Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
943dedec
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 2 年 前同步成功
通知
2325
Star
20933
Fork
5424
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
943dedec
编写于
3月 01, 2022
作者:
P
phlrain
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add sgd kernel; test=develop
上级
a4bccde0
变更
5
显示空白变更内容
内联
并排
Showing
5 changed file
with
380 addition
and
364 deletion
+380
-364
paddle/fluid/framework/operator.cc
paddle/fluid/framework/operator.cc
+5
-1
paddle/phi/core/kernel_registry.h
paddle/phi/core/kernel_registry.h
+6
-0
paddle/phi/kernels/gpu/sgd_kernel.cu
paddle/phi/kernels/gpu/sgd_kernel.cu
+1
-1
paddle/phi/ops/compat/sgd_sig.cc
paddle/phi/ops/compat/sgd_sig.cc
+0
-2
python/paddle/fluid/tests/unittests/test_sgd_op.py
python/paddle/fluid/tests/unittests/test_sgd_op.py
+368
-360
未找到文件。
paddle/fluid/framework/operator.cc
浏览文件 @
943dedec
...
@@ -2048,7 +2048,11 @@ void OperatorWithKernel::BuildPhiKernelContext(
...
@@ -2048,7 +2048,11 @@ void OperatorWithKernel::BuildPhiKernelContext(
// deal with optional here
// deal with optional here
if
((
it
==
ctx
.
inputs
.
end
()
||
it
->
second
.
size
()
==
0
)
&&
if
((
it
==
ctx
.
inputs
.
end
()
||
it
->
second
.
size
()
==
0
)
&&
(
input_defs
[
i
].
type_index
==
(
input_defs
[
i
].
type_index
==
std
::
type_index
(
typeid
(
paddle
::
optional
<
const
phi
::
DenseTensor
&>
))))
{
std
::
type_index
(
typeid
(
paddle
::
optional
<
const
phi
::
DenseTensor
&>
))
||
input_defs
[
i
].
type_index
==
std
::
type_index
(
typeid
(
paddle
::
optional
<
const
phi
::
SelectedRows
&>
))))
{
pt_kernel_context
->
EmplaceBackInputWithoutSetRange
(
nullptr
);
pt_kernel_context
->
EmplaceBackInputWithoutSetRange
(
nullptr
);
auto
end_idx
=
start_idx
+
1
;
auto
end_idx
=
start_idx
+
1
;
pt_kernel_context
->
AssignInputRange
(
std
::
make_pair
(
start_idx
,
end_idx
),
pt_kernel_context
->
AssignInputRange
(
std
::
make_pair
(
start_idx
,
end_idx
),
...
...
paddle/phi/core/kernel_registry.h
浏览文件 @
943dedec
...
@@ -81,6 +81,12 @@ struct KernelArgsParseFunctor<Return_ (*)(Args_...)> {
...
@@ -81,6 +81,12 @@ struct KernelArgsParseFunctor<Return_ (*)(Args_...)> {
default_tensor_layout
,
default_tensor_layout
,
default_key
.
dtype
(),
default_key
.
dtype
(),
arg_type
);
arg_type
);
}
else
if
(
arg_type
==
std
::
type_index
(
typeid
(
paddle
::
optional
<
const
SelectedRows
&>
)))
{
args_def
->
AppendInput
(
default_key
.
backend
(),
default_tensor_layout
,
default_key
.
dtype
(),
arg_type
);
}
else
if
(
arg_type
==
}
else
if
(
arg_type
==
std
::
type_index
(
typeid
(
const
std
::
vector
<
DenseTensor
>&
)))
{
std
::
type_index
(
typeid
(
const
std
::
vector
<
DenseTensor
>&
)))
{
args_def
->
AppendInput
(
default_key
.
backend
(),
args_def
->
AppendInput
(
default_key
.
backend
(),
...
...
paddle/phi/kernels/gpu/sgd_kernel.cu
浏览文件 @
943dedec
...
@@ -14,6 +14,7 @@
...
@@ -14,6 +14,7 @@
#include "paddle/phi/kernels/sgd_kernel.h"
#include "paddle/phi/kernels/sgd_kernel.h"
#include "paddle/fluid/framework/mixed_vector.h"
#include "paddle/fluid/operators/amp/fp16_type_traits.h"
#include "paddle/fluid/operators/amp/fp16_type_traits.h"
#include "paddle/fluid/platform/device/gpu/gpu_primitives.h"
#include "paddle/fluid/platform/device/gpu/gpu_primitives.h"
#include "paddle/phi/backends/gpu/gpu_helper.h"
#include "paddle/phi/backends/gpu/gpu_helper.h"
...
