Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
93c58390
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 2 年 前同步成功
通知
2325
Star
20933
Fork
5424
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
93c58390
编写于
7月 04, 2023
作者:
S
ShenLiang
提交者:
GitHub
7月 04, 2023
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[Distributed] Opt nccl connection by lazy initialization (#55005)
上级
51c414b6
变更
13
展开全部
显示空白变更内容
内联
并排
Showing
13 changed file
with
272 addition
and
697 deletion
+272
-697
paddle/fluid/distributed/collective/process_group.h
paddle/fluid/distributed/collective/process_group.h
+37
-65
paddle/fluid/distributed/collective/process_group_bkcl.cc
paddle/fluid/distributed/collective/process_group_bkcl.cc
+0
-1
paddle/fluid/distributed/collective/process_group_custom.cc
paddle/fluid/distributed/collective/process_group_custom.cc
+0
-1
paddle/fluid/distributed/collective/process_group_nccl.cc
paddle/fluid/distributed/collective/process_group_nccl.cc
+125
-522
paddle/fluid/distributed/collective/process_group_nccl.h
paddle/fluid/distributed/collective/process_group_nccl.h
+18
-64
paddle/fluid/distributed/collective/utils.h
paddle/fluid/distributed/collective/utils.h
+24
-1
paddle/fluid/operators/collective/global_gather_op.cu.cc
paddle/fluid/operators/collective/global_gather_op.cu.cc
+3
-2
paddle/fluid/operators/collective/global_scatter_op.cu.cc
paddle/fluid/operators/collective/global_scatter_op.cu.cc
+3
-2
paddle/fluid/pybind/distributed_py.cc
paddle/fluid/pybind/distributed_py.cc
+23
-28
paddle/fluid/pybind/eager.cc
paddle/fluid/pybind/eager.cc
+26
-0
python/paddle/distributed/collective.py
python/paddle/distributed/collective.py
+0
-6
python/paddle/distributed/fleet/base/topology.py
python/paddle/distributed/fleet/base/topology.py
+13
-3
python/paddle/distributed/parallel.py
python/paddle/distributed/parallel.py
+0
-2
未找到文件。
paddle/fluid/distributed/collective/process_group.h
浏览文件 @
93c58390
...
...
@@ -21,6 +21,7 @@
#include <vector>
#include "paddle/fluid/distributed/collective/types.h"
#include "paddle/fluid/distributed/collective/utils.h"
#include "paddle/fluid/eager/api/utils/tensor_utils.h" // NOTE: this header is required somewhere
#include "paddle/phi/core/dense_tensor.h"
#include "paddle/phi/core/device_context.h"
...
...
@@ -34,22 +35,6 @@ namespace distributed {
constexpr
int
kIgnoreId
=
-
1
;
enum
class
CommType
:
std
::
uint8_t
{
BROADCAST
=
0
,
ALLREDUCE
=
1
,
ALLREDUCE_SPARSE
=
2
,
// TODO(shenliang03): to support sparse in allreduce
REDUCE
=
3
,
ALLGATHER
=
4
,
GATHER
=
5
,
SCATTER
=
6
,
REDUCE_SCATTER
=
7
,
ALLTOALL
=
8
,
SEND
=
9
,
RECV
=
10
,
BARRIER
=
11
,
UNKNOWN
=
100
,
};
class
ProcessGroup
{
public:
class
Task
{
...
...
@@ -405,68 +390,57 @@ class ProcessGroup {
// legacy APIs
// TODO(liyurui): This API will be moved later
virtual
std
::
shared_ptr
<
ProcessGroup
::
Task
>
AllReduce
(
std
::
vector
<
phi
::
DenseTensor
>&
/* input tensors */
,
// NOLINT
std
::
vector
<
phi
::
DenseTensor
>&
/* output tensors */
,
// NOLINT
const
AllreduceOptions
&
=
AllreduceOptions
())
{
PADDLE_THROW
(
phi
::
errors
::
InvalidArgument
(
"ProcessGroup%s does not support allreduce"
,
GetBackendName
()));
std
::
vector
<
phi
::
DenseTensor
>&
inputs
,
// NOLINT
std
::
vector
<
phi
::
DenseTensor
>&
outputs
,
// NOLINT
const
AllreduceOptions
&
options
=
AllreduceOptions
())
{
return
AllReduce
(
outputs
.
data
(),
inputs
.
front
(),
options
,
false
);
}
virtual
std
::
shared_ptr
<
ProcessGroup
::
Task
>
AllReduce
(
std
::
vector
<
phi
::
DenseTensor
>&
/* input tensors */
,
// NOLINT
std
::
vector
<
phi
::
DenseTensor
>&
/* output tensors */
,
// NOLINT
const
AllreduceOptions
&
,
bool
)
{
PADDLE_THROW
(
phi
::
errors
::
InvalidArgument
(
"ProcessGroup%s does not support allreduce with sync_op flag"
,
GetBackendName
()));
std
::
vector
<
phi
::
DenseTensor
>&
inputs
,
// NOLINT
std
::
vector
<
phi
::
DenseTensor
>&
outputs
,
// NOLINT
const
AllreduceOptions
&
options
,
bool
sync_op
)
{
return
AllReduce
(
outputs
.
