@ -90,7 +86,7 @@ TEST(JitKernel, vrelu) {
vrelu_intri8(d, x_data, zref_data);
}
auto si1 = GetCurrentUS();
VLOG(30) << "Vec size 8 intr takes: " << (si1 - si0) / repeat;
VLOG(30) << "Vec size 8 intr takes: " << (si1 - si0) / repeat << " us";
}
#endif
auto ttgts = GetCurrentUS();
......@@ -100,21 +96,16 @@ TEST(JitKernel, vrelu) {
auto ttgte = GetCurrentUS();
VLOG(30) << "Vec size " << d
<< ": refer takes: " << (trefe - trefs) / repeat
<< " us, tgt takes: " << (ttgte - ttgts) / repeat;
<< " us, tgt takes: " << (ttgte - ttgts) / repeat << " us";
for (int i = 0; i < d; ++i) {
EXPECT_NEAR(ztgt_data[i], zref_data[i], 1e-3);
}
}
}
void vaddbias_ref(const int n, const float a, const float* x, float* y) {
for (int i = 0; i < n; ++i) {
y[i] = x[i] + a;
}
}
TEST(JitKernel, vaddbias) {
namespace jit = paddle::operators::math::jitkernel;
namespace refer = paddle::operators::math::jitkernel::refer;
for (int d : {7, 8, 15, 16, 30, 64, 100, 128, 256}) {
std::vector<float> x(d);
std::vector<float> zref(d), ztgt(d);
......@@ -127,7 +118,7 @@ TEST(JitKernel, vaddbias) {
float* zref_data = zref.data();
auto trefs = GetCurrentUS();
for (int i = 0; i < repeat; ++i) {
vaddbias_ref(d, a, x_data, zref_data);
refer::VAddBias<float>(&a, x_data, zref_data, d);
}
auto trefe = GetCurrentUS();
auto ttgts = GetCurrentUS();
......@@ -138,19 +129,13 @@ TEST(JitKernel, vaddbias) {
VLOG(30) << "Vec size " << d
<< ": refer takes: " << (trefe - trefs) / repeat
<< " us, tgt takes: " << (ttgte - ttgts) / repeat;
<< " us, tgt takes: " << (ttgte - ttgts) / repeat << " us";
for (int i = 0; i < d; ++i) {
EXPECT_NEAR(ztgt_data[i], zref_data[i], 1e-3);
}
}
}
void vexp_ref(const int n, const float* x, float* y) {
for (int i = 0; i < n; ++i) {
y[i] = std::exp(x[i]);
}
}
#ifdef PADDLE_WITH_MKLML
void vexp_mkl(const int n, const float* x, float* y) {
paddle::platform::dynload::vsExp(n, x, y);
......@@ -159,6 +144,7 @@ void vexp_mkl(const int n, const float* x, float* y) {
TEST(JitKernel, vexp) {
namespace jit = paddle::operators::math::jitkernel;
namespace refer = paddle::operators::math::jitkernel::refer;
for (int d : {1, 3, 4, 6, 7, 8, 12, 15, 16, 20, 30, 128, 256}) {
std::vector<float> x(d);
std::vector<float> zref(d), ztgt(d);
......@@ -170,7 +156,7 @@ TEST(JitKernel, vexp) {
float* zref_data = zref.data();
auto trefs = GetCurrentUS();
for (int i = 0; i < repeat; ++i) {
vexp_ref(d, x_data, zref_data);
refer::VExp<float>(x_data, zref_data, d);
}
auto trefe = GetCurrentUS();
......@@ -196,26 +182,13 @@ TEST(JitKernel, vexp) {
#else
<< " us, "
#endif
<< "tgt takes: " << (ttgte - ttgts) / repeat;
<< "tgt takes: " << (ttgte - ttgts) / repeat << " us";
for (int i = 0; i < d; ++i) {
EXPECT_NEAR(ztgt_data[i], zref_data[i], 1e-3);
}
}
}
inline float _sigmoid(float x) {
const float min = SIGMOID_THRESHOLD_MIN;
const float max = SIGMOID_THRESHOLD_MAX;
float tmp = (x < min) ? min : ((x > max) ? max : x);
return 1.f / (1.f + std::exp(-tmp));
}
void vsigmoid_ref(const int n, const float* x, float* y) {
for (int i = 0; i < n; ++i) {
y[i] = _sigmoid(x[i]);
}
}
void vsigmoid_better(
const std::shared_ptr<
const paddle::operators::math::jitkernel::VExpKernel<float>>& vexp,
......@@ -234,6 +207,7 @@ void vsigmoid_better(
TEST(JitKernel, vsigmoid) {
namespace jit = paddle::operators::math::jitkernel;
namespace refer = paddle::operators::math::jitkernel::refer;
for (int d : {1, 3, 4, 6, 7, 8, 15, 16, 30, 32, 64, 100, 128, 256}) {
std::vector<float> x(d);
std::vector<float> zref(d), ztgt(d);
......@@ -252,7 +226,7 @@ TEST(JitKernel, vsigmoid) {
auto tmkle = GetCurrentUS();
auto trefs = GetCurrentUS();
for (int i = 0; i < repeat; ++i) {
vsigmoid_ref(d, x_data, zref_data);
refer::VSigmoid<float>(x_data, zref_data, d);
}
auto trefe = GetCurrentUS();
auto ttgts = GetCurrentUS();
......@@ -264,21 +238,13 @@ TEST(JitKernel, vsigmoid) {
VLOG(30) << "Vec size " << d
<< ": refer takes: " << (trefe - trefs) / repeat
<< " us, better(jit exp) takes: " << (tmkle - tmkls) / repeat
<< " us, tgt takes: " << (ttgte - ttgts) / repeat;
<< " us, tgt takes: " << (ttgte - ttgts) / repeat << " us";
for (int i = 0; i < d; ++i) {
EXPECT_NEAR(ztgt_data[i], zref_data[i], 1e-3);
}
}
}
inline float _tanh(float x) { return 2.f * _sigmoid(2.f * x) - 1.f; }
void vtanh_ref(const int n, const float* x, float* y) {
for (int i = 0; i < n; ++i) {
y[i] = _tanh(x[i]);
}
}
void vtanh_better(
const std::shared_ptr<
const paddle::operators::math::jitkernel::VScalKernel<float>>& vscal,
......@@ -298,6 +264,7 @@ void vtanh_better(
TEST(JitKernel, vtanh) {
namespace jit = paddle::operators::math::jitkernel;
namespace refer = paddle::operators::math::jitkernel::refer;
for (int d : {1, 2, 3, 4, 5, 6, 7, 8, 15, 16, 30, 32, 64, 100, 128, 256}) {
std::vector<float> x(d);
std::vector<float> zref(d), ztgt(d);
......@@ -320,7 +287,7 @@ TEST(JitKernel, vtanh) {
auto tmkle = GetCurrentUS();
auto trefs = GetCurrentUS();
for (int i = 0; i < repeat; ++i) {
vtanh_ref(d, x_data, zref_data);
refer::VTanh<float>(x_data, zref_data, d);
}
auto trefe = GetCurrentUS();
auto ttgts = GetCurrentUS();
......@@ -332,39 +299,13 @@ TEST(JitKernel, vtanh) {
VLOG(30) << "Vec size " << d
<< ": refer takes: " << (trefe - trefs) / repeat
<< " us, better(jit exp) takes: " << (tmkle - tmkls) / repeat
<< " us, tgt takes: " << (ttgte - ttgts) / repeat;
<< " us, tgt takes: " << (ttgte - ttgts) / repeat << " us";
for (int i = 0; i < d; ++i) {
EXPECT_NEAR(ztgt_data[i], zref_data[i], 1e-3);
}
}
}
void lstm_ctht_ref(
const std::shared_ptr<
const paddle::operators::math::jitkernel::VSigmoidKernel<float>>&
vsigmoid_3d,
const std::shared_ptr<
const paddle::operators::math::jitkernel::VTanhKernel<float>>& vtanh_d,
const std::shared_ptr<
const paddle::operators::math::jitkernel::VExpKernel<float>>& vexp_1,
const int d, float* gates, const float* ct_1, float* ct, float* ht) {
vsigmoid_3d->Compute(gates + d, gates + d, 3 * d);
vtanh_d->Compute(gates, gates, d);
const float *i = gates + d, *f = gates + d * 2, *o = gates + d * 3;
const float min = SIGMOID_THRESHOLD_MIN;
const float max = SIGMOID_THRESHOLD_MAX;
for (int k = 0; k < d; ++k) {
// C_t = C_t-1 * fgated + cand_gated * igated
ct[k] = ct_1[k] * f[k] + gates[k] * i[k];
// H_t = act_cell(C_t) * ogated
float tmp = ct[k] * 2;
tmp = 0.f - ((tmp < min) ? min : ((tmp > max) ? max : tmp));
vexp_1->Compute(&tmp, &tmp, 1);
tmp = 2.f / (1.f + tmp) - 1.f;
ht[k] = tmp * o[k];
}
}
void lstm_ctht_better(
const std::shared_ptr<
const paddle::operators::math::jitkernel::VSigmoidKernel<float>>&
......@@ -389,6 +330,7 @@ void lstm_ctht_better(
TEST(JitKernel, lstm) {
namespace jit = paddle::operators::math::jitkernel;
namespace refer = paddle::operators::math::jitkernel::refer;
for (int d : {1, 2, 3, 4, 5, 6, 7, 8, 15, 16, 30, 32, 64, 100}) {
int d4 = d * 4;
int d3 = d * 3;
......@@ -399,19 +341,17 @@ TEST(JitKernel, lstm) {
RandomVec<float>(d, ct_1.data(), -2.f, 2.f);
memcpy(xref.data(), x.data(), sizeof(float) * d4);
std::string act_gate = "sigmoid", act_cand = "tanh", act_cell = "tanh";
const jit::lstm_attr_t attr(d, act_gate, act_cand, act_cell, false);
const auto& ker =
jit::KernelPool::Instance()
.template Get<jit::LSTMKernel<float>, const std::string&,
const std::string&, const std::string&>(
act_gate, act_cand, act_cell, d, false);
.template Get<jit::LSTMKernel<float>, const jit::lstm_attr_t&>(
attr);
// below kernels are used to compute refer
const auto& vsigmoid_3d =
jit::KernelPool::Instance().template Get<jit::VSigmoidKernel<float>>(
d3);
const auto& vtanh_d =
jit::KernelPool::Instance().template Get<jit::VTanhKernel<float>>(d);
const auto& vexp_1 =
jit::KernelPool::Instance().template Get<jit::VExpKernel<float>>(1);
const auto& vmul_d =
jit::KernelPool::Instance().template Get<jit::VMulKernel<float>>(d);
const auto& vadd_d =
......@@ -425,9 +365,17 @@ TEST(JitKernel, lstm) {
float* ct_ref_data = ct_ref.data();
float* ht_ref_data = ht_ref.data();
// compute once to check correctness
lstm_ctht_ref(vsigmoid_3d, vtanh_d, vexp_1, d, xref_data, ct_1_data,
ct_ref_data, ht_ref_data);
ker->ComputeCtHt(x_data, ct_1_data, ct_tgt_data, ht_tgt_data);
jit::lstm_t step;
step.gates = xref_data;
step.ct_1 = ct_1_data;
step.ct = ct_ref_data;
step.ht = ht_ref_data;
refer::LSTMCtHt<float>(&step, &attr);
step.gates = x_data;
step.ct = ct_tgt_data;
step.ht = ht_tgt_data;
ker->ComputeCtHt(&step, &attr);
for (int i = 0; i < d; ++i) {
EXPECT_NEAR(ct_tgt_data[i], ct_ref_data[i], 1e-3);
EXPECT_NEAR(ht_tgt_data[i], ht_ref_data[i], 1e-3);
......@@ -441,32 +389,21 @@ TEST(JitKernel, lstm) {
auto tmkle = GetCurrentUS();
auto trefs = GetCurrentUS();
for (int i = 0; i < repeat; ++i) {
lstm_ctht_ref(vsigmoid_3d, vtanh_d, vexp_1, d, xref_data, ct_1_data,
ct_ref_data, ht_ref_data);
refer::LSTMCtHt<float>(&step, &attr);
}
auto trefe = GetCurrentUS();
auto ttgts = GetCurrentUS();
for (int i = 0; i < repeat; ++i) {
ker->ComputeCtHt(x_data, ct_1_data, ct_tgt_data, ht_tgt_data);
ker->ComputeCtHt(&step, &attr);
}
auto ttgte = GetCurrentUS();
VLOG(30) << "Vec size " << d
<< ": refer takes: " << (trefe - trefs) / repeat
<< " us, better(jit) takes: " << (tmkle - tmkls) / repeat
<< " us, tgt takes: " << (ttgte - ttgts) / repeat;
<< " us, tgt takes: " << (ttgte - ttgts) / repeat << " us";
}
}
void vscal_ref(const int n, const float a, const float* x, float* y) {
for (int i = 0; i < n; ++i) {
y[i] = a * x[i];
}
}
void vscal_inp_ref(const int n, const float a, float* x) {
for (int i = 0; i < n; ++i) {
x[i] = a * x[i];
}
}
#if defined __AVX__ || defined __AVX2__
void vscal_intri8(const int n, const float a, const float* x, float* y) {
__m256 tmp;
......@@ -492,6 +429,7 @@ void vscal_inp_mkl(const int n, const float a, float* x) {
TEST(JitKernel, vscal) {
namespace jit = paddle::operators::math::jitkernel;
namespace refer = paddle::operators::math::jitkernel::refer;