@@ -72,7 +73,6 @@ void SGDDenseKernel(const Context& dev_ctx,
...
@@ -72,7 +73,6 @@ void SGDDenseKernel(const Context& dev_ctx,
bool
multi_precision
,
bool
multi_precision
,
DenseTensor
*
param_out
,
DenseTensor
*
param_out
,
DenseTensor
*
master_param_out
)
{
DenseTensor
*
master_param_out
)
{
LOG
(
ERROR
)
<<
"run here"
;
using
MPDType
=
typename
paddle
::
operators
::
details
::
MPTypeTrait
<
T
>::
Type
;
using
MPDType
=
typename
paddle
::
operators
::
details
::
MPTypeTrait
<
T
>::
Type
;
// do check here
// do check here
// if (multi_precision) {
// if (multi_precision) {
...
...
paddle/phi/ops/compat/sgd_sig.cc
浏览文件 @
943dedec
...
@@ -17,9 +17,7 @@
...
@@ -17,9 +17,7 @@
namespace
phi
{
namespace
phi
{
KernelSignature
SGDOpArgumentMapping
(
const
ArgumentMappingContext
&
ctx
)
{
KernelSignature
SGDOpArgumentMapping
(
const
ArgumentMappingContext
&
ctx
)
{
LOG
(
ERROR
)
<<
"11"
;
if
(
ctx
.
IsDenseTensorInput
(
"Grad"
))
{
if
(
ctx
.
IsDenseTensorInput
(
"Grad"
))
{
LOG
(
ERROR
)
<<
"dense"
;
return
KernelSignature
(
"sgd"
,
return
KernelSignature
(
"sgd"
,
{
"Param"
,
"LearningRate"
,
"Grad"
,
"MasterParam"
},
{
"Param"
,
"LearningRate"
,
"Grad"
,
"MasterParam"
},
{
"multi_precision"
},
{
"multi_precision"
},
...
...
python/paddle/fluid/tests/unittests/test_sgd_op.py
浏览文件 @
943dedec
...
@@ -24,366 +24,374 @@ import paddle
...
@@ -24,366 +24,374 @@ import paddle
paddle
.
enable_static
()
paddle
.
enable_static
()
# class TestSGDOp(OpTest):
# def setUp(self):
class
TestSGDOp
(
OpTest
):
# self.op_type = "sgd"
def
setUp
(
self
):
# self.conf()
self
.
op_type
=
"sgd"
# w = np.random.random((self.h, self.w)).astype("float32")
self
.
conf
()
# g = np.random.random((self.h, self.w)).astype("float32")
w
=
np
.
random
.
random
((
self
.
h
,
self
.
w
)).
astype
(
"float32"
)
# lr = np.array([0.1]).astype("float32")
g
=
np
.
random
.
random
((
self
.
h
,
self
.
w
)).
astype
(
"float32"
)
lr
=
np
.
array
([
0.1
]).
astype
(
"float32"
)
# self.inputs = {'Param': w, 'Grad': g, 'LearningRate': lr}
# self.outputs = {'ParamOut': w - lr * g}
self
.
inputs
=
{
'Param'
:
w
,
'Grad'
:
g
,
'LearningRate'
:
lr
}
self
.
outputs
=
{
'ParamOut'
:
w
-
lr
*
g
}
# def conf(self):
# self.h = 102
def
conf
(
self
):
# self.w = 105
self
.
h
=
102
self
.
w
=
105
# def test_check_output(self):
# self.check_output()
def
test_check_output
(
self
):
self
.
check_output
()
# class TestSGDOpCase8X(TestSGDOp):
# def conf(self):
# self.h = 10
class
TestSGDOpCase8X
(
TestSGDOp
):
# self.w = 64
def
conf
(
self
):
self
.
h
=
10
# class TestSparseSGDOp(unittest.TestCase):
self
.
w
=
64
# def check_with_place(self, place):
# scope = core.Scope()
class
TestSparseSGDOp
(
unittest
.
TestCase
):
# # create and initialize Grad Variable
def
check_with_place
(
self
,
place
):
# height = 10
scope
=
core
.
