Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
93af332e
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
93af332e
编写于
11月 17, 2016
作者:
W
wangyang59
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
unified cifar/mnist/uniform gan training in demo
上级
4878f078
变更
6
显示空白变更内容
内联
并排
Showing
6 changed file
with
80 addition
and
76 deletion
+80
-76
demo/gan/.gitignore
demo/gan/.gitignore
+1
-1
demo/gan/data/get_mnist_data.sh
demo/gan/data/get_mnist_data.sh
+3
-3
demo/gan/gan_conf.py
demo/gan/gan_conf.py
+2
-5
demo/gan/gan_conf_image.py
demo/gan/gan_conf_image.py
+1
-7
demo/gan/gan_trainer.py
demo/gan/gan_trainer.py
+9
-8
demo/gan/gan_trainer_image.py
demo/gan/gan_trainer_image.py
+64
-52
未找到文件。
demo/gan/.gitignore
浏览文件 @
93af332e
...
...
@@ -4,5 +4,5 @@ output/
.project
*.log
*.pyc
data/
raw
_data/
data/
mnist
_data/
data/cifar-10-batches-py/
demo/gan/data/get_mnist_data.sh
浏览文件 @
93af332e
...
...
@@ -2,9 +2,9 @@
# This scripts downloads the mnist data and unzips it.
set
-e
DIR
=
"
$(
cd
"
$(
dirname
"
$0
"
)
"
;
pwd
-P
)
"
rm
-rf
"
$DIR
/
raw
_data"
mkdir
"
$DIR
/
raw
_data"
cd
"
$DIR
/
raw
_data"
rm
-rf
"
$DIR
/
mnist
_data"
mkdir
"
$DIR
/
mnist
_data"
cd
"
$DIR
/
mnist
_data"
echo
"Downloading..."
...
...
demo/gan/gan_conf.py
浏览文件 @
93af332e
...
...
@@ -32,7 +32,7 @@ sample_dim = 2
settings
(
batch_size
=
128
,
learning_rate
=
1e-4
,
learning_method
=
AdamOptimizer
()
learning_method
=
AdamOptimizer
(
beta1
=
0.7
)
)
def
discriminator
(
sample
):
...
...
@@ -47,16 +47,15 @@ def discriminator(sample):
bias_attr
=
ParamAttr
(
is_static
=
is_generator_training
,
initial_mean
=
1.0
,
initial_std
=
0
)
hidden
=
fc_layer
(
input
=
sample
,
name
=
"dis_hidden"
,
size
=
hidden_dim
,
bias_attr
=
bias_attr
,
param_attr
=
param_attr
,
act
=
ReluActivation
())
#act=LinearActivation())
hidden2
=
fc_layer
(
input
=
hidden
,
name
=
"dis_hidden2"
,
size
=
hidden_dim
,
bias_attr
=
bias_attr
,
param_attr
=
param_attr
,
#act=ReluActivation())
act
=
LinearActivation
())
hidden_bn
=
batch_norm_layer
(
hidden2
,
...
...
@@ -88,12 +87,10 @@ def generator(noise):
bias_attr
=
bias_attr
,
param_attr
=
param_attr
,
act
=
ReluActivation
())
#act=LinearActivation())
hidden2
=
fc_layer
(
input
=
hidden
,
name
=
"gen_hidden2"
,
size
=
hidden_dim
,
bias_attr
=
bias_attr
,
param_attr
=
param_attr
,
#act=ReluActivation())
act
=
LinearActivation
())
hidden_bn
=
batch_norm_layer
(
hidden2
,
...
...
demo/gan/gan_conf_image.py
浏览文件 @
93af332e
...
...
@@ -113,7 +113,6 @@ def generator(noise):
size
=
s8
*
s8
*
gf_dim
*
4
,
bias_attr
=
bias_attr
,
param_attr
=
param_attr
,
#act=ReluActivation())
act
=
LinearActivation
())
h1_bn
=
batch_norm_layer
(
h1
,
...
...
@@ -235,13 +234,8 @@ if is_discriminator_training:
sample
=
data_layer
(
name
=
"sample"
,
size
=
sample_dim
*
sample_dim
*
c_dim
)
if
is_generator_training
or
is_discriminator_training
:
sample_noise
=
data_layer
(
name
=
"sample_noise"
,
size
=
sample_dim
*
sample_dim
*
c_dim
)
label
=
data_layer
(
name
=
"label"
,
size
=
1
)
prob
=
discriminator
(
addto_layer
([
sample
,
sample_noise
],
act
=
LinearActivation
(),
name
=
"add"
,
bias_attr
=
False
))
prob
=
discriminator
(
sample
)
cost
=
cross_entropy
(
input
=
prob
,
label
=
label
)
classification_error_evaluator
(
input
=
prob
,
label
=
label
,
name
=
mode
+
'_error'
)
outputs
(
cost
)
...