for (int d : {7, 8, 15, 16, 30, 256, 512}) {
std::vector<float> x(d), y(d);
std::vector<float> zref(d), ztgt(d);
......@@ -506,12 +444,12 @@ TEST(JitKernel, vscal) {
float* zref_data = zref.data();
auto trefs = GetCurrentUS();
for (int i = 0; i < repeat; ++i) {
vscal_ref(d, a, x_data, zref_data);
refer::VScal<float>(&a, x_data, zref_data, d);
}
auto trefe = GetCurrentUS();
auto trefs1 = GetCurrentUS();
for (int i = 0; i < repeat; ++i) {
vscal_inp_ref(d, a, y_data);
refer::VScal<float>(&a, y_data, y_data, d);
}
auto trefe1 = GetCurrentUS();
......@@ -536,7 +474,7 @@ TEST(JitKernel, vscal) {
}
auto si3 = GetCurrentUS();
VLOG(30) << "Vec size 8 intr takes: " << (si1 - si0) / repeat
<< " us, inplace: " << (si3 - si2) / repeat;
<< " us, inplace: " << (si3 - si2) / repeat << " us";
}
#endif
......@@ -560,19 +498,14 @@ TEST(JitKernel, vscal) {
<< " us, "
#endif
<< "tgt takes: " << (ttgte - ttgts) / repeat
<< "us, tgt inplace takes: " << (ttgte1 - ttgts1) / repeat;
<< "us, tgt inplace takes: " << (ttgte1 - ttgts1) / repeat
<< " us";
for (int i = 0; i < d; ++i) {
EXPECT_NEAR(ztgt_data[i], zref_data[i], 1e-3);
}
}
}
void vmul_ref(const int n, const float* x, const float* y, float* z) {
for (int i = 0; i < n; ++i) {
z[i] = x[i] * y[i];
}
}
#if defined __AVX__ || defined __AVX2__
void vmul_intri8(const int n, const float* x, const float* y, float* z) {
__m256 tmpx, tmpy;
......@@ -591,6 +524,7 @@ void vmul_mkl(const int n, const float* x, const float* y, float* z) {
TEST(JitKernel, vmul) {
namespace jit = paddle::operators::math::jitkernel;
namespace refer = paddle::operators::math::jitkernel::refer;
for (int d : {7, 8, 15, 16, 20, 30, 256, 512, 1000, 1024}) {
std::vector<float> x(d), y(d);
std::vector<float> zref(d), ztgt(d);
......@@ -604,7 +538,7 @@ TEST(JitKernel, vmul) {
float* zref_data = zref.data();
auto trefs = GetCurrentUS();
for (int i = 0; i < repeat; ++i) {
vmul_ref(d, x_data, y_data, zref_data);
refer::VMul<float>(x_data, y_data, zref_data, d);
}
auto trefe = GetCurrentUS();
......@@ -640,19 +574,13 @@ TEST(JitKernel, vmul) {
#else
<< " us, "
#endif
<< "tgt takes: " << (ttgte - ttgts) / repeat;
<< "tgt takes: " << (ttgte - ttgts) / repeat << " us";
for (int i = 0; i < d; ++i) {
EXPECT_NEAR(ztgt_data[i], zref_data[i], 1e-3);
}
}
}
void vadd_ref(const int n, const float* x, const float* y, float* z) {
for (int i = 0; i < n; ++i) {
z[i] = x[i] + y[i];
}
}
#if defined __AVX__ || defined __AVX2__
void vadd_intri8(const int n, const float* x, const float* y, float* z) {
__m256 tmpx, tmpy;
......@@ -671,6 +599,7 @@ void vadd_mkl(const int n, const float* x, const float* y, float* z) {
TEST(JitKernel, vadd) {
namespace jit = paddle::operators::math::jitkernel;
namespace refer = paddle::operators::math::jitkernel::refer;
for (int d : {7, 8, 15, 16, 30, 256, 512}) {
std::vector<float> x(d), y(d);
std::vector<float> zref(d), ztgt(d);
......@@ -684,7 +613,7 @@ TEST(JitKernel, vadd) {
float* zref_data = zref.data();
auto trefs = GetCurrentUS();
for (int i = 0; i < repeat; ++i) {
vadd_ref(d, x_data, y_data, zref_data);
refer::VAdd<float>(x_data, y_data, zref_data, d);
}
auto trefe = GetCurrentUS();
......@@ -720,19 +649,13 @@ TEST(JitKernel, vadd) {
#else
<< " us, "
#endif
<< "tgt takes: " << (ttgte - ttgts) / repeat;
<< "tgt takes: " << (ttgte - ttgts) / repeat << " us";
for (int i = 0; i < d; ++i) {
EXPECT_NEAR(ztgt_data[i], zref_data[i], 1e-3);
}
}
}
void vaddrelu_ref(const int n, const float* x, const float* y, float* z) {
for (int i = 0; i < n; ++i) {
z[i] = x[i] + y[i];
z[i] = z[i] > 0 ? z[i] : 0;
}
}
void vaddrelu_better(
const std::shared_ptr<
const paddle::operators::math::jitkernel::VAddKernel<float>>& vadd,
......@@ -745,6 +668,7 @@ void vaddrelu_better(
TEST(JitKernel, vaddrelu) {
namespace jit = paddle::operators::math::jitkernel;
namespace refer = paddle::operators::math::jitkernel::refer;
for (int d : {7, 8, 15, 16, 30, 256, 512}) {
std::vector<float> x(d), y(d);
std::vector<float> zref(d), ztgt(d);
......@@ -762,7 +686,7 @@ TEST(JitKernel, vaddrelu) {
float* zref_data = zref.data();
auto trefs = GetCurrentUS();
for (int i = 0; i < repeat; ++i) {
vaddrelu_ref(d, x_data, y_data, zref_data);
refer::VAddRelu<float>(x_data, y_data, zref_data, d);
}
auto trefe = GetCurrentUS();
auto tmkls = GetCurrentUS();
......@@ -778,7 +702,7 @@ TEST(JitKernel, vaddrelu) {
VLOG(30) << "Vec size " << d
<< ": refer takes: " << (trefe - trefs) / repeat
<< " us, better takes: " << (tmkle - tmkls) / repeat << " us, "
<< "tgt takes: " << (ttgte - ttgts) / repeat;
<< "tgt takes: " << (ttgte - ttgts) / repeat << " us";
for (int i = 0; i < d; ++i) {
EXPECT_NEAR(ztgt_data[i], zref_data[i], 1e-3);
}
......@@ -789,21 +713,23 @@ TEST(JitKernel, pool) {
namespace jit = paddle::operators::math::jitkernel;
const int frame_size = 4;
std::string act_gate = "sigmoid", act_cand = "tanh", act_cell = "tanh";
jit::lstm_attr_t attr(frame_size, act_gate, act_cand, act_cell, false);
// empty call it to avoid unknown flag 'use_pinned_memory' on Mac
paddle::platform::jit::MayIUse(paddle::platform::jit::avx);
const auto& plstm1 =
jit::KernelPool::Instance()
.template Get<jit::LSTMKernel<float>, const std::string&,
const std::string&, const std::string&>(
act_gate, act_cand, act_cell, frame_size, false);
.template Get<jit::LSTMKernel<float>, const jit::lstm_attr_t&>(attr);
const auto& plstm2 =
jit::KernelPool::Instance()
.template Get<jit::LSTMKernel<float>, const std::string&,
const std::string&, const std::string&>(
act_gate, act_cand, act_cell, frame_size, false);
.template Get<jit::LSTMKernel<float>, const jit::lstm_attr_t&>(attr);
EXPECT_EQ(plstm1, plstm2);
const auto& peephole =
jit::KernelPool::Instance()
.template Get<jit::LSTMKernel<float>, const std::string&,
const std::string&, const std::string&>(
act_gate, act_cand, act_cell, frame_size, true);
.template Get<jit::LSTMKernel<float>, const jit::lstm_attr_t&>(
jit::lstm_attr_t(frame_size, act_gate, act_cand, act_cell, true));
EXPECT_TRUE(plstm1 != peephole);
const auto& pvmul_f =
......
......@@ -127,6 +127,9 @@ class SumKernel : public framework::OpKernel<T> {
math::scatter::MergeAdd<DeviceContext, T> merge_add;
merge_add(context.template device_context<DeviceContext>(), inputs,
out);
out->SyncIndex();
} else {
// no data, just set a empty out tensor.
out->mutable_value()->mutable_data<T>(framework::make_ddim({0}),
......
......@@ -106,9 +106,9 @@ class LoDTensorArray2TensorOp : public framework::OperatorBase {
out_inx_dim[0] = inx.size();
out_inx.Resize(out_inx_dim);
auto &local_scope = scope.NewScope();
std::string var_name = "out_index";
framework::Variable *tmp_index_var =
const_cast<framework::Scope &>(scope).Var(var_name);
framework::Variable *tmp_index_var = local_scope.Var(var_name);
auto &tmp_index_tensor =
*(tmp_index_var->GetMutable<paddle::framework::LoDTensor>());
tmp_index_tensor.Resize(out_inx_dim);
......@@ -128,12 +128,12 @@ class LoDTensorArray2TensorOp : public framework::OperatorBase {
out_dims[axis] = out_dim_sum;
out.Resize(out_dims);
LodTensorArray2LodTensorVector(scope, base_name, Input("X"), &names);
// Invoke Reshape Op
LodTensorArray2LodTensorVector(local_scope, base_name, Input("X"), &names);
// Invoke concat Op
auto concat_op = framework::OpRegistry::CreateOp(
"concat", {{"X", names}}, {{"Out", {Output("Out")}}}, attrs);
concat_op->Run(scope, place);
concat_op->Run(local_scope, place);
}
};
......
......@@ -41,7 +41,7 @@ void SetNumThreads(int num_threads) {
#elif defined(PADDLE_WITH_MKLML)
int real_num_threads = num_threads > 1 ? num_threads : 1;
platform::dynload::MKL_Set_Num_Threads(real_num_threads);
omp_set_num_threads(num_threads);
omp_set_num_threads(real_num_threads);
#else
PADDLE_ENFORCE(false, "To be implemented.");
#endif
......
......@@ -62,7 +62,7 @@ inline const char* cudnnGetErrorString(cudnnStatus_t status) {
#define CUDNN_ENFORCE(condition) \
do { \
cudnnStatus_t status = condition; \
auto status = condition; \
if (UNLIKELY(status != CUDNN_STATUS_SUCCESS)) { \
PADDLE_THROW(::paddle::platform::cudnnGetErrorString(status)); \
} \
......
......@@ -143,6 +143,39 @@ class CudnnWorkspaceHandle {
std::unique_ptr<std::lock_guard<std::mutex>> guard_;
};
#if CUDA_VERSION >= 9000
class ScopedCublasMathMode {
public:
ScopedCublasMathMode(cublasHandle_t handle, cublasMath_t new_math_mode)
: handle_(handle) {
need_reset = false;
PADDLE_ENFORCE(
platform::dynload::cublasGetMathMode(handle_, &old_math_mode_),
"Failed to get old cublas math mode");
if (old_math_mode_ != new_math_mode) {
PADDLE_ENFORCE(
platform::dynload::cublasSetMathMode(handle_, new_math_mode),
"Failed to set old cublas math mode");
need_reset = true;
}
}
~ScopedCublasMathMode() {
if (need_reset) {
PADDLE_ENFORCE(
platform::dynload::cublasSetMathMode(handle_, old_math_mode_),
"Failed to set old cublas math mode");
}
}
private:
cublasHandle_t handle_;
cublasMath_t old_math_mode_;
bool need_reset;
};
#endif
class CUDADeviceContext : public DeviceContext {
public:
explicit CUDADeviceContext(CUDAPlace place);
......@@ -199,6 +232,18 @@ class CUDADeviceContext : public DeviceContext {
callback_manager_->Wait();
}
#if CUDA_VERSION >= 9000
/*! \brief CublasCall may need to change cublas's config,
* but the cublas may be hold by multi-thread, so we should
* add lock here. */
template <typename Callback>
void CublasCall(Callback callback, cublasMath_t new_math) {
std::lock_guard<std::mutex> guard(cublas_mtx_);
ScopedCublasMathMode scoped_cublas_math(cublas_handle_, new_math);
callback();
}
#endif
private:
CUDAPlace place_;
......@@ -220,6 +265,8 @@ class CUDADeviceContext : public DeviceContext {
// If we use mtx_ for StreamCallbackManager, deadlock may occur sometimes
mutable std::mutex callback_mtx_;
std::unique_ptr<StreamCallbackManager> callback_manager_;
mutable std::mutex cublas_mtx_;
};
template <>
......