data
(),
inputs
.
front
(),
options
,
sync_op
);
}
// TODO(sunyilun): methods below will be removed later
virtual
std
::
shared_ptr
<
ProcessGroup
::
Task
>
Broadcast
(
std
::
vector
<
phi
::
DenseTensor
>&
/* input tensors */
,
// NOLINT
std
::
vector
<
phi
::
DenseTensor
>&
/* output tensors */
,
// NOLINT
const
BroadcastOptions
&
=
BroadcastOptions
())
{
PADDLE_THROW
(
phi
::
errors
::
InvalidArgument
(
"ProcessGroup%s does not support broadcast"
,
GetBackendName
()));
std
::
vector
<
phi
::
DenseTensor
>&
inputs
,
// NOLINT
std
::
vector
<
phi
::
DenseTensor
>&
outputs
,
// NOLINT
const
BroadcastOptions
&
options
=
BroadcastOptions
())
{
return
Broadcast
(
outputs
.
data
(),
inputs
.
front
(),
options
,
false
);
}
virtual
std
::
shared_ptr
<
ProcessGroup
::
Task
>
Broadcast
(
std
::
vector
<
phi
::
DenseTensor
>&
/* input tensors */
,
// NOLINT
std
::
vector
<
phi
::
DenseTensor
>&
/* output tensors */
,
// NOLINT
const
BroadcastOptions
&
,
bool
)
{
PADDLE_THROW
(
phi
::
errors
::
InvalidArgument
(
"ProcessGroup%s does not support broadcast with sync_op flag"
,
GetBackendName
()));
std
::
vector
<
phi
::
DenseTensor
>&
inputs
,
// NOLINT
std
::
vector
<
phi
::
DenseTensor
>&
outputs
,
// NOLINT
const
BroadcastOptions
&
options
,
bool
sync_op
)
{
return
Broadcast
(
outputs
.
data
(),
inputs
.
front
(),
options
,
sync_op
);
}
virtual
std
::
shared_ptr
<
ProcessGroup
::
Task
>
Send
(
std
::
vector
<
phi
::
DenseTensor
>&
,
int
)
{
// NOLINT
PADDLE_THROW
(
phi
::
errors
::
InvalidArgument
(
"ProcessGroup%s does not support send"
,
GetBackendName
()));
std
::
vector
<
phi
::
DenseTensor
>&
tensors
,
int
dst_rank
)
{
// NOLINT
return
Send
(
tensors
.
front
(),
dst_rank
,
false
);
}
virtual
std
::
shared_ptr
<
ProcessGroup
::
Task
>
Recv
(
std
::
vector
<
phi
::
DenseTensor
>&
,
int
)
{
// NOLINT
PADDLE_THROW
(
phi
::
errors
::
InvalidArgument
(
"ProcessGroup%s does not support recv"
,
GetBackendName
()));
std
::
vector
<
phi
::
DenseTensor
>&
tensors
,
int
src_rank
)
{
// NOLINT
return
Recv
(
&
tensors
.
front
(),
src_rank
,
false
);
}
virtual
std
::
shared_ptr
<
ProcessGroup
::
Task
>
AllGather
(
std
::
vector
<
phi
::
DenseTensor
>&
,
// NOLINT
std
::
vector
<
phi
::
DenseTensor
>&
)
{
// NOLINT
PADDLE_THROW
(
phi
::
errors
::
InvalidArgument
(
"ProcessGroup%s does not support all_gather"
,
GetBackendName
()));
std
::
vector
<
phi
::
DenseTensor
>&
in_tensors
,
// NOLINT
std
::
vector
<
phi
::
DenseTensor
>&
out_tensors
)
{
// NOLINT
return
AllGather
(
out_tensors
.
data
(),
in_tensors
.
front
(),
false
);
}
virtual
std
::
shared_ptr
<
ProcessGroup
::
Task
>
AllGather
(
std
::
vector
<
phi
::
DenseTensor
>&
,
// NOLINT
std
::
vector
<
phi
::
DenseTensor
>&
,
// NOLINT
bool
)
{
PADDLE_THROW
(
phi
::
errors
::
InvalidArgument
(
"ProcessGroup%s does not support all_gather with sync_op flag"
,
GetBackendName
()));
std
::
vector
<
phi
::
DenseTensor
>&
in_tensors
,
// NOLINT
std
::
vector
<
phi
::
DenseTensor
>&
out_tensors
,
// NOLINT
bool
sync_op
)
{
return
AllGather
(
out_tensors
.
data
(),
in_tensors
.
front
(),
sync_op
);
}
virtual
std
::
shared_ptr
<
ProcessGroup
::
Task
>
AllToAll
(
...