Scope
()
# rows = [0, 4, 7]
# self.conf()
# create and initialize Grad Variable
height
=
10
# grad_selected_rows = scope.var('Grad').get_selected_rows()
rows
=
[
0
,
4
,
7
]
# grad_selected_rows.set_height(height)
self
.
conf
()
# grad_selected_rows.set_rows(rows)
# np_array = np.ones((len(rows), self.row_numel)).astype("float32")
grad_selected_rows
=
scope
.
var
(
'Grad'
).
get_selected_rows
()
# np_array[0, 0] = 2.0
grad_selected_rows
.
set_height
(
height
)
# np_array[2, 8] = 4.0
grad_selected_rows
.
set_rows
(
rows
)
np_array
=
np
.
ones
((
len
(
rows
),
self
.
row_numel
)).
astype
(
"float32"
)
# grad_tensor = grad_selected_rows.get_tensor()
np_array
[
0
,
0
]
=
2.0
# grad_tensor.set(np_array, place)
np_array
[
2
,
8
]
=
4.0
# # create and initialize Param Variable
grad_tensor
=
grad_selected_rows
.
get_tensor
()
# param = scope.var('Param').get_tensor()
grad_tensor
.
set
(
np_array
,
place
)
# param_array = np.full((height, self.row_numel), 5.0).astype("float32")
# param.set(param_array, place)
# create and initialize Param Variable
param
=
scope
.
var
(
'Param'
).
get_tensor
()
# # create and initialize LeraningRate Variable
param_array
=
np
.
full
((
height
,
self
.
row_numel
),
5.0
).
astype
(
"float32"
)
# lr = scope.var('LearningRate').get_tensor()
param
.
set
(
param_array
,
place
)
# lr_array = np.full((1), 2.0).astype("float32")
# lr.set(lr_array, place)
# create and initialize LeraningRate Variable
lr
=
scope
.
var
(
'LearningRate'
).
get_tensor
()
# # create and run sgd operator
lr_array
=
np
.
full
((
1
),
2.0
).
astype
(
"float32"
)
# sgd_op = Operator(
lr
.
set
(
lr_array
,
place
)
# "sgd",
# Param='Param',
# create and run sgd operator
# Grad='Grad',
sgd_op
=
Operator
(
# ParamOut='Param',
"sgd"
,
# LearningRate='LearningRate')
Param
=
'Param'
,
# sgd_op.run(scope, place)
Grad
=
'Grad'
,
ParamOut
=
'Param'
,
# # get and compare result
LearningRate
=
'LearningRate'
)
# result_array = np.array(param)
sgd_op
.
run
(
scope
,
place
)
# # rows[0] = 0, 5.0 - 2.0 * 2.0
# get and compare result
# self.assertAlmostEqual(1.0, result_array[rows[0], 0])
result_array
=
np
.
array
(
param
)
# # rows[0] = 0, 5.0 - 2.0 * 1.0
# self.assertAlmostEqual(3.0, result_array[rows[0], 2])
# rows[0] = 0, 5.0 - 2.0 * 2.0
# # 5.0 - 2.0 * 0.0
self
.
assertAlmostEqual
(
1.0
,
result_array
[
rows
[
0
],
0
])
# self.assertAlmostEqual(5.0, result_array[1, 0])
# rows[0] = 0, 5.0 - 2.0 * 1.0
# # rows[1] = 4, 5.0 - 2.0 * 1.0
self
.
assertAlmostEqual
(
3.0
,
result_array
[
rows
[
0
],
2
])
# self.assertAlmostEqual(3.0, result_array[rows[1], 10])
# 5.0 - 2.0 * 0.0
# # 5.0 - 2.0 * 0.0
self
.
assertAlmostEqual
(
5.0
,
result_array
[
1
,
0
])
# self.assertAlmostEqual(5.0, result_array[5, 8])
# rows[1] = 4, 5.0 - 2.0 * 1.0
# # rows[2] = 7, 5.0 - 2.0 * 1.0
self
.
assertAlmostEqual
(
3.0
,
result_array
[
rows
[
1
],
10
])
# self.assertAlmostEqual(3.0, result_array[rows[2], 1])
# 5.0 - 2.0 * 0.0
# # rows[2] = 7, 5.0 - 2.0 * 4.0
self
.
assertAlmostEqual
(
5.0
,
result_array
[
5
,
8
])
# self.assertAlmostEqual(-3.0, result_array[rows[2], 8])
# rows[2] = 7, 5.0 - 2.0 * 1.0
self
.
assertAlmostEqual
(
3.0
,
result_array
[
rows
[
2
],
1
])
# def test_sparse_sgd(self):
# rows[2] = 7, 5.0 - 2.0 * 4.0
# places = [core.CPUPlace()]
self
.
assertAlmostEqual
(
-
3.0
,
result_array
[
rows
[
2
],
8
])
# if core.is_compiled_with_cuda():
# places.append(core.CUDAPlace(0))
def
test_sparse_sgd
(
self
):
# for place in places:
places
=
[
core
.
CPUPlace
()]
# self.check_with_place(place)
if
core
.
is_compiled_with_cuda
():
places
.
append
(
core
.