......@@ -32,6 +32,9 @@ CUBLAS_BLAS_ROUTINE_EACH_R2(DEFINE_WRAP);
CUBLAS_BLAS_ROUTINE_EACH_R3(DEFINE_WRAP);
#endif
#ifdef CUBLAS_BLAS_ROUTINE_EACH_R4
CUBLAS_BLAS_ROUTINE_EACH_R4(DEFINE_WRAP);
#endif
} // namespace dynload
} // namespace platform
} // namespace paddle
......@@ -61,9 +61,6 @@ extern void *cublas_dso_handle;
extern DynLoad__##__name __name
#endif
#define DECLARE_DYNAMIC_LOAD_CUBLAS_V2_WRAP(__name) \
DECLARE_DYNAMIC_LOAD_CUBLAS_WRAP(__name)
#define CUBLAS_BLAS_ROUTINE_EACH(__macro) \
__macro(cublasSaxpy_v2); \
__macro(cublasDaxpy_v2); \
......@@ -106,11 +103,22 @@ CUBLAS_BLAS_ROUTINE_EACH_R2(DECLARE_DYNAMIC_LOAD_CUBLAS_WRAP)
// APIs available after CUDA 9.0
#if CUDA_VERSION >= 9000
#define CUBLAS_BLAS_ROUTINE_EACH_R3(__macro) __macro(cublasSetMathMode);
#define CUBLAS_BLAS_ROUTINE_EACH_R3(__macro) \
__macro(cublasSetMathMode); \
__macro(cublasGetMathMode);
CUBLAS_BLAS_ROUTINE_EACH_R3(DECLARE_DYNAMIC_LOAD_CUBLAS_WRAP)
#endif
// APIs available after CUDA 9.1
#if CUDA_VERSION >= 9010
#define CUBLAS_BLAS_ROUTINE_EACH_R4(__macro) \
__macro(cublasGemmBatchedEx); \
__macro(cublasGemmStridedBatchedEx);
CUBLAS_BLAS_ROUTINE_EACH_R4(DECLARE_DYNAMIC_LOAD_CUBLAS_WRAP)
#endif
#undef DECLARE_DYNAMIC_LOAD_CUBLAS_WRAP
} // namespace dynload
} // namespace platform
......
......@@ -51,7 +51,7 @@ extern void EnforceCUDNNLoaded(const char* fn_name);
#define DECLARE_DYNAMIC_LOAD_CUDNN_WRAP(__name) \
struct DynLoad__##__name { \
template <typename... Args> \
inline cudnnStatus_t operator()(Args... args) { \
inline auto operator()(Args... args) { \
return ::__name(args...); \
} \
}; \
......
......@@ -19,13 +19,32 @@ limitations under the License. */
#include "gflags/gflags.h"
#include "paddle/fluid/platform/enforce.h"
DEFINE_double(fraction_of_gpu_memory_to_use, 0.92,
#ifndef _WIN32
const float fraction_of_gpu_memory_to_use = 0.92f;
#else
// fraction_of_gpu_memory_to_use cannot be too high on windows,
// since the win32 graphic sub-system can occupy some GPU memory
// which may lead to insufficient memory left for paddle
const float fraction_of_gpu_memory_to_use = 0.5f;
#endif
DEFINE_double(fraction_of_gpu_memory_to_use, fraction_of_gpu_memory_to_use,
"Allocate a trunk of gpu memory that is this fraction of the "
"total gpu memory size. Future memory usage will be allocated "
"from the trunk. If the trunk doesn't have enough gpu memory, "
"additional trunks of the same size will be requested from gpu "
"until the gpu has no memory left for another trunk.");
DEFINE_bool(
enable_cublas_tensor_op_math, false,
"The enable_cublas_tensor_op_math indicate whether to use Tensor Core, "
"but it may loss precision. Currently, There are two CUDA libraries that"
" use Tensor Cores, cuBLAS and cuDNN. cuBLAS uses Tensor Cores to speed up"
" GEMM computations(the matrices must be either half precision or single "
"precision); cuDNN uses Tensor Cores to speed up both convolutions(the "
"input and output must be half precision) and recurrent neural networks "
"(RNNs).");
namespace paddle {
namespace platform {
......@@ -64,6 +83,16 @@ int GetCUDADriverVersion(int id) {
return driver_version;
}
bool TensorCoreAvailable() {
#if CUDA_VERSION >= 9000
int device = GetCurrentDeviceId();
int driver_version = GetCUDAComputeCapability(device);
return driver_version >= 70;
#else
return false;
#endif
}
int GetCUDAMultiProcessors(int id) {
PADDLE_ENFORCE_LT(id, GetCUDADeviceCount(), "id must less than GPU count");
int count;
......
......@@ -35,6 +35,9 @@ int GetCUDARuntimeVersion(int id);
//! Get the driver version of the ith GPU
int GetCUDADriverVersion(int id);
//! Wheter the current device support TensorCore
bool TensorCoreAvailable();
//! Get the MultiProcessors of the ith GPU.
int GetCUDAMultiProcessors(int i);
......
......@@ -14,11 +14,11 @@
#pragma once
#include <ThreadPool.h>
#include <cuda.h>
#include <cuda_runtime.h>
#include <functional>
#include <memory>
#include "ThreadPool.h"
#include "paddle/fluid/platform/enforce.h"
namespace paddle {
......
......@@ -5,8 +5,8 @@ if(WITH_PYTHON)
if(WITH_AMD_GPU)
hip_library(paddle_pybind SHARED
SRCS ${PYBIND_SRCS}
DEPS ${PYBIND_DEPS}
${GLOB_OP_LIB} ${GLOB_OPERATOR_DEPS})
DEPS ARCHIVE_START ${PYBIND_DEPS}
${GLOB_OP_LIB} ${GLOB_OPERATOR_DEPS} ARCHIVE_END)
else()
cc_library(paddle_pybind SHARED
SRCS ${PYBIND_SRCS}
......
......@@ -30,11 +30,12 @@ namespace pybind11 {
namespace detail {
// Can be replaced by a generic lambda in C++14
struct variant_caster_visitor : public boost::static_visitor<handle> {
struct __attribute__((visibility("hidden"))) paddle_variant_caster_visitor
: public boost::static_visitor<handle> {
return_value_policy policy;
handle parent;
variant_caster_visitor(return_value_policy policy, handle parent)
paddle_variant_caster_visitor(return_value_policy policy, handle parent)
: policy(policy), parent(parent) {}
template <class T>
......@@ -44,10 +45,10 @@ struct variant_caster_visitor : public boost::static_visitor<handle> {
};
template <class Variant>
struct variant_caster;
struct paddle_variant_caster;
template <template <class...> class V, class... Ts>
struct variant_caster<V<Ts...>> {
struct paddle_variant_caster<V<Ts...>> {
using Type = V<Ts...>;
template <typename T>
......@@ -90,7 +91,7 @@ struct variant_caster<V<Ts...>> {
static handle cast(Type const &src, return_value_policy policy,
handle parent) {
variant_caster_visitor visitor(policy, parent);
paddle_variant_caster_visitor visitor(policy, parent);
return boost::apply_visitor(visitor, src);
}
......@@ -101,7 +102,7 @@ struct variant_caster<V<Ts...>> {
// Add specialization for concrete variant type
template <class... Args>
struct type_caster<boost::variant<Args...>>
: variant_caster<boost::variant<Args...>> {};
: paddle_variant_caster<boost::variant<Args...>> {};
} // namespace detail
} // namespace pybind11
......
......@@ -86,12 +86,12 @@ bool IsCompiledWithDIST() {
#endif
}
PYBIND11_PLUGIN(core) {
PYBIND11_MODULE(core, m) {
// Not used, just make sure cpu_info.cc is linked.
paddle::platform::CpuTotalPhysicalMemory();
paddle::memory::allocation::UseAllocatorStrategyGFlag();
py::module m("core", "C++ core of PaddlePaddle");
m.doc() = "C++ core of PaddlePaddle";
// using framework in this function. Since it is inside a function, it will
// not cause namespace pollution.
......@@ -907,7 +907,6 @@ All parameter, weight, gradient are variables in Paddle.
});
BindRecordIOWriter(&m);
return m.ptr();
}
} // namespace pybind
} // namespace paddle
......@@ -21,7 +21,6 @@ limitations under the License. */
#include "paddle/fluid/memory/memcpy.h"
#include "paddle/fluid/platform/device_context.h"
#include "paddle/fluid/platform/float16.h"
#include "pybind11/common.h"
#include "pybind11/numpy.h"
#include "pybind11/pybind11.h"
......
......@@ -12,9 +12,9 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifndef _WIN32
#ifndef HL_WARPCTC_WRAP_H_
#define HL_WARPCTC_WRAP_H_
#include "ctc.h"
#include "hl_base.h"
......@@ -91,3 +91,4 @@ extern void hl_warpctc_get_workspace_size(const int* cpuLabelLengths,
size_t* bytes);
#endif // HL_WARPCTC_WRAP_H_
#endif
......@@ -132,11 +132,15 @@ inline pid_t gettid() {
uint64_t tid;
pthread_threadid_np(NULL, &tid);
#else
#ifndef _WIN32
#ifndef __NR_gettid
#define __NR_gettid 224
#endif
pid_t tid = syscall(__NR_gettid);
#endif
#else // _WIN32
pid_t tid = _getpid();
#endif // _WIN32
CHECK_NE((int)tid, -1);
return tid;
}
......
......@@ -14,10 +14,12 @@ limitations under the License. */
#pragma once
#ifndef _WIN32
#include <pthread.h>
#include <sys/syscall.h>
#include <sys/types.h>
#include <unistd.h>
#endif
#include <sys/types.h>
#include <map>
#include <mutex>
#include <random>
......
......@@ -14,7 +14,9 @@ limitations under the License. */
#pragma once
#ifndef _WIN32
#include <sys/syscall.h> // for syscall()
#endif
#include <sys/types.h>
#include <algorithm>
#include <cmath>
......@@ -40,6 +42,31 @@ inline int rand_r(unsigned int* seedp) {
}
#endif
#ifdef _WIN32
#define NOMINMAX // msvc max/min macro conflict with std::min/max
#include <windows.h>
template <typename T>
inline int __builtin_clz(const T& value) {
DWORD leadning_zero = 0;
if (_BitScanReverse(&leadning_zero, value)) {
return static_cast<int>(sizeof(T) * 8 - leadning_zero);
} else {
return static_cast<int>(0);
}
}
inline int __builtin_clzl(const unsigned long& value) {
return __builtin_clz(value);
}
inline int __builtin_clzll(const unsigned long long& value) {
return __builtin_clz(value);
}
#define pid_t int
#endif
/**
* Loop over the elements in a container
* TODO(yuyang18): It's this foreach useful? Why not use C++ 11 foreach,
......