...
@@ -477,19 +451,17 @@ class ProcessGroup {
}
virtual
std
::
shared_ptr
<
ProcessGroup
::
Task
>
Reduce
(
std
::
vector
<
phi
::
DenseTensor
>&
,
// NOLINT
std
::
vector
<
phi
::
DenseTensor
>&
,
// NOLINT
std
::
vector
<
phi
::
DenseTensor
>&
ins
,
// NOLINT
std
::
vector
<
phi
::
DenseTensor
>&
outs
,
// NOLINT
const
ReduceOptions
&
opts
)
{
PADDLE_THROW
(
phi
::
errors
::
InvalidArgument
(
"ProcessGroup%s does not support reduce"
,
GetBackendName
()));
return
Reduce
(
outs
.
data
(),
ins
.
front
(),
opts
,
false
);
}
virtual
std
::
shared_ptr
<
ProcessGroup
::
Task
>
Scatter
(
std
::
vector
<
phi
::
DenseTensor
>&
,
// NOLINT
std
::
vector
<
phi
::
DenseTensor
>&
,
// NOLINT
const
ScatterOptions
&
)
{
PADDLE_THROW
(
phi
::
errors
::
InvalidArgument
(
"ProcessGroup%s does not support scatter"
,
GetBackendName
()));
std
::
vector
<
phi
::
DenseTensor
>&
ins
,
// NOLINT
std
::
vector
<
phi
::
DenseTensor
>&
outs
,
// NOLINT
const
ScatterOptions
&
opts
)
{
return
Scatter
(
outs
.
data
(),
ins
.
front
(),
opts
,
false
);
}
protected:
...
...
paddle/fluid/distributed/collective/process_group_bkcl.cc
浏览文件 @
93c58390
...
...
@@ -16,7 +16,6 @@
#include "paddle/fluid/distributed/collective/bkcl_tools.h"
#include "paddle/fluid/distributed/collective/common.h"
#include "paddle/fluid/distributed/collective/utils.h"
#include "paddle/fluid/platform/device/xpu/bkcl_helper.h"
#include "paddle/fluid/platform/device/xpu/xpu_info.h"
#include "paddle/phi/api/lib/utils/allocator.h"
...
...
paddle/fluid/distributed/collective/process_group_custom.cc
浏览文件 @
93c58390
...
...
@@ -16,7 +16,6 @@
#include "paddle/fluid/distributed/collective/common.h"
#include "paddle/fluid/distributed/collective/custom_ccl_tools.h"
#include "paddle/fluid/distributed/collective/utils.h"
#include "paddle/fluid/memory/malloc.h"
#include "paddle/fluid/platform/device_context.h"
#include "paddle/fluid/platform/place.h"
...
...
paddle/fluid/distributed/collective/process_group_nccl.cc
浏览文件 @
93c58390
此差异已折叠。
点击以展开。
paddle/fluid/distributed/collective/process_group_nccl.h
浏览文件 @
93c58390
...
...
@@ -169,42 +169,6 @@ class ProcessGroupNCCL final : public ProcessGroupWithStream {
ncclComm_t
NCCLComm
(
const
Place
&
place
)
const
;
// TODO(liyurui): This API will be moved later
std
::
shared_ptr
<
ProcessGroup
::
Task
>
AllReduce
(
std
::
vector
<
phi
::
DenseTensor
>&
in_tensors
,
std
::
vector
<
phi
::
DenseTensor
>&
out_tensors
,
const
AllreduceOptions
&
=
AllreduceOptions
())
override
;
// TODO(sunyilun): methods below will be removed later
std
::
shared_ptr
<
ProcessGroup
::
Task
>
Broadcast
(
std
::
vector
<
phi
::
DenseTensor
>&
in_tensors
,
std
::
vector
<
phi
::
DenseTensor
>&
out_tensors
,
const
BroadcastOptions
&
=
BroadcastOptions
())
override
;
std
::
shared_ptr
<
ProcessGroup
::
Task
>
Send
(
std
::
vector
<
phi
::
DenseTensor
>&
tensors
,
int
dst_rank
)
override
;
std
::
shared_ptr
<
ProcessGroup
::
Task
>
Recv
(
std
::
vector
<
phi
::
DenseTensor
>&
tensors
,
int
src_rank
)
override
;
std
::
shared_ptr
<
ProcessGroup
::
Task
>
AllGather
(
std
::
vector
<
phi
::
DenseTensor
>&
in_tensors
,
std
::
vector
<
phi
::
DenseTensor
>&
out_tensors
)
override
;
std
::
shared_ptr
<
ProcessGroup
::
Task
>
AllToAll
(
std
::
vector
<
phi
::
DenseTensor
>&
in_tensors
,
std
::
vector
<
phi
::
DenseTensor
>&
out_tensors
)
override
;
std
::
shared_ptr
<
ProcessGroup
::
Task
>
Reduce
(
std
::
vector
<
phi
::
DenseTensor
>&
tensors
,
std
::
vector
<
phi
::
DenseTensor
>&
out_tensors
,
const
ReduceOptions
&
opts
)
override
;
std
::
shared_ptr
<
ProcessGroup
::
Task
>
Scatter
(
std
::
vector
<
phi
::
DenseTensor
>&
in_tensors
,
std
::
vector
<
phi
::
DenseTensor
>&
out_tensors
,
const
ScatterOptions
&
opts
)
override
;
private:
std
::
shared_ptr
<
ProcessGroupNCCL
::
NCCLTask
>
CreateTask
(
const
Place
&
place
,
int
rank
,
...