CUDAPlace
(
0
))
# def conf(self):
for
place
in
places
:
# self.row_numel = 12
self
.
check_with_place
(
place
)
# class TestSparseSGDOpCase8X(TestSparseSGDOp):
def
conf
(
self
):
# def conf(self):
self
.
row_numel
=
12
# self.row_numel = 16
# class TestSGDOpOptimizeSelectedRows(unittest.TestCase):
class
TestSparseSGDOpCase8X
(
TestSparseSGDOp
):
# def check_with_place(self, place):
def
conf
(
self
):
# scope = core.Scope()
self
.
row_numel
=
16
# row_width = 12
# # create and initialize Grad Variable
class
TestSGDOpOptimizeSelectedRows
(
unittest
.
TestCase
):
# grad_height = 10
def
check_with_place
(
self
,
place
):
# grad_rows = [0, 4, 7]
scope
=
core
.
Scope
()
# grad_selected_rows = scope.var('Grad').get_selected_rows()
row_width
=
12
# grad_selected_rows.set_height(grad_height)
# create and initialize Grad Variable
# grad_selected_rows.set_rows(grad_rows)
grad_height
=
10
# grad_array = np.ones((len(grad_rows), row_width)).astype("float32")
grad_rows
=
[
0
,
4
,
7
]
# grad_array[0, 0] = 2.0
# grad_array[2, 8] = 4.0
grad_selected_rows
=
scope
.
var
(
'Grad'
).
get_selected_rows
()
grad_selected_rows
.
set_height
(
grad_height
)
# grad_tensor = grad_selected_rows.get_tensor()
grad_selected_rows
.
set_rows
(
grad_rows
)
# grad_tensor.set(grad_array, place)
grad_array
=
np
.
ones
((
len
(
grad_rows
),
row_width
)).
astype
(
"float32"
)
grad_array
[
0
,
0
]
=
2.0
# # create and initialize Param Variable
grad_array
[
2
,
8
]
=
4.0
# # create and initialize W Variable
# param_rows = [0, 1, 2, 3, 4, 5, 6, 7]
grad_tensor
=
grad_selected_rows
.
get_tensor
()
grad_tensor
.
set
(
grad_array
,
place
)
# # init Param
# w_selected_rows = scope.var('Param').get_selected_rows()
# create and initialize Param Variable
# w_selected_rows.set_height(len(param_rows))
# create and initialize W Variable
# w_selected_rows.set_rows(param_rows)
param_rows
=
[
0
,
1
,
2
,
3
,
4
,
5
,
6
,
7
]
# w_selected_rows.sync_index()
# w_array = np.ones((len(param_rows), row_width)).astype("float32")
# init Param
# for i in range(len(param_rows)):
w_selected_rows
=
scope
.
var
(
'Param'
).
get_selected_rows
()
# w_array[i] *= i
w_selected_rows
.
set_height
(
len
(
param_rows
))
# w_tensor = w_selected_rows.get_tensor()
w_selected_rows
.
set_rows
(
param_rows
)
# w_tensor.set(w_array, place)
w_selected_rows
.
sync_index
()
w_array
=
np
.
ones
((
len
(
param_rows
),
row_width
)).
astype
(
"float32"
)
# w_before_optimize = np.array(w_tensor)
for
i
in
range
(
len
(
param_rows
)):
w_array
[
i
]
*=
i
# # create and initialize LeraningRate Variable
w_tensor
=
w_selected_rows
.
get_tensor
()
# lr_value = 0.1
w_tensor
.
set
(
w_array
,
place
)
# lr = scope.var('LearningRate').get_tensor()
# lr_array = np.full((1), lr_value).astype("float32")
w_before_optimize
=
np
.
array
(
w_tensor
)
# lr.set(lr_array, place)
# create and initialize LeraningRate Variable
# # optimize with Python
lr_value
=
0.1
# w_after_optimize = np.copy(w_before_optimize)
lr
=
scope
.
var
(
'LearningRate'
).
get_tensor
()
# for index, id in enumerate(grad_rows):
lr_array
=
np
.
full
((
1
),
lr_value
).
astype
(
"float32"
)
# w_after_optimize[id] = w_before_optimize[
lr
.
set
(
lr_array
,
place
)
# id] - lr_value * grad_array[index]
# optimize with Python
# # create and run sgd operator
w_after_optimize
=
np
.