......@@ -94,6 +94,30 @@ function cmake_gen() {
else
exit 1
fi
elif [ "$1" == "cp36-cp36m" ]; then
if [ -d "/Library/Frameworks/Python.framework/Versions/3.6" ]; then
export LD_LIBRARY_PATH=/Library/Frameworks/Python.framework/Versions/3.6/lib/
export DYLD_LIBRARY_PATH=/Library/Frameworks/Python.framework/Versions/3.6/lib/
export PATH=/Library/Frameworks/Python.framework/Versions/3.6/bin/:${PATH}
PYTHON_FLAGS="-DPYTHON_EXECUTABLE:FILEPATH=/Library/Frameworks/Python.framework/Versions/3.6/bin/python3
-DPYTHON_INCLUDE_DIR:PATH=/Library/Frameworks/Python.framework/Versions/3.6/include/python3.6m/
-DPYTHON_LIBRARY:FILEPATH=/Library/Frameworks/Python.framework/Versions/3.6/lib/libpython3.6m.dylib"
WITH_FLUID_ONLY=${WITH_FLUID_ONLY:-ON}
else
exit 1
fi
elif [ "$1" == "cp37-cp37m" ]; then
if [ -d "/Library/Frameworks/Python.framework/Versions/3.7" ]; then
export LD_LIBRARY_PATH=/Library/Frameworks/Python.framework/Versions/3.7/lib/
export DYLD_LIBRARY_PATH=/Library/Frameworks/Python.framework/Versions/3.7/lib/
export PATH=/Library/Frameworks/Python.framework/Versions/3.7/bin/:${PATH}
PYTHON_FLAGS="-DPYTHON_EXECUTABLE:FILEPATH=/Library/Frameworks/Python.framework/Versions/3.7/bin/python3
-DPYTHON_INCLUDE_DIR:PATH=/Library/Frameworks/Python.framework/Versions/3.7/include/python3.7m/
-DPYTHON_LIBRARY:FILEPATH=/Library/Frameworks/Python.framework/Versions/3.7/lib/libpython3.7m.dylib"
WITH_FLUID_ONLY=${WITH_FLUID_ONLY:-ON}
else
exit 1
fi
fi
else
if [ "$1" != "" ]; then
......@@ -116,6 +140,18 @@ function cmake_gen() {
export PYTHON_FLAGS="-DPYTHON_EXECUTABLE:FILEPATH=/opt/_internal/cpython-3.5.1/bin/python3
-DPYTHON_INCLUDE_DIR:PATH=/opt/_internal/cpython-3.5.1/include/python3.5m
-DPYTHON_LIBRARIES:FILEPATH=/opt/_internal/cpython-3.5.1/lib/libpython3.so"
elif [ "$1" == "cp36-cp36m" ]; then
export LD_LIBRARY_PATH=/opt/_internal/cpython-3.6.0/lib/:${LD_LIBRARY_PATH}
export PATH=/opt/_internal/cpython-3.6.0/bin/:${PATH}
export PYTHON_FLAGS="-DPYTHON_EXECUTABLE:FILEPATH=/opt/_internal/cpython-3.6.0/bin/python3
-DPYTHON_INCLUDE_DIR:PATH=/opt/_internal/cpython-3.6.0/include/python3.6m
-DPYTHON_LIBRARIES:FILEPATH=/opt/_internal/cpython-3.6.0/lib/libpython3.so"
elif [ "$1" == "cp37-cp37m" ]; then
export LD_LIBRARY_PATH=/opt/_internal/cpython-3.7.0/lib/:${LD_LIBRARY_PATH}
export PATH=/opt/_internal/cpython-3.7.0/bin/:${PATH}
export PYTHON_FLAGS="-DPYTHON_EXECUTABLE:FILEPATH=/opt/_internal/cpython-3.7.0/bin/python3.7
-DPYTHON_INCLUDE_DIR:PATH=/opt/_internal/cpython-3.7.0/include/python3.7m
-DPYTHON_LIBRARIES:FILEPATH=/opt/_internal/cpython-3.7.0/lib/libpython3.so"
fi
fi
fi
......@@ -419,7 +455,7 @@ function assert_api_not_changed() {
source .env/bin/activate
pip install ${PADDLE_ROOT}/build/python/dist/*whl
python ${PADDLE_ROOT}/tools/print_signatures.py paddle.fluid > new.spec
if [ "$1" == "cp35-cp35m" ]; then
if [ "$1" == "cp35-cp35m" ] || [ "$1" == "cp36-cp36m" ] || [ "$1" == "cp37-cp37m" ]; then
# Use sed to make python2 and python3 sepc keeps the same
sed -i 's/arg0: str/arg0: unicode/g' new.spec
sed -i "s/\(.*Transpiler.*\).__init__ ArgSpec(args=\['self'].*/\1.__init__ /g" new.spec
......@@ -635,6 +671,55 @@ EOF
${DOCKERFILE_CUBLAS_DSO}
${DOCKERFILE_GPU_ENV}
ENV NCCL_LAUNCH_MODE PARALLEL
EOF
elif [ "$1" == "cp36-cp36m" ]; then
cat >> ${PADDLE_ROOT}/build/Dockerfile <<EOF
ADD python/dist/*.whl /
# run paddle version to install python packages first
RUN apt-get update && ${NCCL_DEPS}
RUN apt-get install -y make build-essential libssl-dev zlib1g-dev libbz2-dev \
libreadline-dev libsqlite3-dev wget curl llvm libncurses5-dev libncursesw5-dev \
xz-utils tk-dev libffi-dev liblzma-dev
RUN mkdir -p /root/python_build/ && wget -q https://www.sqlite.org/2018/sqlite-autoconf-3250300.tar.gz && \
tar -zxf sqlite-autoconf-3250300.tar.gz && cd sqlite-autoconf-3250300 && \
./configure -prefix=/usr/local && make -j8 && make install && cd ../ && rm sqlite-autoconf-3250300.tar.gz && \
wget -q https://www.python.org/ftp/python/3.6.0/Python-3.6.0.tgz && \
tar -xzf Python-3.6.0.tgz && cd Python-3.6.0 && \
CFLAGS="-Wformat" ./configure --prefix=/usr/local/ --enable-shared > /dev/null && \
make -j8 > /dev/null && make altinstall > /dev/null
RUN apt-get install -y libgtk2.0-dev dmidecode python3-tk && \
pip3.6 install opencv-python && pip3.6 install /*.whl; apt-get install -f -y && \
apt-get clean -y && \
rm -f /*.whl && \
${PADDLE_VERSION} && \
ldconfig
${DOCKERFILE_CUDNN_DSO}
${DOCKERFILE_CUBLAS_DSO}
${DOCKERFILE_GPU_ENV}
ENV NCCL_LAUNCH_MODE PARALLEL
EOF
elif [ "$1" == "cp37-cp37m" ]; then
cat >> ${PADDLE_ROOT}/build/Dockerfile <<EOF
ADD python/dist/*.whl /
# run paddle version to install python packages first
RUN apt-get update && ${NCCL_DEPS}
RUN apt-get install -y make build-essential libssl-dev zlib1g-dev libbz2-dev \
libreadline-dev libsqlite3-dev wget curl llvm libncurses5-dev libncursesw5-dev \
xz-utils tk-dev libffi-dev liblzma-dev
RUN wget -q https://www.python.org/ftp/python/3.7.0/Python-3.7.0.tgz && \
tar -xzf Python-3.7.0.tgz && cd Python-3.7.0 && \
CFLAGS="-Wformat" ./configure --prefix=/usr/local/ --enable-shared > /dev/null && \
make -j8 > /dev/null && make altinstall > /dev/null
RUN apt-get install -y libgtk2.0-dev dmidecode python3-tk && \
pip3.7 install opencv-python && pip3.7 install /*.whl; apt-get install -f -y && \
apt-get clean -y && \
rm -f /*.whl && \
${PADDLE_VERSION} && \
ldconfig
${DOCKERFILE_CUDNN_DSO}
${DOCKERFILE_CUBLAS_DSO}
${DOCKERFILE_GPU_ENV}
ENV NCCL_LAUNCH_MODE PARALLEL
EOF
else
cat >> ${PADDLE_ROOT}/build/Dockerfile <<EOF
......
......@@ -3,8 +3,10 @@
if(WITH_TESTING)
add_library(paddle_test_main STATIC TestMain.cpp)
add_dependencies(paddle_test_main paddle_proto ${external_project_dependencies})
if(NOT WIN32)
add_library(paddle_test_util STATIC TestUtil.cpp)
add_dependencies(paddle_test_util paddle_proto ${external_project_dependencies})
endif(NOT WIN32)
if(NOT MOBILE_INFERENCE)
cc_library(paddle_gtest_main SRCS paddle_gtest_main.cc DEPS device_context memory gtest gflags)
endif()
......
......@@ -28,9 +28,14 @@ int main(int argc, char** argv) {
for (int i = 0; i < argc; ++i) {
new_argv.push_back(argv[i]);
}
#ifdef PADDLE_WITH_CUDA
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
new_argv.push_back(
strdup("--tryfromenv=fraction_of_gpu_memory_to_use,allocator_strategy"));
#elif __clang__
new_argv.push_back(
strdup("--tryfromenv=use_mkldnn,initial_cpu_memory_in_"
"mb,allocator_strategy"));
new_argv.push_back(strdup("--undefok=use_mkldnn,initial_cpu_memory_in_mb"));
#else
new_argv.push_back(
strdup("--tryfromenv=use_pinned_memory,use_mkldnn,initial_cpu_memory_in_"
......
......@@ -91,6 +91,7 @@ def __bootstrap__():
"""
import sys
import os
import platform
from . import core
in_test = 'unittest' in sys.modules
......@@ -110,14 +111,17 @@ def __bootstrap__():
print('PLEASE USE OMP_NUM_THREADS WISELY.', file=sys.stderr)
os.environ['OMP_NUM_THREADS'] = str(num_threads)
sysstr = platform.system()
read_env_flags = [
'use_pinned_memory', 'check_nan_inf', 'benchmark', 'eager_delete_scope',
'use_mkldnn', 'use_ngraph', 'initial_cpu_memory_in_mb',
'init_allocated_mem', 'free_idle_memory', 'paddle_num_threads',
"dist_threadpool_size", 'eager_delete_tensor_gb', 'allocator_strategy',
'check_nan_inf', 'benchmark', 'eager_delete_scope', 'use_mkldnn',
'use_ngraph', 'initial_cpu_memory_in_mb', 'init_allocated_mem',
'free_idle_memory', 'paddle_num_threads', "dist_threadpool_size",
'eager_delete_tensor_gb', 'allocator_strategy',
'reader_queue_speed_test_mode', 'print_sub_graph_dir'
]
if 'Darwin' not in sysstr:
read_env_flags.append('use_pinned_memory')
if os.name != 'nt':
read_env_flags.append('warpctc_dir')
read_env_flags.append('cpu_deterministic')
......@@ -129,11 +133,13 @@ def __bootstrap__():
read_env_flags.append('rpc_send_thread_num')
read_env_flags.append('rpc_get_thread_num')
read_env_flags.append('rpc_prefetch_thread_num')
read_env_flags.append('rpc_disable_reuse_port')
if core.is_compiled_with_cuda():
read_env_flags += [
'fraction_of_gpu_memory_to_use', 'cudnn_deterministic',
'conv_workspace_size_limit', 'cudnn_exhaustive_search'
'enable_cublas_tensor_op_math', 'conv_workspace_size_limit',
'cudnn_exhaustive_search'
]
core.init_gflags([sys.argv[0]] +
["--tryfromenv=" + ",".join(read_env_flags)])
......
......@@ -13,8 +13,10 @@
# limitations under the License.
from __future__ import print_function
from . import lookup_table_utils
from .lookup_table_utils import *
from . import hdfs_utils
from .hdfs_utils import *
__all__ = lookup_table_utils.__all__
__all__ = hdfs_utils.__all__
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import os
import time
import logging
import paddle
import paddle.fluid as fluid
from paddle.fluid import core
from paddle.fluid import io
from paddle.fluid import Program
__all__ = [
"load_inference_model", "load_persistable_vars",
"convert_dist_to_sparse_program"
]
logging.basicConfig(format='%(asctime)s - %(levelname)s - %(message)s')
_logger = logging.getLogger("lookup_table_utils")
_logger.setLevel(logging.INFO)
model_filename = "__model__"
lookup_table_dir = "__lookup_table__"
def __insert_lookup_sparse_table_op(main_program, idx, ids, w, out):
main_program.global_block()._insert_op(
index=idx,
type="lookup_sparse_table",
inputs={"Ids": [ids],
"W": [w]},
outputs={"Out": [out]},
attrs={
"is_distributed": False,
"is_sparse": True,
"grad_inplace": False
})
def __get_prefetch_op_tuples(main_program):
# current lookup tables op is split_ids->prefetch->merge_ids
prefetch_op_tuples = None
op_types = [op.type for op in main_program.global_block().ops]
for i in range(len(op_types)):
if op_types[i] == "prefetch":
if op_types[i - 1] == "split_ids" and op_types[i +
1] == "merge_ids":
split_ids_op_id = i - 1
split_ids_inputs = main_program.global_block().ops[i - 1].input(
"Ids")
prefetch_op_inputs = main_program.global_block().ops[i].input(
"X")
prefetch_op_outputs = main_program.global_block().ops[i].output(
"Out")
merge_ids_outputs = main_program.global_block().ops[
i + 1].output("Out")
need_delete_vars = []
need_delete_vars.extend(prefetch_op_inputs)
need_delete_vars.extend(prefetch_op_outputs)
prefetch_op_tuples = (split_ids_op_id, split_ids_inputs,
merge_ids_outputs, need_delete_vars)
break
return prefetch_op_tuples
def convert_dist_to_sparse_program(main_program):
if not main_program._distributed_lookup_table:
_logger.warn(
"There are no distributed lookup tables need to be converted")
return
# create table param and grad var in pserver program
origin_emb_var = "{}.origin".format(main_program._distributed_lookup_table)
emb_var = main_program._distributed_lookup_table
main_program.global_block()._rename_var(emb_var, origin_emb_var)
origin_param_var = main_program.global_block().vars[origin_emb_var]
param_var = main_program.global_block().create_var(
name=emb_var,
shape=origin_param_var.shape,
dtype=origin_param_var.dtype,
type=core.VarDesc.VarType.SELECTED_ROWS,
persistable=True)
# parameter must be selected rows
param_var.desc.set_type(core.VarDesc.VarType.SELECTED_ROWS)
main_program._sync_with_cpp()
prefetch_op_tuples = __get_prefetch_op_tuples(main_program)
split_ids_id = prefetch_op_tuples[0]
for idx in range(split_ids_id + 2, split_ids_id - 1, -1):
main_program.global_block()._remove_op(idx)
main_program.desc.flush()
in_out_pairs = zip(prefetch_op_tuples[1], prefetch_op_tuples[2])
for in_out_pair in in_out_pairs:
idx = split_ids_id
ids = main_program.global_block().vars[in_out_pair[0]]
out = main_program.global_block().vars[in_out_pair[1]]
__insert_lookup_sparse_table_op(main_program, idx, ids, param_var, out)
main_program.desc.flush()
return main_program
def load_persistable_vars(executor, dirname, program, lookup_table_var):
def _is_checkpoint_var(exclude_fluid_vars=None):
"""
the checkpoint will not save or load all the variables.
var type is FEED_MINIBATCH/FETCH_LIST/RAW or var name ends with @GRAD are discarded.