...
@@ -212,42 +176,32 @@ class ProcessGroupNCCL final : public ProcessGroupWithStream {
bool
sync_op
,
bool
use_calc_stream
);
void
BroadcastUniqueNCCLID
(
ncclUniqueId
*
nccl_id
);
void
BroadcastUniqueNCCLID
(
ncclUniqueId
*
nccl_id
,
bool
is_p2p_op
=
false
,
const
std
::
string
&
p2p_key
=
""
,
int
p2p_rank
=
0
);
void
CreateNCCLEnvCache
(
const
Place
&
place
,
const
std
::
string
&
place_key
);
void
CreateNCCLEnvCache
(
const
Place
&
place
,
const
std
::
string
&
place_key
,
CommType
comm_type
,
int
p2p_rank
=
0
);
void
SyncCalcStream
(
const
Place
&
place
);
void
SyncCalcStream
(
const
Place
&
place
,
const
std
::
string
&
place_key
);
std
::
shared_ptr
<
ProcessGroup
::
Task
>
RunFnInNCCLEnv
(
std
::
shared_ptr
<
ProcessGroup
::
Task
>
Collective
(
std
::
function
<
void
(
ncclComm_t
,
gpuStream_t
)
>
fn
,
const
phi
::
DenseTensor
&
tensor
,
CommType
comm_type
,
bool
sync_op
,
bool
use_calc_stream
);
// TODO(sunyilun): methods below will be removed later
std
::
shared_ptr
<
ProcessGroupNCCL
::
NCCLTask
>
CreateTask
(
std
::
vector
<
Place
>
places
,
int
rank
,
CommType
op_type
,
const
std
::
vector
<
phi
::
DenseTensor
>&
inputs
);
template
<
typename
Fn
>
std
::
shared_ptr
<
ProcessGroup
::
Task
>
Collective
(
std
::
vector
<
phi
::
DenseTensor
>&
inputs
,
// NOLINT
std
::
vector
<
phi
::
DenseTensor
>&
outputs
,
// NOLINT
Fn
fn
,
CommType
op_type
);
template
<
typename
Fn
>
std
::
shared_ptr
<
ProcessGroup
::
Task
>
PointToPoint
(
std
::
vector
<
phi
::
DenseTensor
>&
tensors
,
// NOLINT
Fn
fn
,
int
dst_rank
,
CommType
op_type
);
void
CreateNCCLManagerCache
(
const
std
::
string
&
places_key
,
const
std
::
vector
<
Place
>&
places
);
std
::
shared_ptr
<
ProcessGroup
::
Task
>
Point2Point
(
std
::
function
<
void
(
ncclComm_t
,
gpuStream_t
,
int
)
>
fn
,
int
peer
,
const
phi
::
DenseTensor
&
tensor
,
CommType
comm_type
,
bool
sync_op
,
bool
use_calc_stream
);
private:
std
::
shared_ptr
<
phi
::
distributed
::
Store
>
store_
;
...
...
@@ -260,7 +214,7 @@ class ProcessGroupNCCL final : public ProcessGroupWithStream {
// TODO(sunyilun): attrs below will be removed later
std
::
mutex
mutex_
;
st
d
::
unordered_map
<
std
::
string
,
std
::
vector
<
phi
::
GPUContext
*>>
places_to_ctx_
;
st
atic
uint64_t
s_group_call_counter
;
};
}
// namespace distributed
...
...
paddle/fluid/distributed/collective/utils.h
浏览文件 @
93c58390
...
...
@@ -13,7 +13,6 @@
// limitations under the License.
#pragma once
#include "paddle/phi/core/dense_tensor.h"
namespace
paddle
{
...
...
@@ -28,5 +27,29 @@ inline phi::DenseTensor GetPartialTensor(const phi::DenseTensor& tensor,
return
tensor_flattened
.