copy
(
w_before_optimize
)
# sgd_op = Operator(
for
index
,
id
in
enumerate
(
grad_rows
):
# "sgd",
w_after_optimize
[
id
]
=
w_before_optimize
[
# Param='Param',
id
]
-
lr_value
*
grad_array
[
index
]
# Grad='Grad',
# ParamOut='Param',
# create and run sgd operator
# LearningRate='LearningRate')
sgd_op
=
Operator
(
# sgd_op.run(scope, place)
"sgd"
,
Param
=
'Param'
,
# # get and compare result
Grad
=
'Grad'
,
# result_array = np.array(w_tensor)
ParamOut
=
'Param'
,
# assert (result_array == w_after_optimize).all()
LearningRate
=
'LearningRate'
)
sgd_op
.
run
(
scope
,
place
)
# def test_sparse_parameter_sgd(self):
# places = [core.CPUPlace()]
# get and compare result
# # do not support GPU kernel currently
result_array
=
np
.
array
(
w_tensor
)
# for place in places:
assert
(
result_array
==
w_after_optimize
).
all
()
# self.check_with_place(place)
def
test_sparse_parameter_sgd
(
self
):
# class TestSGDOpWithLargeInput(unittest.TestCase):
places
=
[
core
.
CPUPlace
()]
# def runTest(self):
# do not support GPU kernel currently
# paddle.enable_static()
for
place
in
places
:
# data = fluid.layers.fill_constant(shape=[1], value=128, dtype='int64')
self
.
check_with_place
(
place
)
# label = fluid.layers.fill_constant(
# shape=[1, 150], value=0.5, dtype='float32')
# emb = fluid.embedding(input=data, size=(10000000, 150), dtype='float32')
class
TestSGDOpWithLargeInput
(
unittest
.
TestCase
):
# out = fluid.layers.l2_normalize(x=emb, axis=-1)
def
runTest
(
self
):
paddle
.
enable_static
()
# cost = fluid.layers.square_error_cost(input=out, label=label)
data
=
fluid
.
layers
.
fill_constant
(
shape
=
[
1
],
value
=
128
,
dtype
=
'int64'
)
# avg_cost = fluid.layers.mean(cost)
label
=
fluid
.
layers
.
fill_constant
(
# sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.001)
shape
=
[
1
,
150
],
value
=
0.5
,
dtype
=
'float32'
)
# sgd_optimizer.minimize(avg_cost)
emb
=
fluid
.
embedding
(
input
=
data
,
size
=
(
10000000
,
150
),
dtype
=
'float32'
)
out
=
fluid
.
layers
.
l2_normalize
(
x
=
emb
,
axis
=-
1
)
# place = fluid.CPUPlace()
# exe = fluid.Executor(place)
cost
=
fluid
.
layers
.
square_error_cost
(
input
=
out
,
label
=
label
)
# exe.run(fluid.default_startup_program())
avg_cost
=
fluid
.
layers
.
mean
(
cost
)
# compiled_prog = fluid.compiler.CompiledProgram(
sgd_optimizer
=
fluid
.
optimizer
.
SGD
(
learning_rate
=
0.001
)
# fluid.default_main_program())
sgd_optimizer
.
minimize
(
avg_cost
)
# result = exe.run(compiled_prog, fetch_list=[avg_cost])
place
=
fluid
.
CPUPlace
()
# class TestSGDV2(unittest.TestCase):
exe
=
fluid
.
Executor
(
place
)
# def test_sgd_dygraph(self):
exe
.
run
(
fluid
.
default_startup_program
())
# paddle.disable_static()
compiled_prog
=
fluid
.
compiler
.
CompiledProgram
(
# value = np.arange(26).reshape(2, 13).astype("float32")
fluid
.
default_main_program
())
# a = paddle.to_tensor(value)
result
=
exe
.
run
(
compiled_prog
,
fetch_list
=
[
avg_cost
])
# linear = paddle.nn.Linear(13, 5)
# # This can be any optimizer supported by dygraph.
# adam = paddle.optimizer.SGD(learning_rate=0.01,
class
TestSGDV2
(
unittest
.
TestCase
):
# parameters=linear.parameters(),
def
test_sgd_dygraph
(
self
):
# weight_decay=0.01)
paddle
.
disable_static
()
# out = linear(a)
value
=
np
.
arange
(
26
).
reshape
(
2
,
13
).
astype
(
"float32"
)
# out.backward()
a
=
paddle
.
to_tensor
(
value
)
# adam.step()
linear
=
paddle
.
nn
.
Linear
(
13
,
5
)
# adam.clear_gradients()
# This can be any optimizer supported by dygraph.
adam
=
paddle
.
optimizer
.