: param var(Variable)
"""
if exclude_fluid_vars is None:
exclude_fluid_vars = []
def is_valid(var):
if var.desc.type() == core.VarDesc.VarType.FEED_MINIBATCH or \
var.desc.type() == core.VarDesc.VarType.FETCH_LIST or \
var.desc.type() == core.VarDesc.VarType.RAW:
return False
# @GRAD are named for gradient variables, checkpoint will not save it.
if "@GRAD" in var.name:
return False
# .trainer_ are named for distribute train variables, checkpoint will not save it.
if ".trainer_" in var.name:
return False
# .block is named for distribute train variables, checkpoint will not save it.
if ".block" in var.name:
return False
if "tmp_" in var.name:
return False
if var.name in exclude_fluid_vars:
return False
return var.persistable
return is_valid
def _load_lookup_table_vars(executor, dirname, main_program,
lookup_table_vars):
if not os.path.isdir(dirname):
raise ValueError("There is no directory named '%s'", dirname)
lookup_table_dirname = os.path.join(dirname, lookup_table_dir)
emb_var_name = lookup_table_vars[0]
emb_var = main_program.global_block().var(emb_var_name)
emb_files = []
for emb_name in os.listdir(lookup_table_dirname):
if emb_var_name in emb_name:
emb_files.append(emb_name)
convert_program = Program()
global_block = convert_program.global_block()
emb_var = global_block.create_var(
name=emb_var.name,
shape=emb_var.shape,
dtype=emb_var.dtype,
type=core.VarDesc.VarType.SELECTED_ROWS,
persistable=True)
emb_var.desc.set_type(core.VarDesc.VarType.SELECTED_ROWS)
sums = []
for i, emb_file in enumerate(emb_files):
var_name = "{}_{}".format(emb_var.name, i)
param_var = global_block.create_var(
name=var_name,
shape=emb_var.shape,
dtype=emb_var.dtype,
type=core.VarDesc.VarType.SELECTED_ROWS,
persistable=True)
param_var.desc.set_type(core.VarDesc.VarType.SELECTED_ROWS)
global_block.append_op(
type='load',
inputs={},
outputs={'Out': [param_var]},
attrs={
'file_path': os.path.join(lookup_table_dirname, var_name)
})
sums.append(param_var)
global_block.append_op(
type='sum', inputs={"X": sums}, outputs={'Out': emb_var}, attrs={})
global_block.append_op(type='delete_var', inputs={'X': sums})
executor.run(convert_program)
_logger.info("Start Load Sparse Program With "
"Distributed Lookup Table Vars from {}, time = {}".format(
dirname, time.ctime()))
lookup_table_vars = [lookup_table_var]
io.load_vars(
executor,
dirname=dirname,
main_program=program,
predicate=_is_checkpoint_var(lookup_table_vars),
filename=None)
_load_lookup_table_vars(executor, dirname, program, lookup_table_vars)
_logger.info("Finish Load Sparse Program With "
"Distributed Lookup Table Vars from {}, time = {}".format(
dirname, time.ctime()))
def load_inference_model(dirname, executor, lookup_table_var_name):
if not os.path.isdir(dirname):
raise ValueError("There is no directory named '%s'", dirname)
local_model = os.path.join(dirname, model_filename)
with open(local_model, "rb") as f:
program_desc_str = f.read()
program = Program.parse_from_string(program_desc_str)
if not core._is_program_version_supported(program._version()):
raise ValueError("Unsupported program version: %d\n" %
program._version())
# Binary data also need version.
load_persistable_vars(executor, dirname, program, lookup_table_var_name)
feed_target_names = program.desc.get_feed_target_names()
fetch_target_names = program.desc.get_fetch_target_names()
fetch_targets = [
program.global_block().var(name) for name in fetch_target_names
]
return [program, feed_target_names, fetch_targets]
......@@ -1698,6 +1698,7 @@ class Program(object):
p._copy_param_info_from(self)
p._copy_data_info_from(self)
p._copy_dist_param_info_from(self)
return p
def _prune(self, targets):
......@@ -1938,6 +1939,25 @@ class Program(object):
"program, with represent the same topology")
self.global_block()._copy_param_info_from(other.global_block())
def _copy_dist_param_info_from(self, other):
"""
Copy the information of distributed information from other program.
Args:
other(Program): Other program
Returns:
None
"""
if not isinstance(other, Program):
raise TypeError("_copy_dist_param_info_from should be invoked with "
"Program")
self._is_distributed = other._is_distributed
self._is_chief = other._is_chief
self._slice_vars_and_attrs = other._slice_vars_and_attrs
self._endpoints = other._endpoints
self._distributed_lookup_table = other._distributed_lookup_table
def _copy_data_info_from(self, other):
"""
Copy the information of data variables from other program.
......
......@@ -165,6 +165,7 @@ def save_vars(executor,
save_vars(
executor,
main_program=main_program,
dirname=dirname,
vars=list(filter(predicate, main_program.list_vars())),
filename=filename)
......@@ -172,11 +173,18 @@ def save_vars(executor,
save_program = Program()
save_block = save_program.global_block()
if main_program is None:
main_program = default_main_program()
if not isinstance(main_program, Program):
raise TypeError("program should be as Program type or None")
save_var_map = {}
for each_var in vars:
# NOTE: don't save the variable which type is RAW
if each_var.type == core.VarDesc.VarType.RAW:
continue
if each_var.name == main_program._distributed_lookup_table:
continue
new_var = _clone_var_in_block_(save_block, each_var)
if filename is None:
save_block.append_op(
......@@ -198,6 +206,16 @@ def save_vars(executor,
outputs={},
attrs={'file_path': os.path.join(dirname, filename)})
# if there is lookup table, the trainer 0 will notify all pserver to save.
if main_program._is_distributed and main_program._is_chief and main_program._distributed_lookup_table:
lookup_table_filename = os.path.join(dirname, "__lookup_table__")
attrs = {}
attrs['epmap'] = main_program._endpoints
attrs['dir'] = lookup_table_filename
attrs['lookup_table'] = main_program._distributed_lookup_table
save_block.append_op(
type='checkpoint_notify', inputs={}, outputs={}, attrs=attrs)
executor.run(save_program)
......@@ -379,11 +397,22 @@ def load_vars(executor,
load_prog = Program()
load_block = load_prog.global_block()
if main_program is None:
main_program = default_main_program()
if not isinstance(main_program, Program):
raise TypeError("program should be as Program type or None")
load_slice_vars = []
for each_var in main_program._slice_vars_and_attrs:
load_slice_vars.append(each_var[2].name)
load_var_map = {}
for each_var in vars:
assert isinstance(each_var, Variable)
if each_var.type == core.VarDesc.VarType.RAW:
continue
if each_var.name in load_slice_vars:
continue
new_var = _clone_var_in_block_(load_block, each_var)
if filename is None:
load_block.append_op(
......@@ -406,9 +435,6 @@ def load_vars(executor,
attrs={'file_path': os.path.join(dirname, filename)})
executor.run(load_prog)
if main_program is None:
main_program = default_main_program()
# load slice vars on pserver, if have it.
_load_slice_up_vars(executor, dirname,
main_program._slice_vars_and_attrs)
......@@ -618,13 +644,6 @@ def save_inference_model(dirname,
if main_program is None:
main_program = default_main_program()
# if there is lookup table, the trainer 0 will notify all pserver to save.
if main_program._is_distributed and main_program._is_chief and main_program._distributed_lookup_table:
lookup_table_filename = os.path.join(dirname, "__lookup_table__")
_save_lookup_tables_by_notify(executor, lookup_table_filename,
main_program._distributed_lookup_table,
main_program._endpoints)
# when a pserver and a trainer running on the same machine, mkdir may conflict
try:
os.makedirs(dirname)
......@@ -642,6 +661,9 @@ def save_inference_model(dirname,
# it can only be loaded for inference directly. If it's false, the whole
# original program and related meta are saved so that future usage can be
# more flexible.
origin_program = main_program.clone()
if export_for_deployment:
main_program = main_program.clone()
global_block = main_program.global_block()
......@@ -666,8 +688,11 @@ def save_inference_model(dirname,
with open(model_basename + ".main_program", "wb") as f:
f.write(main_program.desc.serialize_to_string())
main_program._copy_dist_param_info_from(origin_program)
if params_filename is not None:
params_filename = os.path.basename(params_filename)
save_persistables(executor, dirname, main_program, params_filename)
......@@ -897,6 +922,9 @@ def _load_slice_up_vars(executor, dirname, slice_vars_and_attrs):
slice_var = var_tuple[2]
end = start + slice_var.shape[0]
orig_var_name = orig_var.name
orig_var.name = "{}.origin".format(orig_var_name)
clone_orig_var = load_block.create_var(
name=orig_var.name,
type=orig_var.type,
......@@ -915,7 +943,7 @@ def _load_slice_up_vars(executor, dirname, slice_vars_and_attrs):
type='load',
inputs={},
outputs={'Out': [clone_orig_var]},
attrs={'file_path': os.path.join(dirname, clone_orig_var.name)})
attrs={'file_path': os.path.join(dirname, orig_var_name)})
load_block.append_op(
type="slice",
inputs={'Input': clone_orig_var},
......@@ -924,6 +952,7 @@ def _load_slice_up_vars(executor, dirname, slice_vars_and_attrs):
'starts': [start],
'ends': [end]})
need_delete_vars.append(clone_orig_var)
load_block.append_op(
type='delete_var',
inputs={'X': need_delete_vars}, )
......
......@@ -896,9 +896,10 @@ def array_to_lod_tensor(x, table):
def increment(x, value=1.0, in_place=True):
"""
This function performs an operation that increments each value in the
This function performs an operation that increments the value in the
input :math:`x` by an amount: :math:`value` as mentioned in the input
parameter. This operation is performed in-place by default.
parameter. This operation is performed in-place by default. Notice that
the number of elements in :math:`x` must be equal to 1.
Args:
x (Variable|list): The tensor that has the input values.
......@@ -911,7 +912,8 @@ def increment(x, value=1.0, in_place=True):
Examples:
.. code-block:: python
data = fluid.layers.data(name='data', shape=[32, 32], dtype='float32')
data = fluid.layers.data(name='data', shape=[1], dtype='float32',
append_batch_size=False)
data = fluid.layers.increment(x=data, value=3.0, in_place=True)
"""
helper = LayerHelper("increment", **locals())
......
......@@ -1029,6 +1029,7 @@ def density_prior_box(input,
clip=False,
steps=[0.0, 0.0],
offset=0.5,
flatten_to_2d=False,
name=None):
"""
**Density Prior Box Operator**
......@@ -1065,22 +1066,24 @@ def density_prior_box(input,
height/weight of the input will be automatically calculated.
Default: [0., 0.]
offset(float): Prior boxes center offset. Default: 0.5
flatten_to_2d(bool): Whether to flatten output prior boxes and variance
to 2D shape, the second dim is 4. Default: False.
name(str): Name of the density prior box op. Default: None.
Returns:
tuple: A tuple with two Variable (boxes, variances)
boxes: the output density prior boxes of PriorBox.
The layout is [H, W, num_priors, 4].
The layout is [H, W, num_priors, 4] when flatten_to_2d is False.
The layout is [H * W * num_priors, 4] when flatten_to_2d is True.
H is the height of input, W is the width of input,
num_priors is the total
box count of each position of input.
num_priors is the total box count of each position of input.
variances: the expanded variances of PriorBox.
The layout is [H, W, num_priors, 4].
The layout is [H, W, num_priors, 4] when flatten_to_2d is False.
The layout is [H * W * num_priors, 4] when flatten_to_2d is True.
H is the height of input, W is the width of input
num_priors is the total
box count of each position of input
num_priors is the total box count of each position of input.