Slice
(
offset
,
offset
+
numel
);
}
enum
class
CommType
:
std
::
uint8_t
{
BROADCAST
=
0
,
ALLREDUCE
=
1
,
ALLREDUCE_SPARSE
=
2
,
// TODO(shenliang03): to support sparse in allreduce
REDUCE
=
3
,
ALLGATHER
=
4
,
GATHER
=
5
,
SCATTER
=
6
,
REDUCE_SCATTER
=
7
,
ALLTOALL
=
8
,
SEND
=
9
,
RECV
=
10
,
BARRIER
=
11
,
UNKNOWN
=
100
,
};
inline
bool
IsP2POP
(
CommType
comm_type
,
bool
is_batch_p2p
=
false
)
{
if
(
is_batch_p2p
)
{
return
false
;
}
else
{
return
comm_type
==
CommType
::
SEND
||
comm_type
==
CommType
::
RECV
;
}
}
}
// namespace distributed
}
// namespace paddle
paddle/fluid/operators/collective/global_gather_op.cu.cc
浏览文件 @
93c58390
...
...
@@ -15,6 +15,7 @@ limitations under the License. */
#include "paddle/fluid/operators/collective/global_gather_op.h"
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
#include "paddle/fluid/distributed/collective/process_group_nccl.h"
#include "paddle/fluid/platform/collective_helper.h"
#include "paddle/fluid/platform/device/gpu/nccl_helper.h"
#endif
...
...
@@ -221,7 +222,7 @@ struct GlobalGatherProcessGroupFunctor<phi::GPUContext, T> {
out
->
mutable_data
<
T
>
(
out_dims
,
place
);
for
(
auto
i
=
0
;
i
<
n_expert
;
++
i
)
{
PADDLE_ENFORCE_GPU_SUCCESS
(
platform
::
dynload
::
ncclGroupStart
()
);
distributed
::
ProcessGroupNCCL
::
GroupStart
(
);
for
(
auto
j
=
0
;
j
<
nranks
;
++
j
)
{
int
idx
=
i
+
j
*
n_expert
;
if
(
cpu_global_count_data
[
idx
])
{
...
...
@@ -241,7 +242,7 @@ struct GlobalGatherProcessGroupFunctor<phi::GPUContext, T> {
/*sync_op*/
true
);
}
}
PADDLE_ENFORCE_GPU_SUCCESS
(
platform
::
dynload
::
ncclGroupEnd
()
);
distributed
::
ProcessGroupNCCL
::
GroupEnd
(
);
}
#ifdef PADDLE_WITH_CUDA
...
...
paddle/fluid/operators/collective/global_scatter_op.cu.cc
浏览文件 @
93c58390
...
...
@@ -15,6 +15,7 @@ limitations under the License. */
#include "paddle/fluid/operators/collective/global_scatter_op.h"
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
#include "paddle/fluid/distributed/collective/process_group_nccl.h"
#include "paddle/fluid/platform/collective_helper.h"
#include "paddle/fluid/platform/device/gpu/nccl_helper.h"
#endif
...
...
@@ -219,7 +220,7 @@ struct GlobalScatterProcessGroupFunctor<phi::GPUContext, T> {
out
->
mutable_data
<
T
>
(
out_dims
,
place
);
for
(
auto
i
=
0
;
i
<
n_expert
;
++
i
)
{
PADDLE_ENFORCE_GPU_SUCCESS
(
platform
::
dynload
::
ncclGroupStart
()
);
distributed
::
ProcessGroupNCCL
::
GroupStart
(
);
for
(
auto
j
=
0
;
j
<
nranks
;
++
j
)
{
int
idx
=
i
+
j
*
n_expert
;
if
(
cpu_local_count_data
[
idx
])
{
...
...
@@ -239,7 +240,7 @@ struct GlobalScatterProcessGroupFunctor<phi::GPUContext, T> {
recv_ptr
+=
cpu_global_count_data
[
idx
];
}
}
PADDLE_ENFORCE_GPU_SUCCESS
(
platform
::
dynload
::
ncclGroupEnd
()
);
distributed
::
ProcessGroupNCCL
::
GroupEnd
(
);
}
#ifdef PADDLE_WITH_CUDA
...
...
paddle/fluid/pybind/distributed_py.cc
浏览文件 @
93c58390
...
...
@@ -267,8 +267,8 @@ void BindDistributed(py::module *m) {
in_tensor
.
impl
());
auto
in_dense
=
*
p_in_tensor
;
auto
*
dev_ctx
=
self
.
GetDeviceContext
(
in_tensor
.
place
());
auto
task
=
self
.
AllGather
(
out_dense
,
in_dense
,
sync_op
);
auto
*
dev_ctx
=
self
.
GetDeviceContext
(
in_tensor
.
place
());
SplitTensor
(
*
dev_ctx
,
*
out_dense
,
&
out_tensor_list
);
task
->
UpdateWaitChain
(
*
dev_ctx
);
return
task
;
...
...
@@ -322,8 +322,6 @@ void BindDistributed(py::module *m) {
auto
in_dense
=
*
p_in_tensor
;
// in_tensor_list should not be empty
auto
*
dev_ctx
=
self
.
GetDeviceContext
(
in_tensor_list
.
back
().
place
());
int
world_size
=
self
.