...
demo/gan/gan_trainer.py
浏览文件 @
93af332e
...
...
@@ -71,7 +71,7 @@ def print_parameters(src):
print
"value is %s
\n
"
%
p
.
getBuf
(
api
.
PARAMETER_VALUE
).
copyToNumpyArray
()
def
get_real_samples
(
batch_size
,
sample_dim
):
return
numpy
.
random
.
rand
(
batch_size
,
sample_dim
).
astype
(
'float32'
)
*
10.0
-
10.0
return
numpy
.
random
.
rand
(
batch_size
,
sample_dim
).
astype
(
'float32'
)
# return numpy.random.normal(loc=100.0, scale=100.0, size=(batch_size, sample_dim)).astype('float32')
def
get_fake_samples
(
generator_machine
,
batch_size
,
noise_dim
,
sample_dim
):
...
...
@@ -106,7 +106,7 @@ def prepare_discriminator_data_batch_pos(batch_size, noise_dim, sample_dim):
labels
=
numpy
.
ones
(
batch_size
,
dtype
=
'int32'
)
inputs
=
api
.
Arguments
.
createArguments
(
2
)
inputs
.
setSlotValue
(
0
,
api
.
Matrix
.
createGpuDenseFromNumpy
(
real_samples
))
inputs
.
setSlotIds
(
1
,
api
.
IVector
.
createGpuVectorFromNumy
(
labels
))
inputs
.
setSlotIds
(
1
,
api
.
IVector
.
createGpuVectorFromNum
p
y
(
labels
))
return
inputs
def
prepare_discriminator_data_batch_neg
(
generator_machine
,
batch_size
,
noise_dim
,
sample_dim
):
...
...
@@ -114,7 +114,7 @@ def prepare_discriminator_data_batch_neg(generator_machine, batch_size, noise_di
labels
=
numpy
.
zeros
(
batch_size
,
dtype
=
'int32'
)
inputs
=
api
.
Arguments
.
createArguments
(
2
)
inputs
.
setSlotValue
(
0
,
api
.
Matrix
.
createGpuDenseFromNumpy
(
fake_samples
))
inputs
.
setSlotIds
(
1
,
api
.
IVector
.
createGpuVectorFromNumy
(
labels
))
inputs
.
setSlotIds
(
1
,
api
.
IVector
.
createGpuVectorFromNum
p
y
(
labels
))
return
inputs
def
prepare_generator_data_batch
(
batch_size
,
dim
):
...
...
@@ -122,7 +122,7 @@ def prepare_generator_data_batch(batch_size, dim):
label
=
numpy
.
ones
(
batch_size
,
dtype
=
'int32'
)
inputs
=
api
.
Arguments
.
createArguments
(
2
)
inputs
.
setSlotValue
(
0
,
api
.
Matrix
.
createGpuDenseFromNumpy
(
noise
))
inputs
.
setSlotIds
(
1
,
api
.
IVector
.
createGpuVectorFromNumy
(
label
))
inputs
.
setSlotIds
(
1
,
api
.
IVector
.
createGpuVectorFromNum
p
y
(
label
))
return
inputs
...
...
@@ -140,7 +140,8 @@ def get_layer_size(model_conf, layer_name):
def
main
():
api
.
initPaddle
(
'--use_gpu=1'
,
'--dot_period=100'
,
'--log_period=10000'
)
api
.
initPaddle
(
'--use_gpu=1'
,
'--dot_period=10'
,
'--log_period=100'
,
'--gpu_id=2'
)
gen_conf
=
parse_config
(
"gan_conf.py"
,
"mode=generator_training"
)
dis_conf
=
parse_config
(
"gan_conf.py"
,
"mode=discriminator_training"
)
generator_conf
=
parse_config
(
"gan_conf.py"
,
"mode=generator"
)
...
...
@@ -175,10 +176,10 @@ def main():
curr_strike
=
0
MAX_strike
=
5
for
train_pass
in
xrange
(
10
):
for
train_pass
in
xrange
(
10
0
):
dis_trainer
.
startTrainPass
()
gen_trainer
.
startTrainPass
()
for
i
in
xrange
(
1000
00
):
for
i
in
xrange
(
1000
):
# data_batch_dis = prepare_discriminator_data_batch(
# generator_machine, batch_size, noise_dim, sample_dim)
# dis_loss = get_training_loss(dis_training_machine, data_batch_dis)
...
...