Examples:
......@@ -1089,14 +1092,11 @@ def density_prior_box(input,
box, var = fluid.layers.density_prior_box(
input=conv1,
image=images,
min_sizes=[100.],
max_sizes=[200.],
aspect_ratios=[1.0, 1.0 / 2.0, 2.0],
densities=[3, 4],
fixed_sizes=[50., 60.],
fixed_ratios=[1.0, 3.0, 1.0 / 3.0],
flip=True,
clip=True)
densities=[4, 2, 1],
fixed_sizes=[32.0, 64.0, 128.0],
fixed_ratios=[1.],
clip=True,
flatten_to_2d=True)
"""
helper = LayerHelper("density_prior_box", **locals())
dtype = helper.input_dtype()
......@@ -1127,14 +1127,11 @@ def density_prior_box(input,
'step_w': steps[0],
'step_h': steps[1],
'offset': offset,
'densities': densities,
'fixed_sizes': fixed_sizes,
'fixed_ratios': fixed_ratios,
'flatten_to_2d': flatten_to_2d,
}
if densities is not None and len(densities) > 0:
attrs['densities'] = densities
if fixed_sizes is not None and len(fixed_sizes) > 0:
attrs['fixed_sizes'] = fixed_sizes
if fixed_ratios is not None and len(fixed_ratios) > 0:
attrs['fixed_ratios'] = fixed_ratios
box = helper.create_variable_for_type_inference(dtype)
var = helper.create_variable_for_type_inference(dtype)
helper.append_op(
......
......@@ -2138,11 +2138,16 @@ def pool2d(input,
input tensor is NCHW, where N is batch size, C is
the number of channels, H is the height of the
feature, and W is the width of the feature.
pool_size (int): The side length of pooling windows. All pooling
windows are squares with pool_size on a side.
pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
it must contain two integers, (pool_size_Height, pool_size_Width).
Otherwise, the pool kernel size will be a square of an int.
pool_type: ${pooling_type_comment}
pool_stride (int): stride of the pooling layer.
pool_padding (int): padding size.
pool_stride (int|list|tuple): The pool stride size. If pool stride size is a tuple or list,
it must contain two integers, (pool_stride_Height, pool_stride_Width).
Otherwise, the pool stride size will be a square of an int.
pool_padding (int|list|tuple): The pool padding size. If pool padding size is a tuple,
it must contain two integers, (pool_padding_on_Height, pool_padding_on_Width).
Otherwise, the pool padding size will be a square of an int.
global_pooling (bool): ${global_pooling_comment}
use_cudnn (bool): ${use_cudnn_comment}
ceil_mode (bool): ${ceil_mode_comment}
......@@ -5869,9 +5874,10 @@ def image_resize(input,
raise ValueError(
"The 'resample' of image_resize can only be 'BILINEAR' or 'NEAREST' currently."
)
resample_type = resample_methods[resample]
if out_shape is None and scale is None:
raise ValueError("One of out_shape and scale must not be None.")
helper = LayerHelper('interpolate', **locals())
helper = LayerHelper('{}_interp'.format(resample_type), **locals())
dtype = helper.input_dtype()
def _is_list_or_turple_(data):
......@@ -5905,18 +5911,16 @@ def image_resize(input,
out = helper.create_variable_for_type_inference(dtype)
helper.append_op(
type='interpolate',
type='{}_interp'.format(resample_type),
inputs=inputs,
outputs={"Out": out},
attrs={
"out_h": out_h,
attrs={"out_h": out_h,
"out_w": out_w,
"interp_method": resample_methods[resample]
})
"interp_method": resample_type})
return out
@templatedoc(op_type="interpolate")
@templatedoc(op_type="bilinear_interp")
def resize_bilinear(input,
out_shape=None,
scale=None,
......@@ -5972,7 +5976,7 @@ def resize_bilinear(input,
return image_resize(input, out_shape, scale, name, 'BILINEAR', actual_shape)
@templatedoc(op_type="interpolate")
@templatedoc(op_type="nearest_interp")
def resize_nearest(input,
out_shape=None,
scale=None,
......@@ -6837,6 +6841,13 @@ def elu(x, alpha=1.0, name=None):
Returns:
output(${out_type}): ${out_comment}
Examples:
.. code-block:: python
x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
y = fluid.layers.elu(x, alpha=0.2)
"""
helper = LayerHelper('elu', **locals())
out = helper.create_variable_for_type_inference(dtype=x.dtype)
......@@ -6860,6 +6871,13 @@ def relu6(x, threshold=6.0, name=None):
Returns:
output(${out_type}): ${out_comment}
Examples:
.. code-block:: python
x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
y = fluid.layers.relu6(x, threshold=6.0)
"""
helper = LayerHelper('relu6', **locals())
out = helper.create_variable_for_type_inference(dtype=x.dtype)
......@@ -6883,6 +6901,13 @@ def pow(x, factor=1.0, name=None):
Returns:
output(${out_type}): ${out_comment}
Examples:
.. code-block:: python
x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
y = fluid.layers.pow(x, factor=2.0)
"""
helper = LayerHelper('pow', **locals())
out = helper.create_variable_for_type_inference(dtype=x.dtype)
......@@ -6907,6 +6932,13 @@ def stanh(x, scale_a=2.0 / 3.0, scale_b=1.7159, name=None):
Returns:
output(${out_type}): ${out_comment}
Examples:
.. code-block:: python
x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
y = fluid.layers.stanh(x, scale_a=0.67, scale_b=1.72)
"""
helper = LayerHelper('stanh', **locals())
out = helper.create_variable_for_type_inference(dtype=x.dtype)
......@@ -6932,6 +6964,13 @@ def hard_sigmoid(x, slope=0.2, offset=0.5, name=None):
Returns:
output(${out_type}): ${out_comment}
Examples:
.. code-block:: python
x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
y = fluid.layers.hard_sigmoid(x, slope=0.3, offset=0.8)
"""
helper = LayerHelper('hard_sigmoid', **locals())
out = helper.create_variable_for_type_inference(dtype=x.dtype)
......@@ -6956,6 +6995,13 @@ def swish(x, beta=1.0, name=None):
Returns:
output(${out_type}): ${out_comment}
Examples:
.. code-block:: python
x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
y = fluid.layers.swish(x, beta=2.0)
"""
helper = LayerHelper('swish', **locals())
out = helper.create_variable_for_type_inference(dtype=x.dtype)
......@@ -6971,14 +7017,14 @@ def prelu(x, mode, param_attr=None, name=None):
"""
Equation:
y = \max(0, x) + alpha \min(0, x)
y = \max(0, x) + alpha * \min(0, x)
Args:
x (Variable): The input tensor.
param_attr(ParamAttr|None): The parameter attribute for the learnable
weight (alpha).
mode (string): The mode for weight sharing
all: all elements share same weight
mode (string): The mode for weight sharing. It supports all, channel
and element. all: all elements share same weight
channel:elements in a channel share same weight
element:each element has a weight
name(str|None): A name for this layer(optional). If set None, the layer
......
......@@ -46,8 +46,8 @@ def _is_numpy_(var):
def _is_number_(var):
return isinstance(var, int) or isinstance(var, float) or (isinstance(
var, np.ndarray) and var.shape == (1, ))
return isinstance(var, int) or isinstance(var, np.int64) or isinstance(
var, float) or (isinstance(var, np.ndarray) and var.shape == (1, ))
def _is_number_or_matrix_(var):
......
......@@ -250,7 +250,8 @@ def sequence_conv_pool(input,
filter_size,
param_attr=None,
act="sigmoid",
pool_type="max"):
pool_type="max",
bias_attr=None):
"""
The sequence_conv_pool is composed with Sequence Convolution and Pooling.
......@@ -266,6 +267,11 @@ def sequence_conv_pool(input,
pool_type (str): Pooling type can be :math:`max` for max-pooling, :math:`average` for
average-pooling, :math:`sum` for sum-pooling, :math:`sqrt` for sqrt-pooling.
Default :math:`max`.
bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of sequence_conv.
If it is set to False, no bias will be added to the output units.
If it is set to None or one attribute of ParamAttr, sequence_conv
will create ParamAttr as bias_attr. If the Initializer of the bias_attr
is not set, the bias is initialized zero. Default: None.
Return:
Variable: The final result after Sequence Convolution and Pooling.
......@@ -289,6 +295,7 @@ def sequence_conv_pool(input,
num_filters=num_filters,
filter_size=filter_size,
param_attr=param_attr,
bias_attr=bias_attr,
act=act)
pool_out = layers.sequence_pool(input=conv_out, pool_type=pool_type)
......
......@@ -239,7 +239,7 @@ def infer(use_cuda, save_dirname=None):
assert len(results[0]) == len(transpiler_results[0])
for i in range(len(results[0])):
np.testing.assert_almost_equal(
results[0][i], transpiler_results[0][i], decimal=5)
results[0][i], transpiler_results[0][i], decimal=4)
print("infer results: ", results[0])
......
......@@ -112,6 +112,8 @@ class TestDetection(unittest.TestCase):
class TestPriorBox(unittest.TestCase):
def test_prior_box(self):
program = Program()
with program_guard(program):
data_shape = [3, 224, 224]
images = fluid.layers.data(
name='pixel', shape=data_shape, dtype='float32')
......@@ -130,6 +132,8 @@ class TestPriorBox(unittest.TestCase):
class TestDensityPriorBox(unittest.TestCase):
def test_density_prior_box(self):
program = Program()
with program_guard(program):
data_shape = [3, 224, 224]
images = fluid.layers.data(
name='pixel', shape=data_shape, dtype='float32')
......@@ -143,7 +147,7 @@ class TestDensityPriorBox(unittest.TestCase):
clip=True)
assert len(box.shape) == 4
assert box.shape == var.shape
assert box.shape[3] == 4
assert box.shape[-1] == 4
class TestAnchorGenerator(unittest.TestCase):
......
......@@ -81,25 +81,27 @@ list(REMOVE_ITEM TEST_OPS test_dist_se_resnext)
list(REMOVE_ITEM TEST_OPS test_dist_transformer)
list(REMOVE_ITEM TEST_OPS test_parallel_executor_transformer)
list(REMOVE_ITEM TEST_OPS test_image_classification_resnet)
list(REMOVE_ITEM TEST_OPS test_interpolate_op)
list(REMOVE_ITEM TEST_OPS test_bilinear_interp_op)
list(REMOVE_ITEM TEST_OPS test_nearest_interp_op)
foreach(TEST_OP ${TEST_OPS})
py_test_modules(${TEST_OP} MODULES ${TEST_OP})
endforeach(TEST_OP)
py_test_modules(test_warpctc_op MODULES test_warpctc_op ENVS FLAGS_warpctc_dir=${WARPCTC_LIB_DIR} SERIAL)
py_test_modules(test_interpolate_op MODULES test_interpolate_op SERIAL)
py_test_modules(test_bilinear_interp_op MODULES test_bilinear_interp_op SERIAL)
py_test_modules(test_nearest_interp_op MODULES test_nearest_interp_op SERIAL)
if(WITH_DISTRIBUTE)
py_test_modules(test_dist_train MODULES test_dist_train SERIAL)
set_tests_properties(test_listen_and_serv_op PROPERTIES TIMEOUT 20)
if(NOT APPLE)
set_tests_properties(test_dist_mnist PROPERTIES TIMEOUT 200)
set_tests_properties(test_dist_word2vec PROPERTIES TIMEOUT 200)
py_test_modules(test_dist_se_resnext MODULES test_dist_se_resnext)
set_tests_properties(test_dist_se_resnext PROPERTIES TIMEOUT 1000)
# FIXME(typhoonzero): add this back
#py_test_modules(test_dist_transformer MODULES test_dist_transformer)
#set_tests_properties(test_dist_transformer PROPERTIES TIMEOUT 1000)
# FIXME(typhoonzero): add these tests back
# py_test_modules(test_dist_se_resnext MODULES test_dist_se_resnext)
# set_tests_properties(test_dist_se_resnext PROPERTIES TIMEOUT 1000)
# py_test_modules(test_dist_transformer MODULES test_dist_transformer)
# set_tests_properties(test_dist_transformer PROPERTIES TIMEOUT 1000)
# TODO(typhoonzero): make dist test parallel when fix port management issue
set_tests_properties(test_dist_mnist test_dist_word2vec test_dist_se_resnext test_dist_ctr test_dist_simnet_bow test_dist_save_load test_dist_text_classification test_dist_mnist_batch_merge PROPERTIES RUN_SERIAL TRUE)
set_tests_properties(test_dist_mnist test_dist_word2vec test_dist_ctr test_dist_simnet_bow test_dist_save_load test_dist_text_classification test_dist_mnist_batch_merge PROPERTIES RUN_SERIAL TRUE)
endif(NOT APPLE)
py_test_modules(test_dist_transpiler MODULES test_dist_transpiler)
endif()
......