SGD
(
learning_rate
=
0.01
,
# def test_sgd(self):
parameters
=
linear
.
parameters
(),
# paddle.enable_static()
weight_decay
=
0.01
)
out
=
linear
(
a
)
# def check_sgd_optimizer(optimizer_attr):
out
.
backward
()
# init_program = paddle.static.Program()
adam
.
step
()
# program = paddle.static.Program()
adam
.
clear_gradients
()
# block = program.global_block()
# mul_x = block.create_parameter(
def
test_sgd
(
self
):
# dtype="float32",
paddle
.
enable_static
()
# shape=[5, 10],
# lod_level=0,
def
check_sgd_optimizer
(
optimizer_attr
):
# name="mul.x",
init_program
=
paddle
.
static
.
Program
()
# optimize_attr=optimizer_attr)
program
=
paddle
.
static
.
Program
()
# mul_y = block.create_var(
block
=
program
.
global_block
()
# dtype="float32", shape=[10, 8], lod_level=0, name="mul.y")
mul_x
=
block
.
create_parameter
(
# mul_out = block.create_var(
dtype
=
"float32"
,
# dtype="float32", shape=[5, 8], lod_level=0, name="mul.out")
shape
=
[
5
,
10
],
# mean_out = block.create_var(
lod_level
=
0
,
# dtype="float32", shape=[1], lod_level=0, name="mean.out")
name
=
"mul.x"
,
# block.append_op(
optimize_attr
=
optimizer_attr
)
# type="mul",
mul_y
=
block
.
create_var
(
# inputs={"X": mul_x,
dtype
=
"float32"
,
shape
=
[
10
,
8
],
lod_level
=
0
,
name
=
"mul.y"
)
# "Y": mul_y},
mul_out
=
block
.
create_var
(
# outputs={"Out": mul_out},
dtype
=
"float32"
,
shape
=
[
5
,
8
],
lod_level
=
0
,
name
=
"mul.out"
)
# attrs={"x_num_col_dims": 1})
mean_out
=
block
.
create_var
(
# block.append_op(
dtype
=
"float32"
,
shape
=
[
1
],
lod_level
=
0
,
name
=
"mean.out"
)
# type="mean", inputs={"X": mul_out}, outputs={"Out": mean_out})
block
.
append_op
(
# sgd_optimizer = paddle.optimizer.SGD(learning_rate=0.01)
type
=
"mul"
,
# opts, _ = sgd_optimizer.minimize(mean_out, init_program)
inputs
=
{
"X"
:
mul_x
,
# return opts
"Y"
:
mul_y
},
outputs
=
{
"Out"
:
mul_out
},
# opts = check_sgd_optimizer({'learning_rate': 1.1})
attrs
=
{
"x_num_col_dims"
:
1
})
# self.assertEqual(len(opts), 2)
block
.
append_op
(
# self.assertEqual([op.type for op in opts], ["scale", "sgd"])
type
=
"mean"
,
inputs
=
{
"X"
:
mul_out
},
outputs
=
{
"Out"
:
mean_out
})
sgd_optimizer
=
paddle
.
optimizer
.
SGD
(
learning_rate
=
0.01
)
# opts = check_sgd_optimizer({'learning_rate': 1.0})
opts
,
_
=
sgd_optimizer
.
minimize
(
mean_out
,
init_program
)
# self.assertEqual(len(opts), 1)
return
opts
# self.assertEqual([op.type for op in opts], ["sgd"])
opts
=
check_sgd_optimizer
({
'learning_rate'
:
1.1
})
# def test_raise_error(self):
self
.
assertEqual
(
len
(
opts
),
2
)
# self.assertRaises(ValueError, paddle.optimizer.SGD, learning_rate=None)
self
.
assertEqual
([
op
.
type
for
op
in
opts
],
[
"scale"
,
"sgd"
])
# def test_sgd_group_dygraph(self):
opts
=
check_sgd_optimizer
({
'learning_rate'
:
1.0
})
# paddle.disable_static()
self
.
assertEqual
(
len
(
opts
),
1
)
# value = np.arange(26).reshape(2, 13).astype("float32")
self
.
assertEqual
([
op
.
type
for
op
in
opts
],
[
"sgd"
])
# a = paddle.to_tensor(value)
# linear_1 = paddle.nn.Linear(13, 5)
def
test_raise_error
(
self
):
# linear_2 = paddle.nn.Linear(5, 3)
self
.
assertRaises
(
ValueError
,
paddle
.
optimizer
.
SGD
,
learning_rate
=
None
)
# # This can be any optimizer supported by dygraph.
# adam = paddle.optimizer.SGD(learning_rate=0.01,
def
test_sgd_group_dygraph
(
self
):
# parameters=[{
paddle
.
disable_static
()
# 'params': linear_1.parameters()
value
=
np
.
arange
(
26
).
reshape
(
2
,
13
).
astype
(
"float32"
)
# }, {
a
=
paddle
.
to_tensor
(
value
)
# 'params': linear_2.parameters(),
linear_1
=
paddle
.
nn
.