@@ -199,7 +200,7 @@ def main():
if
i
%
1000
==
0
:
print
"d_loss is %s g_loss is %s"
%
(
dis_loss
,
gen_loss
)
if
(
not
(
curr_train
==
"dis"
and
curr_strike
==
MAX_strike
))
and
((
curr_train
==
"gen"
and
curr_strike
==
MAX_strike
)
or
dis_loss
>
0.690
or
dis_loss
>
gen_loss
):
if
(
not
(
curr_train
==
"dis"
and
curr_strike
==
MAX_strike
))
and
((
curr_train
==
"gen"
and
curr_strike
==
MAX_strike
)
or
dis_loss
>
gen_loss
):
if
curr_train
==
"dis"
:
curr_strike
+=
1
else
:
...
...
demo/gan/gan_trainer_image.py
浏览文件 @
93af332e
...
...
@@ -13,16 +13,29 @@
# limitations under the License.
import
argparse
import
itertools
import
random
import
numpy
import
cPickle
import
sys
,
os
,
gc
import
sys
,
os
from
PIL
import
Image
from
paddle.trainer.config_parser
import
parse_config
from
paddle.trainer.config_parser
import
logger
import
py_paddle.swig_paddle
as
api
import
matplotlib.pyplot
as
plt
def
plot2DScatter
(
data
,
outputfile
):
x
=
data
[:,
0
]
y
=
data
[:,
1
]
print
"The mean vector is %s"
%
numpy
.
mean
(
data
,
0
)
print
"The std vector is %s"
%
numpy
.
std
(
data
,
0
)
heatmap
,
xedges
,
yedges
=
numpy
.
histogram2d
(
x
,
y
,
bins
=
50
)
extent
=
[
xedges
[
0
],
xedges
[
-
1
],
yedges
[
0
],
yedges
[
-
1
]]
plt
.
clf
()
plt
.
scatter
(
x
,
y
)
plt
.
savefig
(
outputfile
,
bbox_inches
=
'tight'
)
def
CHECK_EQ
(
a
,
b
):
assert
a
==
b
,
"a=%s, b=%s"
%
(
a
,
b
)
...
...
@@ -60,7 +73,6 @@ def load_mnist_data(imageFile):
# Define number of samples for train/test
if
"train"
in
imageFile
:
#n = 60000
n
=
60000
else
:
n
=
10000
...
...
@@ -89,6 +101,11 @@ def load_cifar_data(cifar_path):
data
=
data
/
255.0
*
2.0
-
1.0
return
data
# synthesize 2-D uniform data
def
load_uniform_data
():
data
=
numpy
.
random
.
rand
(
1000000
,
2
).
astype
(
'float32'
)
return
data
def
merge
(
images
,
size
):
if
images
.
shape
[
1
]
==
28
*
28
:
h
,
w
,
c
=
28
,
28
,
1
...
...
@@ -98,7 +115,6 @@ def merge(images, size):
for
idx
in
xrange
(
size
[
0
]
*
size
[
1
]):
i
=
idx
%
size
[
1
]
j
=
idx
//
size
[
1
]
#img[j*h:j*h+h, i*w:i*w+w, :] = (images[idx, :].reshape((h, w, c), order="F") + 1.0) / 2.0 * 255.0
img
[
j
*
h
:
j
*
h
+
h
,
i
*
w
:
i
*
w
+
w
,
:]
=
\
((
images
[
idx
,
:].
reshape
((
h
,
w
,
c
),
order
=
"F"
).
transpose
(
1
,
0
,
2
)
+
1.0
)
/
2.0
*
255.0
)
return
img
.
astype
(
'uint8'
)
...
...
@@ -118,13 +134,9 @@ def get_real_samples(batch_size, data_np):
def
get_noise
(
batch_size
,
noise_dim
):
return
numpy
.
random
.
normal
(
size
=
(
batch_size
,
noise_dim
)).
astype
(
'float32'
)
def
get_sample_noise
(
batch_size
,
sample_dim
):
return
numpy
.
random
.
normal
(
size
=
(
batch_size
,
sample_dim
),
scale
=
0.01
).
astype
(
'float32'
)
def
get_fake_samples
(
generator_machine
,
batch_size
,
noise
):
gen_inputs
=
api
.
Arguments
.
createArguments
(
1
)
gen_inputs
.
setSlotValue
(
0
,
api
.
Matrix
.
create
Gpu
DenseFromNumpy
(
noise
))
gen_inputs
.
setSlotValue
(
0
,
api
.
Matrix
.
createDenseFromNumpy
(
noise
))
gen_outputs
=
api
.
Arguments
.
createArguments
(
0
)
generator_machine
.
forward
(
gen_inputs
,
gen_outputs
,
api
.
PASS_TEST
)
fake_samples
=
gen_outputs
.
getSlotValue
(
0
).
copyToNumpyMat
()
...
...