......@@ -20,36 +20,6 @@ from op_test import OpTest
import paddle.fluid.core as core
def nearest_neighbor_interp_np(X,
out_h,
out_w,
out_size=None,
actual_shape=None):
"""nearest neighbor interpolation implement in shape [N, C, H, W]"""
if out_size is not None:
out_h = out_size[0]
out_w = out_size[1]
if actual_shape is not None:
out_h = actual_shape[0]
out_w = actual_shape[1]
n, c, in_h, in_w = X.shape
ratio_h = ratio_w = 0.0
if out_h > 1:
ratio_h = (in_h - 1.0) / (out_h - 1.0)
if out_w > 1:
ratio_w = (in_w - 1.0) / (out_w - 1.0)
out = np.zeros((n, c, out_h, out_w))
for i in range(out_h):
in_i = int(ratio_h * i + 0.5)
for j in range(out_w):
in_j = int(ratio_w * j + 0.5)
out[:, :, i, j] = X[:, :, in_i, in_j]
return out.astype(X.dtype)
def bilinear_interp_np(input, out_h, out_w, out_size=None, actual_shape=None):
"""bilinear interpolation implement in shape [N, C, H, W]"""
if out_size is not None:
......@@ -87,22 +57,16 @@ def bilinear_interp_np(input, out_h, out_w, out_size=None, actual_shape=None):
return out.astype(input.dtype)
INTERPOLATE_FUNCS = {
'bilinear': bilinear_interp_np,
'nearest': nearest_neighbor_interp_np,
}
class TestInterpolateOp(OpTest):
class TestBilinearInterpOp(OpTest):
def setUp(self):
self.out_size = None
self.actual_shape = None
self.init_test_case()
self.op_type = "interpolate"
self.op_type = "bilinear_interp"
input_np = np.random.random(self.input_shape).astype("float32")
output_np = INTERPOLATE_FUNCS[self.interp_method](
input_np, self.out_h, self.out_w, self.out_size, self.actual_shape)
output_np = bilinear_interp_np(input_np, self.out_h, self.out_w,
self.out_size, self.actual_shape)
self.inputs = {'X': input_np}
if self.out_size is not None:
self.inputs['OutSize'] = self.out_size
......@@ -129,7 +93,7 @@ class TestInterpolateOp(OpTest):
self.out_size = np.array([3, 3]).astype("int32")
class TestBilinearInterpCase1(TestInterpolateOp):
class TestBilinearInterpCase1(TestBilinearInterpOp):
def init_test_case(self):
self.interp_method = 'bilinear'
self.input_shape = [4, 1, 7, 8]
......@@ -137,7 +101,7 @@ class TestBilinearInterpCase1(TestInterpolateOp):
self.out_w = 1
class TestBilinearInterpCase2(TestInterpolateOp):
class TestBilinearInterpCase2(TestBilinearInterpOp):
def init_test_case(self):
self.interp_method = 'bilinear'
self.input_shape = [3, 3, 9, 6]
......@@ -145,7 +109,7 @@ class TestBilinearInterpCase2(TestInterpolateOp):
self.out_w = 12
class TestBilinearInterpCase3(TestInterpolateOp):
class TestBilinearInterpCase3(TestBilinearInterpOp):
def init_test_case(self):
self.interp_method = 'bilinear'
self.input_shape = [1, 1, 128, 64]
......@@ -153,7 +117,7 @@ class TestBilinearInterpCase3(TestInterpolateOp):
self.out_w = 128
class TestBilinearInterpCase4(TestInterpolateOp):
class TestBilinearInterpCase4(TestBilinearInterpOp):
def init_test_case(self):
self.interp_method = 'bilinear'
self.input_shape = [4, 1, 7, 8]
......@@ -162,7 +126,7 @@ class TestBilinearInterpCase4(TestInterpolateOp):
self.out_size = np.array([2, 2]).astype("int32")
class TestBilinearInterpCase5(TestInterpolateOp):
class TestBilinearInterpCase5(TestBilinearInterpOp):
def init_test_case(self):
self.interp_method = 'bilinear'
self.input_shape = [3, 3, 9, 6]
......@@ -171,7 +135,7 @@ class TestBilinearInterpCase5(TestInterpolateOp):
self.out_size = np.array([11, 11]).astype("int32")
class TestBilinearInterpCase6(TestInterpolateOp):
class TestBilinearInterpCase6(TestBilinearInterpOp):
def init_test_case(self):
self.interp_method = 'bilinear'
self.input_shape = [1, 1, 128, 64]
......@@ -180,7 +144,7 @@ class TestBilinearInterpCase6(TestInterpolateOp):
self.out_size = np.array([65, 129]).astype("int32")
class TestBilinearInterpActualShape(TestInterpolateOp):
class TestBilinearInterpActualShape(TestBilinearInterpOp):
def init_test_case(self):
self.interp_method = 'bilinear'
self.input_shape = [3, 2, 32, 16]
......@@ -189,25 +153,16 @@ class TestBilinearInterpActualShape(TestInterpolateOp):
self.out_size = np.array([66, 40]).astype("int32")
class TestBilinearInterpBigScale(TestInterpolateOp):
def init_test_case(self):
self.interp_method = 'bilinear'
self.input_shape = [4, 4, 64, 32]
self.out_h = 100
self.out_w = 50
self.out_size = np.array([101, 51]).astype('int32')
class TestInterpolateOpUint8(OpTest):
class TestBilinearInterpOpUint8(OpTest):
def setUp(self):
self.out_size = None
self.actual_shape = None
self.init_test_case()
self.op_type = "interpolate"
self.op_type = "bilinear_interp"
input_np = np.random.randint(
low=0, high=256, size=self.input_shape).astype("uint8")
output_np = INTERPOLATE_FUNCS[self.interp_method](
input_np, self.out_h, self.out_w, self.out_size, self.actual_shape)
output_np = bilinear_interp_np(input_np, self.out_h, self.out_w,
self.out_size, self.actual_shape)
self.inputs = {'X': input_np}
if self.out_size is not None:
self.inputs['OutSize'] = self.out_size
......@@ -228,7 +183,7 @@ class TestInterpolateOpUint8(OpTest):
self.out_w = 9
class TestBilinearInterpCase1Uint8(TestInterpolateOpUint8):
class TestBilinearInterpCase1Uint8(TestBilinearInterpOpUint8):
def init_test_case(self):
self.interp_method = 'bilinear'
self.input_shape = [2, 3, 128, 64]
......@@ -236,7 +191,7 @@ class TestBilinearInterpCase1Uint8(TestInterpolateOpUint8):
self.out_w = 50
class TestBilinearInterpCase2Uint8(TestInterpolateOpUint8):
class TestBilinearInterpCase2Uint8(TestBilinearInterpOpUint8):
def init_test_case(self):
self.interp_method = 'bilinear'
self.input_shape = [4, 1, 7, 8]
......@@ -245,91 +200,5 @@ class TestBilinearInterpCase2Uint8(TestInterpolateOpUint8):
self.out_size = np.array([6, 15]).astype("int32")
class TestNearestNeighborInterpCase1(TestInterpolateOp):
def init_test_case(self):
self.interp_method = 'nearest'
self.input_shape = [4, 1, 7, 8]
self.out_h = 1
self.out_w = 1
class TestNearestNeighborInterpCase2(TestInterpolateOp):
def init_test_case(self):
self.interp_method = 'nearest'
self.input_shape = [3, 3, 9, 6]
self.out_h = 12
self.out_w = 12
class TestNearestNeighborInterpCase3(TestInterpolateOp):
def init_test_case(self):
self.interp_method = 'nearest'
self.input_shape = [1, 1, 128, 64]
self.out_h = 64
self.out_w = 128
class TestNearestNeighborInterpCase4(TestInterpolateOp):
def init_test_case(self):
self.interp_method = 'nearest'
self.input_shape = [4, 1, 7, 8]
self.out_h = 1
self.out_w = 1
self.out_size = np.array([2, 2]).astype("int32")
class TestNearestNeighborInterpCase5(TestInterpolateOp):
def init_test_case(self):
self.interp_method = 'nearest'
self.input_shape = [3, 3, 9, 6]
self.out_h = 12
self.out_w = 12
self.out_size = np.array([11, 11]).astype("int32")
class TestNearestNeighborInterpCase6(TestInterpolateOp):
def init_test_case(self):
self.interp_method = 'nearest'
self.input_shape = [1, 1, 128, 64]
self.out_h = 64
self.out_w = 128
self.out_size = np.array([65, 129]).astype("int32")
class TestNearestNeighborInterpActualShape(TestInterpolateOp):
def init_test_case(self):
self.interp_method = 'nearest'
self.input_shape = [3, 2, 32, 16]
self.out_h = 64
self.out_w = 32
self.out_size = np.array([66, 40]).astype("int32")
class TestNearestNeighborInterpBigScale(TestInterpolateOp):
def init_test_case(self):
self.interp_method = 'nearest'
self.input_shape = [4, 4, 64, 32]
self.out_h = 100
self.out_w = 50
self.out_size = np.array([101, 51]).astype('int32')
class TestNearestNeighborInterpCase1Uint8(TestInterpolateOpUint8):
def init_test_case(self):
self.interp_method = 'nearest'
self.input_shape = [2, 3, 128, 64]
self.out_h = 120
self.out_w = 50
class TestNearestNeighborInterpCase2Uint8(TestInterpolateOpUint8):
def init_test_case(self):
self.interp_method = 'nearest'
self.input_shape = [4, 1, 7, 8]
self.out_h = 5
self.out_w = 13
self.out_size = np.array([6, 15]).astype("int32")
if __name__ == "__main__":
unittest.main()
......@@ -36,7 +36,8 @@ class TestDensityPriorBoxOp(OpTest):
'offset': self.offset,
'densities': self.densities,
'fixed_sizes': self.fixed_sizes,
'fixed_ratios': self.fixed_ratios
'fixed_ratios': self.fixed_ratios,
'flatten_to_2d': self.flatten_to_2d
}
self.outputs = {'Boxes': self.out_boxes, 'Variances': self.out_var}
......@@ -48,16 +49,17 @@ class TestDensityPriorBoxOp(OpTest):
self.set_data()
def set_density(self):
self.densities = []
self.fixed_sizes = []
self.fixed_ratios = []
self.densities = [4, 2, 1]
self.fixed_sizes = [32.0, 64.0, 128.0]
self.fixed_ratios = [1.0]
self.layer_w = 17
self.layer_h = 17
self.image_w = 533
self.image_h = 533
self.flatten_to_2d = False
def init_test_params(self):
self.layer_w = 32
self.layer_h = 32
self.image_w = 40
self.image_h = 40
self.set_density()
self.step_w = float(self.image_w) / float(self.layer_w)
self.step_h = float(self.image_h) / float(self.layer_h)
......@@ -69,8 +71,6 @@ class TestDensityPriorBoxOp(OpTest):
self.variances = [0.1, 0.1, 0.2, 0.2]
self.variances = np.array(self.variances, dtype=np.float).flatten()
self.set_density()
self.clip = True
self.num_priors = 0
if len(self.fixed_sizes) > 0 and len(self.densities) > 0:
......@@ -129,6 +129,9 @@ class TestDensityPriorBoxOp(OpTest):
(self.layer_h, self.layer_w, self.num_priors, 1))
self.out_boxes = out_boxes.astype('float32')
self.out_var = out_var.astype('float32')
if self.flatten_to_2d:
self.out_boxes = self.out_boxes.reshape((-1, 4))
self.out_var = self.out_var.reshape((-1, 4))
class TestDensityPriorBox(TestDensityPriorBoxOp):
......@@ -136,6 +139,11 @@ class TestDensityPriorBox(TestDensityPriorBoxOp):
self.densities = [3, 4]
self.fixed_sizes = [1.0, 2.0]
self.fixed_ratios = [1.0]
self.layer_w = 32
self.layer_h = 32
self.image_w = 40
self.image_h = 40
self.flatten_to_2d = True
if __name__ == '__main__':
......
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import unittest
import numpy as np
from op_test import OpTest
import paddle.fluid.core as core
class TestFusionTransposeFlattenConcationOp(OpTest):
def setUp(self):
self.init_test_case()
self.op_type = "fusion_transpose_flatten_concat"
ins = []
flats = []
for i in range(len(self.shapes)):
in_shape = self.shapes[i]
a = np.random.random(in_shape).astype("float32")
ins.append(("x%d" % i, a))
b = a.transpose(self.trans_axis)
flat_shape = (np.prod(b.shape[:self.flatten_axis]),
np.prod(b.shape[self.flatten_axis:]))
c = b.reshape(flat_shape)
flats.append(c)
out = np.concatenate(flats, axis=self.concat_axis)
self.inputs = {'X': ins}
self.attrs = {
'trans_axis': list(self.trans_axis),
'flatten_axis': self.flatten_axis,
'concat_axis': self.concat_axis
}
self.outputs = {'Out': out}
def test_check_output(self):
if core.is_compiled_with_cuda():
place = core.CUDAPlace(0)
self.check_output_with_place(place, 1e-6)
else:
pass
def init_test_case(self):
self.shapes = [(3, 4, 17, 17), (3, 8, 7, 7), (3, 12, 5, 5)]
self.trans_axis = (0, 2, 3, 1)
self.flatten_axis = 1
self.concat_axis = 1
class TestCase1(TestFusionTransposeFlattenConcationOp):
def init_test_case(self):
self.shapes = [(3, 4, 18, 17), (3, 8, 18, 7), (6, 12, 9, 5)]
self.trans_axis = (0, 2, 3, 1)
self.flatten_axis = 2
self.concat_axis = 1
class TestCase2(TestFusionTransposeFlattenConcationOp):
def init_test_case(self):
self.shapes = [(3, 8, 20, 17), (3, 8, 19, 17), (3, 8, 40, 17)]
self.trans_axis = (0, 2, 3, 1)
self.flatten_axis = 2
self.concat_axis = 0
class TestCase3(TestFusionTransposeFlattenConcationOp):
def init_test_case(self):
self.shapes = [(3, 8, 20, 17), (3, 8, 19, 17), (3, 8, 40, 17)]
self.trans_axis = (0, 3, 2, 1)
self.flatten_axis = 1
self.concat_axis = 1
class TestCase4(TestFusionTransposeFlattenConcationOp):
def init_test_case(self):
self.shapes = [(3, 8, 9, 17), (8, 3, 9, 17), (4, 6, 9, 17)]
self.trans_axis = (0, 2, 1, 3)
self.flatten_axis = 3
self.concat_axis = 1
class TestCase5(TestFusionTransposeFlattenConcationOp):
def init_test_case(self):
self.shapes = [(3, 8, 9, 17, 2), (3, 8, 2, 17, 9), (3, 17, 9, 8, 2)]
self.trans_axis = (0, 2, 1, 4, 3)
self.flatten_axis = 1
self.concat_axis = 1
if __name__ == '__main__':
unittest.main()
......@@ -202,6 +202,17 @@ class TestBook(unittest.TestCase):
self.assertIsNotNone(layers.sequence_unpad(x=x, length=length))
print(str(program))
def test_pool2d(self):
program = Program()
with program_guard(program):
x = layers.data(name='x', shape=[3, 224, 224], dtype='float32')
self.assertIsNotNone(
layers.pool2d(
x,
pool_size=[5, 3],
pool_stride=[1, 2],
pool_padding=(2, 1)))
def test_lstm_unit(self):
program = Program()
with program_guard(program):
......