GetSize
();
auto
task
=
self
.
AllToAll
(
out_dense
,
...
...
@@ -331,6 +329,8 @@ void BindDistributed(py::module *m) {
GetDefaultSplitSizes
(
*
out_dense
,
world_size
),
GetDefaultSplitSizes
(
in_dense
,
world_size
),
sync_op
);
auto
*
dev_ctx
=
self
.
GetDeviceContext
(
in_tensor_list
.
back
().
place
());
SplitTensor
(
*
dev_ctx
,
*
out_dense
,
&
out_tensor_list
);
task
->
UpdateWaitChain
(
*
dev_ctx
);
return
task
;
...
...
@@ -544,11 +544,11 @@ void BindDistributed(py::module *m) {
in_tensor
.
impl
());
auto
in_dense
=
*
p_in_tensor
;
auto
*
dev_ctx
=
self
.
GetDeviceContext
(
in_tensor
.
place
(),
use_calc_stream
);
distributed
::
GatherOptions
gather_opts
{
dst
};
auto
task
=
self
.
Gather
(
out_dense
,
in_dense
,
gather_opts
,
sync_op
,
use_calc_stream
);
auto
*
dev_ctx
=
self
.
GetDeviceContext
(
in_tensor
.
place
(),
use_calc_stream
);
SplitTensor
(
*
dev_ctx
,
*
out_dense
,
&
out_tensor_list
);
if
(
!
use_calc_stream
&&
dev_ctx
->
GetPlace
()
!=
platform
::
CPUPlace
())
{
...
...
@@ -584,8 +584,7 @@ void BindDistributed(py::module *m) {
opts
.
reduce_op
=
op
;
auto
dense
=
std
::
dynamic_pointer_cast
<
phi
::
DenseTensor
>
(
tensor
.
impl
());
std
::
vector
<
phi
::
DenseTensor
>
tensors
=
{
*
dense
};
return
self
.
AllReduce
(
tensors
,
tensors
,
opts
);
return
self
.
AllReduce
(
dense
.
get
(),
*
dense
,
opts
,
false
);
},
py
::
arg
(
"tensor"
),
py
::
arg
(
"op"
)
=
distributed
::
ReduceOp
::
SUM
,
...
...
@@ -601,8 +600,7 @@ void BindDistributed(py::module *m) {
opts
.
source_rank
=
source_rank
;
auto
dense
=
std
::
dynamic_pointer_cast
<
phi
::
DenseTensor
>
(
tensor
.
impl
());
std
::
vector
<
phi
::
DenseTensor
>
tensors
=
{
*
dense
};
return
self
.
Broadcast
(
tensors
,
tensors
,
opts
);
return
self
.
Broadcast
(
dense
.
get
(),
*
dense
,
opts
,
false
);
},
py
::
arg
(
"tensor"
),
py
::
arg
(
"source_rank"
),
...
...
@@ -616,8 +614,7 @@ void BindDistributed(py::module *m) {
auto
tensor
=
CastPyArg2Tensor
(
py_tensor
.
ptr
(),
0
);
auto
dense
=
std
::
dynamic_pointer_cast
<
phi
::
DenseTensor
>
(
tensor
.
impl
());
std
::
vector
<
phi
::
DenseTensor
>
tensors
=
{
*
dense
};
return
self
.
Send
(
tensors
,
dst
);
return
self
.
Send
(
*
dense
,
dst
,
false
);
},
py
::
arg
(
"tensor"
),
py
::
arg
(
"dst"
),
...
...
@@ -631,8 +628,7 @@ void BindDistributed(py::module *m) {
auto
tensor
=
CastPyArg2Tensor
(
py_tensor
.
ptr
(),
0
);
auto
dense
=
std
::
dynamic_pointer_cast
<
phi
::
DenseTensor
>
(
tensor
.
impl
());
std
::
vector
<
phi
::
DenseTensor
>
tensors
=
{
*
dense
};
return
self
.
Recv
(
tensors
,
src
);
return
self
.
Recv
(
dense
.
get
(),
src
,
false
);
},
py
::
arg
(
"tensor"
),
py
::
arg
(
"src"
),
...
...
@@ -649,9 +645,7 @@ void BindDistributed(py::module *m) {
in_tensor
.
impl
());
auto
out_dense
=
std
::
dynamic_pointer_cast
<
phi
::
DenseTensor
>
(
out_tensor
.
impl
());
std
::
vector
<
phi
::
DenseTensor
>
in_tensors
=
{
*
in_dense
};
std
::
vector
<
phi
::
DenseTensor
>
out_tensors
=
{
*
out_dense
};
return
self
.
AllGather
(
in_tensors
,
out_tensors
);
return
self
.
AllGather
(
out_dense
.
get
(),
*
in_dense
,
false
);
},
py
::
arg
(
"in"
),
py
::
arg
(
"out"
),
...
...