Linear
(
13
,
5
)
# 'weight_decay': 0.001,
linear_2
=
paddle
.
nn
.
Linear
(
5
,
3
)
# 'learning_rate': 0.1
# This can be any optimizer supported by dygraph.
# }],
adam
=
paddle
.
optimizer
.
SGD
(
learning_rate
=
0.01
,
# weight_decay=0.01)
parameters
=
[{
# out = linear_1(a)
'params'
:
linear_1
.
parameters
()
# out = linear_2(out)
},
{
# out.backward()
'params'
:
linear_2
.
parameters
(),
# adam.step()
'weight_decay'
:
0.001
,
# adam.clear_gradients()
'learning_rate'
:
0.1
}],
# class TestSGDMultiPrecision2_0(unittest.TestCase):
weight_decay
=
0.01
)
# def dygraph_sgd_mp(self, mp):
out
=
linear_1
(
a
)
# paddle.disable_static()
out
=
linear_2
(
out
)
# paddle.seed(10)
out
.
backward
()
# paddle.set_device('gpu')
adam
.
step
()
# input = paddle.randn((2, 2))
adam
.
clear_gradients
()
# model = paddle.nn.Linear(2, 2)
# optimizer = paddle.optimizer.SGD(parameters=model.parameters(),
# multi_precision=mp)
class
TestSGDMultiPrecision2_0
(
unittest
.
TestCase
):
# if mp == True:
def
dygraph_sgd_mp
(
self
,
mp
):
# model = paddle.amp.decorate(models=model, level='O2')
paddle
.
disable_static
()
# scaler = paddle.amp.GradScaler(init_loss_scaling=1024)
paddle
.
seed
(
10
)
paddle
.
set_device
(
'gpu'
)
# for idx in range(5):
input
=
paddle
.
randn
((
2
,
2
))
# if mp == True:
model
=
paddle
.
nn
.
Linear
(
2
,
2
)
# with paddle.amp.auto_cast(level='O2'):
optimizer
=
paddle
.
optimizer
.
SGD
(
parameters
=
model
.
parameters
(),
# output = model(input)
multi_precision
=
mp
)
# loss = paddle.mean(output)
if
mp
==
True
:
# scaled = scaler.scale(loss)
model
=
paddle
.
amp
.
decorate
(
models
=
model
,
level
=
'O2'
)
# scaled.backward()
scaler
=
paddle
.
amp
.
GradScaler
(
init_loss_scaling
=
1024
)
# scaler.minimize(optimizer, scaled)
# optimizer.clear_grad()
for
idx
in
range
(
5
):
# else:
if
mp
==
True
:
# output = model(input)
with
paddle
.
amp
.
auto_cast
(
level
=
'O2'
):
# loss = paddle.mean(output)
output
=
model
(
input
)
# optimizer.step()
loss
=
paddle
.
mean
(
output
)
# optimizer.clear_grad()
scaled
=
scaler
.
scale
(
loss
)
scaled
.
backward
()
# return output, model.parameters()
scaler
.
minimize
(
optimizer
,
scaled
)
optimizer
.
clear_grad
()
# def static_sgd_mp(self, mp):
else
:
# paddle.enable_static()
output
=
model
(
input
)
# paddle.seed(10)
loss
=
paddle
.
mean
(
output
)
# np.random.seed(10)
optimizer
.
step
()
# exe = paddle.static.Executor('gpu')
optimizer
.
clear_grad
()
# train_program = paddle.static.Program()
# startup_program = paddle.static.Program()
return
output
,
model
.
parameters
()
# optimizer = paddle.optimizer.SGD(multi_precision=mp)
def
static_sgd_mp
(
self
,
mp
):
# if mp:
paddle
.
enable_static
()
# optimizer = paddle.static.amp.decorate(
paddle
.
seed
(
10
)
# optimizer,
np
.
random
.
seed
(
10
)
# init_loss_scaling=128.0,
exe
=
paddle
.
static
.
Executor
(
'gpu'
)
# use_dynamic_loss_scaling=True,
train_program
=
paddle
.
static
.
Program
()
# use_pure_fp16=True,
startup_program
=
paddle
.
static
.
Program
()
# use_fp16_guard=False)
optimizer
=
paddle
.
optimizer
.