......@@ -145,10 +145,15 @@ def batched_multiclass_nms(boxes, scores, background, score_threshold,
lod.append(nmsed_num)
if nmsed_num == 0: continue
tmp_det_out = []
for c, indices in nmsed_outs.items():
for idx in indices:
xmin, ymin, xmax, ymax = boxes[n][idx][:]
det_outs.append([c, scores[n][c][idx], xmin, ymin, xmax, ymax])
tmp_det_out.append(
[c, scores[n][c][idx], xmin, ymin, xmax, ymax])
sorted_det_out = sorted(
tmp_det_out, key=lambda tup: tup[0], reverse=False)
det_outs.extend(sorted_det_out)
return det_outs, lod
......
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import unittest
import numpy as np
from op_test import OpTest
import paddle.fluid.core as core
def nearest_neighbor_interp_np(X,
out_h,
out_w,
out_size=None,
actual_shape=None):
"""nearest neighbor interpolation implement in shape [N, C, H, W]"""
if out_size is not None:
out_h = out_size[0]
out_w = out_size[1]
if actual_shape is not None:
out_h = actual_shape[0]
out_w = actual_shape[1]
n, c, in_h, in_w = X.shape
ratio_h = ratio_w = 0.0
if out_h > 1:
ratio_h = (in_h - 1.0) / (out_h - 1.0)
if out_w > 1:
ratio_w = (in_w - 1.0) / (out_w - 1.0)
out = np.zeros((n, c, out_h, out_w))
for i in range(out_h):
in_i = int(ratio_h * i + 0.5)
for j in range(out_w):
in_j = int(ratio_w * j + 0.5)
out[:, :, i, j] = X[:, :, in_i, in_j]
return out.astype(X.dtype)
class TestNearestInterpOp(OpTest):
def setUp(self):
self.out_size = None
self.actual_shape = None
self.init_test_case()
self.op_type = "nearest_interp"
input_np = np.random.random(self.input_shape).astype("float32")
output_np = nearest_neighbor_interp_np(input_np, self.out_h, self.out_w,
self.out_size, self.actual_shape)
self.inputs = {'X': input_np}
if self.out_size is not None:
self.inputs['OutSize'] = self.out_size
if self.actual_shape is not None:
self.inputs['OutSize'] = self.actual_shape
self.attrs = {
'out_h': self.out_h,
'out_w': self.out_w,
'interp_method': self.interp_method
}
self.outputs = {'Out': output_np}
def test_check_output(self):
self.check_output()
def test_check_grad(self):
self.check_grad(['X'], 'Out', in_place=True)
def init_test_case(self):
self.interp_method = 'nearest'
self.input_shape = [2, 3, 4, 4]
self.out_h = 2
self.out_w = 2
self.out_size = np.array([3, 3]).astype("int32")
class TestNearestNeighborInterpCase1(TestNearestInterpOp):
def init_test_case(self):
self.interp_method = 'nearest'
self.input_shape = [4, 1, 7, 8]
self.out_h = 1
self.out_w = 1
class TestNearestNeighborInterpCase2(TestNearestInterpOp):
def init_test_case(self):
self.interp_method = 'nearest'
self.input_shape = [3, 3, 9, 6]
self.out_h = 12
self.out_w = 12
class TestNearestNeighborInterpCase3(TestNearestInterpOp):
def init_test_case(self):
self.interp_method = 'nearest'
self.input_shape = [1, 1, 128, 64]
self.out_h = 64
self.out_w = 128
class TestNearestNeighborInterpCase4(TestNearestInterpOp):
def init_test_case(self):
self.interp_method = 'nearest'
self.input_shape = [4, 1, 7, 8]
self.out_h = 1
self.out_w = 1
self.out_size = np.array([2, 2]).astype("int32")
class TestNearestNeighborInterpCase5(TestNearestInterpOp):
def init_test_case(self):
self.interp_method = 'nearest'
self.input_shape = [3, 3, 9, 6]
self.out_h = 12
self.out_w = 12
self.out_size = np.array([11, 11]).astype("int32")
class TestNearestNeighborInterpCase6(TestNearestInterpOp):
def init_test_case(self):
self.interp_method = 'nearest'
self.input_shape = [1, 1, 128, 64]
self.out_h = 64
self.out_w = 128
self.out_size = np.array([65, 129]).astype("int32")
class TestNearestNeighborInterpActualShape(TestNearestInterpOp):
def init_test_case(self):
self.interp_method = 'nearest'
self.input_shape = [3, 2, 32, 16]
self.out_h = 64
self.out_w = 32
self.out_size = np.array([66, 40]).astype("int32")
class TestNearestInterpOpUint8(OpTest):
def setUp(self):
self.out_size = None
self.actual_shape = None
self.init_test_case()
self.op_type = "nearest_interp"
input_np = np.random.randint(
low=0, high=256, size=self.input_shape).astype("uint8")
output_np = nearest_neighbor_interp_np(input_np, self.out_h, self.out_w,
self.out_size, self.actual_shape)
self.inputs = {'X': input_np}
if self.out_size is not None:
self.inputs['OutSize'] = self.out_size
self.attrs = {
'out_h': self.out_h,
'out_w': self.out_w,
'interp_method': self.interp_method
}
self.outputs = {'Out': output_np}
def test_check_output(self):
self.check_output_with_place(place=core.CPUPlace(), atol=1)
def init_test_case(self):
self.interp_method = 'nearest'
self.input_shape = [1, 3, 9, 6]
self.out_h = 10
self.out_w = 9
class TestNearestNeighborInterpCase1Uint8(TestNearestInterpOpUint8):
def init_test_case(self):
self.interp_method = 'nearest'
self.input_shape = [2, 3, 128, 64]
self.out_h = 120
self.out_w = 50
class TestNearestNeighborInterpCase2Uint8(TestNearestInterpOpUint8):
def init_test_case(self):
self.interp_method = 'nearest'
self.input_shape = [4, 1, 7, 8]
self.out_h = 5
self.out_w = 13
self.out_size = np.array([6, 15]).astype("int32")
if __name__ == "__main__":
unittest.main()
......@@ -692,6 +692,9 @@ in a single call.")
else:
recv_inputs.append(single_trainer_var)
self._slice_params_and_optimizes = self._get_slice_vars_and_attrs(
endpoint)
# step 3
# Create a union-find data structure from optimize ops,
# If two ops are connected, we could add these two ops
......@@ -814,7 +817,7 @@ in a single call.")
grad_to_block_id, merged_var,
lr_ops)
# dedup grad to ids list
# dedup grad to ids list
grad_to_block_id = list(set(grad_to_block_id))
# append global ops
if global_ops:
......@@ -875,8 +878,8 @@ in a single call.")
attrs=attrs)
# add distributed attrs
pserver_program._slice_vars_and_attrs = self._get_slice_vars_and_attrs(
endpoint)
pserver_program._slice_vars_and_attrs = list(
self._slice_params_and_optimizes.values())
pserver_program._sync_with_cpp()
# save pserver program to generate pserver side startup relatively.
......@@ -989,12 +992,12 @@ to transpile() call.")
outputs={"Out": startup_tmpvar})
# add slice vars
s_prog._slice_vars_and_attrs = self._get_slice_vars_and_attrs(endpoint)
s_prog._slice_vars_and_attrs = pserver_program._slice_vars_and_attrs
return s_prog
def _get_slice_vars_and_attrs(self, endpoint):
slice_vars_and_attrs = []
slice_vars_and_attrs = {}
block_suffix = "block"
for param in self.param_grad_ep_mapping[endpoint]["params"]:
orig_var_name, block_name, _ = self._get_varname_parts(param.name)
......@@ -1008,8 +1011,7 @@ to transpile() call.")
slice_vars = self.param_var_mapping[orig_var_name]
for slice_var in slice_vars[:block_idx]:
skip_dim0 += slice_var.shape[0]
slice_vars_and_attrs.append([orig_var, skip_dim0, param])
slice_vars_and_attrs[param.name] = [orig_var, skip_dim0, param]
return slice_vars_and_attrs
# ====================== private transpiler functions =====================
......@@ -1713,10 +1715,10 @@ to transpile() call.")
if key in ["Param", "Grad", "LearningRate"]:
continue
var = self.origin_program.global_block().vars[opt_op.input(key)[0]]
param_var = new_inputs["Param"]
# update accumulator variable shape
param_shape = new_inputs["Param"].shape
new_shape = self._get_optimizer_input_shape(opt_op.type, key,
var.shape, param_shape)
new_shape = self._get_optimizer_input_shape(
opt_op.type, key, var.shape, param_var.shape)
tmpvar = pserver_block.create_var(
name=var.name,
persistable=var.persistable,
......@@ -1724,6 +1726,13 @@ to transpile() call.")
shape=new_shape)
new_inputs[key] = tmpvar
# var shape been changed
if new_shape != var.shape:
slice_var_args = self._slice_params_and_optimizes[
param_var.name]
self._slice_params_and_optimizes[
var.name] = [var, slice_var_args[1], tmpvar]
# change output's ParamOut variable
outputs = self._get_output_map_from_op(
self.origin_program.global_block().vars, opt_op)
......
......@@ -16,7 +16,7 @@ ENV PKG_CONFIG_PATH=/usr/local/lib/pkgconfig
RUN yum install -y sqlite-devel zlib-devel openssl-devel pcre-devel vim tk-devel tkinter libtool xz graphviz
COPY build_scripts /build_scripts
RUN bash build_scripts/build.sh && \
bash build_scripts/install_nccl2.sh && rm -r build_scripts
bash build_scripts/install_nccl2.sh && rm -rf build_scripts
ENV SSL_CERT_FILE=/opt/_internal/certs.pem
......
......@@ -50,6 +50,15 @@ function do_cpython_build {
mkdir -p ${prefix}/lib
# -Wformat added for https://bugs.python.org/issue17547 on Python 2.6
if [ $(lex_pyver $py_ver) -eq $(lex_pyver 3.6) ]; then
wget https://www.sqlite.org/2018/sqlite-autoconf-3250300.tar.gz
tar -zxf sqlite-autoconf-3250300.tar.gz
cd sqlite-autoconf-3250300
./configure --prefix=/usr/local
make -j8 && make install
cd ../ && rm sqlite-autoconf-3250300.tar.gz
fi
# NOTE --enable-shared for generating libpython shared library needed for
# linking of some of the nupic.core test executables.
if [ $(lex_pyver $py_ver) -ge $(lex_pyver 3.7) ]; then
......@@ -59,9 +68,9 @@ function do_cpython_build {
make -j8 > /dev/null
make altinstall > /dev/null
else
CFLAGS="-Wformat" ./configure --prefix=${prefix} --enable-shared $unicode_flags > /dev/null
make -j8 > /dev/null
make install > /dev/null
LD_LIBRARY_PATH=/usr/local/lib:${LD_LIBRARY_PATH} CFLAGS="-Wformat" ./configure --prefix=${prefix} --enable-shared $unicode_flags > /dev/null
LD_LIBRARY_PATH=/usr/local/lib:${LD_LIBRARY_PATH} make -j8 > /dev/null
LD_LIBRARY_PATH=/usr/local/lib:${LD_LIBRARY_PATH} make install > /dev/null
fi
popd
echo "ZZZ looking for libpython"
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册