@@ -697,9 +691,14 @@ void BindDistributed(py::module *m) {
in_tensor
.
impl
());
auto
out_dense
=
std
::
dynamic_pointer_cast
<
phi
::
DenseTensor
>
(
out_tensor
.
impl
());
std
::
vector
<
phi
::
DenseTensor
>
in_tensors
=
{
*
in_dense
};
std
::
vector
<
phi
::
DenseTensor
>
out_tensors
=
{
*
out_dense
};
return
self
.
AllToAll
(
in_tensors
,
out_tensors
);
int
world_size
=
self
.
GetSize
();
return
self
.
AllToAll
(
out_dense
.
get
(),
*
in_dense
,
GetDefaultSplitSizes
(
*
out_dense
,
world_size
),
GetDefaultSplitSizes
(
*
in_dense
,
world_size
),
false
);
},
py
::
arg
(
"in"
),
py
::
arg
(
"out"
),
...
...
@@ -743,8 +742,7 @@ void BindDistributed(py::module *m) {
opts
.
root_rank
=
dst
;
auto
dense
=
std
::
dynamic_pointer_cast
<
phi
::
DenseTensor
>
(
in_tensor
.
impl
());
std
::
vector
<
phi
::
DenseTensor
>
tensors
=
{
*
dense
};
return
self
.
Reduce
(
tensors
,
tensors
,
opts
);
return
self
.
Reduce
(
dense
.
get
(),
*
dense
,
opts
,
false
);
},
py
::
arg
(
"tensor"
),
py
::
arg
(
"dst"
),
...
...
@@ -765,9 +763,7 @@ void BindDistributed(py::module *m) {
in_tensor
.
impl
());
auto
out_dense
=
std
::
dynamic_pointer_cast
<
phi
::
DenseTensor
>
(
out_tensor
.
impl
());
std
::
vector
<
phi
::
DenseTensor
>
in_tensors
=
{
*
in_dense
};
std
::
vector
<
phi
::
DenseTensor
>
out_tensors
=
{
*
out_dense
};
return
self
.
Scatter
(
in_tensors
,
out_tensors
,
opts
);
return
self
.
Scatter
(
out_dense
.
get
(),
*
in_dense
,
opts
,
false
);
},
py
::
arg
(
"in"
),
py
::
arg
(
"out"
),
...
...
@@ -790,12 +786,11 @@ void BindDistributed(py::module *m) {
auto
p_in_tensor
=
std
::
dynamic_pointer_cast
<
phi
::
DenseTensor
>
(
in_tensor
.
impl
());
auto
in_dense
=
*
p_in_tensor
;
auto
*
dev_ctx
=
self
.
GetDeviceContext
(
in_tensor
.
place
(),
true
);
auto
task
=
self
.
AllGather
(
out_dense
,
in_dense
,
/*sync_op*/
true
,
/*use_calc_stream*/
true
);
auto
*
dev_ctx
=
self
.
GetDeviceContext
(
in_tensor
.
place
(),
true
);
SplitTensor
(
*
dev_ctx
,
*
out_dense
,
&
out_tensor_list
);
return
task
;
},
...
...
@@ -902,8 +897,6 @@ void BindDistributed(py::module *m) {
auto
in_dense
=
*
p_in_tensor
;
// in_tensor_list should not be empty
auto
*
dev_ctx
=
self
.
GetDeviceContext
(
in_tensor_list
.
back
().
place
(),
/*use_calc_stream*/
true
);
int
world_size
=
self
.
GetSize
();
auto
task
=
self
.
AllToAll
(
out_dense
,
...
...
@@ -912,6 +905,8 @@ void BindDistributed(py::module *m) {
GetDefaultSplitSizes
(
in_dense
,
world_size
),
/*sync_op*/
true
,
/*use_calc_stream*/
true
);
auto
*
dev_ctx
=
self
.
GetDeviceContext
(
in_tensor_list
.
back
().
place
(),
/*use_calc_stream*/
true
);
SplitTensor
(
*
dev_ctx
,
*
out_dense
,
&
out_tensor_list
);
return
task
;
},
...
...
paddle/fluid/pybind/eager.cc
浏览文件 @
93c58390
...
...
@@ -146,8 +146,25 @@ void InitTensorWithNumpyValue(TensorObject* self,
if
(
platform
::
is_cpu_place
(
place
))
{
SetTensorFromPyArray
<
platform
::
CPUPlace
>
(
impl_ptr
,
array
,
place
,
zero_copy
);
}
else
if
(
platform
::
is_xpu_place
(
place
))
{
#if defined(PADDLE_WITH_XPU)
phi
::
backends
::
xpu
::
SetXPUDeviceId
(
place
.
device
);
VLOG
(
4
)
<<
"CurrentDeviceId: "
<<
phi
::
backends
::
xpu
::
GetXPUCurrentDeviceId
()
<<
" from "
<<
static_cast
<
int
>
(
place
.
device
);
#else
PADDLE_THROW
(
paddle
::
platform
::
errors
::
PreconditionNotMet
(
"PaddlePaddle should compile with XPU if use XPUPlace."