SGD
(
multi_precision
=
mp
)
# with paddle.static.program_guard(train_program, startup_program):
# if mp:
if
mp
:
# data = paddle.static.data(
optimizer
=
paddle
.
static
.
amp
.
decorate
(
# shape=[2, 2], name='X', dtype='float16')
optimizer
,
# else:
init_loss_scaling
=
128.0
,
# data = paddle.static.data(
use_dynamic_loss_scaling
=
True
,
# shape=[2, 2], name='X', dtype='float32')
use_pure_fp16
=
True
,
# hidden = paddle.static.nn.fc(x=data, size=10)
use_fp16_guard
=
False
)
# loss = paddle.fluid.layers.mean(hidden)
with
paddle
.
static
.
program_guard
(
train_program
,
startup_program
):
# optimizer.minimize(loss)
if
mp
:
# exe.run(startup_program)
data
=
paddle
.
static
.
data
(
shape
=
[
2
,
2
],
name
=
'X'
,
dtype
=
'float16'
)
# if mp:
else
:
# optimizer.amp_init(place='gpu', scope=paddle.static.global_scope())
data
=
paddle
.
static
.
data
(
# x = np.random.random(size=(2, 2)).astype('float16')
shape
=
[
2
,
2
],
name
=
'X'
,
dtype
=
'float32'
)
# else:
hidden
=
paddle
.
static
.
nn
.
fc
(
x
=
data
,
size
=
10
)
# x = np.random.random(size=(2, 2)).astype('float32')
loss
=
paddle
.
fluid
.
layers
.
mean
(
hidden
)
# out = []
optimizer
.
minimize
(
loss
)
# for idx in range(5):
exe
.
run
(
startup_program
)
# loss_data, = exe.run(train_program,
# feed={"X": x},
if
mp
:
# fetch_list=[loss.name])
optimizer
.
amp_init
(
place
=
'gpu'
,
scope
=
paddle
.
static
.
global_scope
())
# out.append(loss_data)
x
=
np
.
random
.
random
(
size
=
(
2
,
2
)).
astype
(
'float16'
)
# return out
else
:
x
=
np
.
random
.
random
(
size
=
(
2
,
2
)).
astype
(
'float32'
)
# def test_main(self):
out
=
[]
# if not paddle.is_compiled_with_cuda():
for
idx
in
range
(
5
):
# return
loss_data
,
=
exe
.
run
(
train_program
,
# "Test dygraph mode"
feed
=
{
"X"
:
x
},
# output1_dy, params1_dy = self.dygraph_sgd_mp(mp=True)
fetch_list
=
[
loss
.
name
])
# output2_dy, params2_dy = self.dygraph_sgd_mp(mp=False)
out
.
append
(
loss_data
)
# self.assertEqual(
return
out
# np.allclose(
# output1_dy.astype('float32').numpy(),
def
test_main
(
self
):
# output2_dy.astype('float32').numpy(),
if
not
paddle
.
is_compiled_with_cuda
():
# atol=1e-01),
return
# True)
"Test dygraph mode"
# for idx in range(len(params1_dy)):
output1_dy
,
params1_dy
=
self
.
dygraph_sgd_mp
(
mp
=
True
)
# self.assertEqual(
output2_dy
,
params2_dy
=
self
.
dygraph_sgd_mp
(
mp
=
False
)
# np.allclose(
self
.
assertEqual
(
# params1_dy[idx].astype('float32').numpy(),
np
.
allclose
(
# params2_dy[idx].astype('float32').numpy(),
output1_dy
.
astype
(
'float32'
).
numpy
(),
# atol=1e-01),
output2_dy
.
astype
(
'float32'
).
numpy
(),
# True)
atol
=
1e-01
),
# "Test static mode"
True
)
# output1_st = self.static_sgd_mp(mp=True)
for
idx
in
range
(
len
(
params1_dy
)):
# output2_st = self.static_sgd_mp(mp=False)
self
.
assertEqual
(
# for idx in range(len(output1_st)):
np
.
allclose
(
# self.assertEqual(
params1_dy
[
idx
].
astype
(
'float32'
).
numpy
(),
# np.allclose(
params2_dy
[
idx
].
astype
(
'float32'
).
numpy
(),
# output1_st[idx].astype('float32'),
atol
=
1e-01
),
# output2_st[idx].astype('float32'),
True
)
# atol=1e-01),
"Test static mode"
# True)
output1_st
=
self
.
static_sgd_mp
(
mp
=
True
)
output2_st
=
self
.
static_sgd_mp
(
mp
=
False
)
for
idx
in
range
(
len
(
output1_st
)):
self
.
assertEqual
(
np
.
allclose
(
output1_st
[
idx
].
astype
(
'float32'
),
output2_st
[
idx
].
astype
(
'float32'
),
atol
=
1e-01
),
True
)
class
TestSGDMultiPrecision1_0
(
unittest
.
TestCase
):
class
TestSGDMultiPrecision1_0
(
unittest
.
TestCase
):
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录