未验证 提交 958823fa 编写于 作者: Y Yancey 提交者: GitHub

Merge pull request #11189 from Yancey1989/test_dist_mnist_acc

Add unit test for testing distributed training with mnist
......@@ -111,7 +111,7 @@ def fetch():
paddle.dataset.common.download(TRAIN_IMAGE_URL, 'mnist', TRAIN_IMAGE_MD5)
paddle.dataset.common.download(TRAIN_LABEL_URL, 'mnist', TRAIN_LABEL_MD5)
paddle.dataset.common.download(TEST_IMAGE_URL, 'mnist', TEST_IMAGE_MD5)
paddle.dataset.common.download(TEST_LABEL_URL, 'mnist', TRAIN_LABEL_MD5)
paddle.dataset.common.download(TEST_LABEL_URL, 'mnist', TEST_LABEL_MD5)
def convert(path):
......
......@@ -51,3 +51,4 @@ py_test_modules(test_dist_train MODULES test_dist_train SERIAL)
py_test_modules(test_parallel_executor_crf MODULES test_parallel_executor_crf SERIAL)
py_test_modules(test_parallel_executor_fetch_feed MODULES test_parallel_executor_fetch_feed SERIAL)
set_tests_properties(test_listen_and_serv_op PROPERTIES TIMEOUT 20)
set_tests_properties(test_dist_mnist PROPERTIES TIMEOUT 180)
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np
import argparse
import time
import math
import paddle
import paddle.fluid as fluid
import paddle.fluid.profiler as profiler
from paddle.fluid import core
import unittest
from multiprocessing import Process
import os
import signal
SEED = 1
DTYPE = "float32"
paddle.dataset.mnist.fetch()
# random seed must set before configuring the network.
# fluid.default_startup_program().random_seed = SEED
def cnn_model(data):
conv_pool_1 = fluid.nets.simple_img_conv_pool(
input=data,
filter_size=5,
num_filters=20,
pool_size=2,
pool_stride=2,
act="relu")
conv_pool_2 = fluid.nets.simple_img_conv_pool(
input=conv_pool_1,
filter_size=5,
num_filters=50,
pool_size=2,
pool_stride=2,
act="relu")
# TODO(dzhwinter) : refine the initializer and random seed settting
SIZE = 10
input_shape = conv_pool_2.shape
param_shape = [reduce(lambda a, b: a * b, input_shape[1:], 1)] + [SIZE]
scale = (2.0 / (param_shape[0]**2 * SIZE))**0.5
predict = fluid.layers.fc(
input=conv_pool_2,
size=SIZE,
act="softmax",
param_attr=fluid.param_attr.ParamAttr(
initializer=fluid.initializer.NormalInitializer(
loc=0.0, scale=scale)))
return predict
def get_model(batch_size):
# Input data
images = fluid.layers.data(name='pixel', shape=[1, 28, 28], dtype=DTYPE)
label = fluid.layers.data(name='label', shape=[1], dtype='int64')
# Train program
predict = cnn_model(images)
cost = fluid.layers.cross_entropy(input=predict, label=label)
avg_cost = fluid.layers.mean(x=cost)
# Evaluator
batch_size_tensor = fluid.layers.create_tensor(dtype='int64')
batch_acc = fluid.layers.accuracy(
input=predict, label=label, total=batch_size_tensor)
inference_program = fluid.default_main_program().clone()
# Optimization
opt = fluid.optimizer.AdamOptimizer(
learning_rate=0.001, beta1=0.9, beta2=0.999)
# Reader
train_reader = paddle.batch(
paddle.dataset.mnist.train(), batch_size=batch_size)
test_reader = paddle.batch(
paddle.dataset.mnist.test(), batch_size=batch_size)
opt.minimize(avg_cost)
return inference_program, avg_cost, train_reader, test_reader, batch_acc, predict
def get_transpiler(trainer_id, main_program, pserver_endpoints, trainers):
t = fluid.DistributeTranspiler()
t.transpile(
trainer_id=trainer_id,
program=main_program,
pservers=pserver_endpoints,
trainers=trainers)
return t
def run_pserver(pserver_endpoints, trainers, current_endpoint):
get_model(batch_size=20)
t = get_transpiler(0,
fluid.default_main_program(), pserver_endpoints,
trainers)
pserver_prog = t.get_pserver_program(current_endpoint)
startup_prog = t.get_startup_program(current_endpoint, pserver_prog)
place = fluid.CPUPlace()
exe = fluid.Executor(place)
exe.run(startup_prog)
exe.run(pserver_prog)
class TestDistMnist(unittest.TestCase):
def setUp(self):
self._trainers = 1
self._pservers = 1
self._ps_endpoints = "127.0.0.1:9123"
def start_pserver(self, endpoint):
p = Process(
target=run_pserver,
args=(self._ps_endpoints, self._trainers, endpoint))
p.start()
return p.pid
def _wait_ps_ready(self, pid):
retry_times = 5
while True:
assert retry_times >= 0, "wait ps ready failed"
time.sleep(1)
try:
# the listen_and_serv_op would touch a file which contains the listen port
# on the /tmp directory until it was ready to process all the RPC call.
os.stat("/tmp/paddle.%d.port" % pid)
return
except os.error:
retry_times -= 1
def stop_pserver(self, pid):
os.kill(pid, signal.SIGTERM)
def test_with_place(self):
p = fluid.CUDAPlace(0) if core.is_compiled_with_cuda(
) else fluid.CPUPlace()
pserver_pid = self.start_pserver(self._ps_endpoints)
self._wait_ps_ready(pserver_pid)
self.run_trainer(p, 0)
self.stop_pserver(pserver_pid)
def run_trainer(self, place, trainer_id):
test_program, avg_cost, train_reader, test_reader, batch_acc, predict = get_model(
batch_size=20)
t = get_transpiler(trainer_id,
fluid.default_main_program(), self._ps_endpoints,
self._trainers)
trainer_prog = t.get_trainer_program()
exe = fluid.Executor(place)
exe.run(fluid.default_startup_program())
feed_var_list = [
var for var in trainer_prog.global_block().vars.itervalues()
if var.is_data
]
feeder = fluid.DataFeeder(feed_var_list, place)
for pass_id in xrange(10):
for batch_id, data in enumerate(train_reader()):
exe.run(trainer_prog, feed=feeder.feed(data))
if (batch_id + 1) % 10 == 0:
acc_set = []
avg_loss_set = []
for test_data in test_reader():
acc_np, avg_loss_np = exe.run(
program=test_program,
feed=feeder.feed(test_data),
fetch_list=[batch_acc, avg_cost])
acc_set.append(float(acc_np))
avg_loss_set.append(float(avg_loss_np))
# get test acc and loss
acc_val = np.array(acc_set).mean()
avg_loss_val = np.array(avg_loss_set).mean()
if float(acc_val
) > 0.8: # Smaller value to increase CI speed
return
else:
print(
'PassID {0:1}, BatchID {1:04}, Test Loss {2:2.2}, Acc {3:2.2}'.
format(pass_id, batch_id + 1,
float(avg_loss_val), float(acc_val)))
if math.isnan(float(avg_loss_val)):
assert ("got Nan loss, training failed.")
if __name__ == "__main__":
unittest.main()
......@@ -112,7 +112,7 @@ def fetch():
paddle.v2.dataset.common.download(TRAIN_IMAGE_URL, 'mnist', TRAIN_IMAGE_MD5)
paddle.v2.dataset.common.download(TRAIN_LABEL_URL, 'mnist', TRAIN_LABEL_MD5)
paddle.v2.dataset.common.download(TEST_IMAGE_URL, 'mnist', TEST_IMAGE_MD5)
paddle.v2.dataset.common.download(TEST_LABEL_URL, 'mnist', TRAIN_LABEL_MD5)
paddle.v2.dataset.common.download(TEST_LABEL_URL, 'mnist', TEST_LABEL_MD5)
def convert(path):
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册