));
#endif
SetTensorFromPyArray
<
platform
::
XPUPlace
>
(
impl_ptr
,
array
,
place
,
zero_copy
);
}
else
if
(
platform
::
is_gpu_place
(
place
))
{
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
phi
::
backends
::
gpu
::
SetDeviceId
(
place
.
device
);
VLOG
(
4
)
<<
"CurrentDeviceId: "
<<
phi
::
backends
::
gpu
::
GetCurrentDeviceId
()
<<
" from "
<<
static_cast
<
int
>
(
place
.
device
);
#else
PADDLE_THROW
(
paddle
::
platform
::
errors
::
PreconditionNotMet
(
"PaddlePaddle should compile with GPU if use CUDAPlace."
));
#endif
SetTensorFromPyArray
<
platform
::
CUDAPlace
>
(
impl_ptr
,
array
,
place
,
zero_copy
);
}
else
if
(
platform
::
is_cuda_pinned_place
(
place
))
{
...
...
@@ -156,6 +173,15 @@ void InitTensorWithNumpyValue(TensorObject* self,
}
else
if
(
platform
::
is_npu_place
(
place
))
{
SetTensorFromPyArray
<
platform
::
NPUPlace
>
(
impl_ptr
,
array
,
place
,
zero_copy
);
}
else
if
(
platform
::
is_custom_place
(
place
))
{
#if defined(PADDLE_WITH_CUSTOM_DEVICE)
phi
::
DeviceManager
::
SetDevice
(
place
);
VLOG
(
4
)
<<
"CurrentDeviceId: "
<<
phi
::
DeviceManager
::
GetDevice
(
place
.
GetDeviceType
())
<<
" from "
<<
static_cast
<
int
>
(
place
.
device
);
#else
PADDLE_THROW
(
paddle
::
platform
::
errors
::
PreconditionNotMet
(
"PaddlePaddle should compile with CUSTOM_DEVICE if use CustomPlace."
));
#endif
SetTensorFromPyArray
<
platform
::
CustomPlace
>
(
impl_ptr
,
array
,
place
,
zero_copy
);
}
else
{
...
...
python/paddle/distributed/collective.py
浏览文件 @
93c58390
...
...
@@ -236,12 +236,6 @@ def new_group(ranks=None, backend=None, timeout=_default_timeout):
# TODO: The method below is a new method for group management, will replace the previous
# three in the future.
_add_new_group
(
group
)
# TODO(shenliang03): This is a temporary solution to solve the problem of
# hang caused by tcp
paddle
.
distributed
.
barrier
(
group
=
group
)
if
paddle
.
distributed
.
get_world_size
()
>
1
:
paddle
.
distributed
.
barrier
()
return
group
if
not
backend
:
...
...
python/paddle/distributed/fleet/base/topology.py
浏览文件 @
93c58390
...
...
@@ -164,15 +164,25 @@ class HybridCommunicateGroup:
)
)
# create comm group for pipe parallel
self
.
_pp_group
,
self
.
_pp_comm_group
=
self
.
_set_comm_group
(
"pipe"
)
# NOTE(shenliang03): In pipeline parallel, we use batch_isend_irecv.
# if batch_isend_irecv is the first collective operation, all ranks of
# the pipeline group must participate in this call. In order to avoid
# this situation, we perform a collective communication in advance and
# create a communicator.
paddle
.
distributed
.
all_reduce
(
paddle
.
zeros
([
1
],
dtype
=
"int32"
),
op
=
paddle
.
distributed
.
ReduceOp
.
SUM
,
group
=
self
.
_pp_comm_group
,
)
# create comm group for data parallel
self
.
_dp_group
,
self
.
_dp_comm_group
=
self
.
_set_comm_group
(
"data"
)
# create comm group for model parallel
self
.
_mp_group
,
self
.
_mp_comm_group
=
self
.
_set_comm_group
(
"model"
)
# create comm group for pipe parallel
self
.
_pp_group
,
self
.
_pp_comm_group
=
self
.
_set_comm_group
(
"pipe"
)
# create comm group for sharding parallel
self
.
_sharding_group
,
self
.
_sharding_comm_group
=
self
.
_set_comm_group
(
"sharding"
...
...
python/paddle/distributed/parallel.py
浏览文件 @
93c58390
...
...
@@ -1115,8 +1115,6 @@ def init_parallel_env():
_set_group_map_backend
(
group
,
backend
)
_add_new_group
(
group
)
parallel_helper
.
_set_parallel_ctx
(
True
)
paddle
.
distributed
.
barrier
(
group
=
group
)
return
group
node_num
=
{
i
.
split
(
":"
)[
0
]
for
i
in
parallel_env
.
trainer_endpoints
}
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录