@@ -136,33 +148,27 @@ def get_training_loss(training_machine, inputs):
loss
=
outputs
.
getSlotValue
(
0
).
copyToNumpyMat
()
return
numpy
.
mean
(
loss
)
def
prepare_discriminator_data_batch_pos
(
batch_size
,
data_np
,
sample_noise
):
def
prepare_discriminator_data_batch_pos
(
batch_size
,
data_np
):
real_samples
=
get_real_samples
(
batch_size
,
data_np
)
labels
=
numpy
.
ones
(
batch_size
,
dtype
=
'int32'
)
inputs
=
api
.
Arguments
.
createArguments
(
3
)
inputs
.
setSlotValue
(
0
,
api
.
Matrix
.
createGpuDenseFromNumpy
(
real_samples
))
inputs
.
setSlotValue
(
1
,
api
.
Matrix
.
createGpuDenseFromNumpy
(
sample_noise
))
inputs
.
setSlotIds
(
2
,
api
.
IVector
.
createGpuVectorFromNumpy
(
labels
))
inputs
=
api
.
Arguments
.
createArguments
(
2
)
inputs
.
setSlotValue
(
0
,
api
.
Matrix
.
createDenseFromNumpy
(
real_samples
))
inputs
.
setSlotIds
(
1
,
api
.
IVector
.
createVectorFromNumpy
(
labels
))
return
inputs
def
prepare_discriminator_data_batch_neg
(
generator_machine
,
batch_size
,
noise
,
sample_noise
):
def
prepare_discriminator_data_batch_neg
(
generator_machine
,
batch_size
,
noise
):
fake_samples
=
get_fake_samples
(
generator_machine
,
batch_size
,
noise
)
#print fake_samples.shape
labels
=
numpy
.
zeros
(
batch_size
,
dtype
=
'int32'
)
inputs
=
api
.
Arguments
.
createArguments
(
3
)
inputs
.
setSlotValue
(
0
,
api
.
Matrix
.
createGpuDenseFromNumpy
(
fake_samples
))
inputs
.
setSlotValue
(
1
,
api
.
Matrix
.
createGpuDenseFromNumpy
(
sample_noise
))
inputs
.
setSlotIds
(
2
,
api
.
IVector
.
createGpuVectorFromNumpy
(
labels
))
inputs
=
api
.
Arguments
.
createArguments
(
2
)
inputs
.
setSlotValue
(
0
,
api
.
Matrix
.
createDenseFromNumpy
(
fake_samples
))
inputs
.
setSlotIds
(
1
,
api
.
IVector
.
createVectorFromNumpy
(
labels
))
return
inputs
def
prepare_generator_data_batch
(
batch_size
,
noise
,
sample_noise
):
def
prepare_generator_data_batch
(
batch_size
,
noise
):
label
=
numpy
.
ones
(
batch_size
,
dtype
=
'int32'
)
#label = numpy.zeros(batch_size, dtype='int32')
inputs
=
api
.
Arguments
.
createArguments
(
3
)
inputs
.
setSlotValue
(
0
,
api
.
Matrix
.
createGpuDenseFromNumpy
(
noise
))
inputs
.
setSlotValue
(
1
,
api
.
Matrix
.
createGpuDenseFromNumpy
(
sample_noise
))
inputs
.
setSlotIds
(
2
,
api
.
IVector
.
createGpuVectorFromNumpy
(
label
))
inputs
=
api
.
Arguments
.
createArguments
(
2
)
inputs
.
setSlotValue
(
0
,
api
.
Matrix
.
createDenseFromNumpy
(
noise
))
inputs
.
setSlotIds
(
1
,
api
.
IVector
.
createVectorFromNumpy
(
label
))
return
inputs
...
...
@@ -181,7 +187,7 @@ def get_layer_size(model_conf, layer_name):
def
main
():
parser
=
argparse
.
ArgumentParser
()
parser
.
add_argument
(
"-d"
,
"--dataSource"
,
help
=
"mnist or cifar"
)
parser
.
add_argument
(
"-d"
,
"--dataSource"
,
help
=
"mnist or cifar
or uniform
"
)
parser
.
add_argument
(
"--useGpu"
,
default
=
"1"
,
help
=
"1 means use gpu for training"
)
parser
.
add_argument
(
"--gpuId"
,
default
=
"0"
,
...
...
@@ -189,22 +195,31 @@ def main():
args
=
parser
.
parse_args
()
dataSource
=
args
.
dataSource
useGpu
=
args
.
useGpu
assert
dataSource
in
[
"mnist"
,
"cifar"
]
assert
dataSource
in
[
"mnist"
,
"cifar"
,
"uniform"
]
assert
useGpu
in
[
"0"
,
"1"
]
api
.
initPaddle
(
'--use_gpu='
+
useGpu
,
'--dot_period=10'
,
'--log_period=100'
,
'--gpu_id='
+
args
.
gpuId
)
gen_conf
=
parse_config
(
"gan_conf_image.py"
,
"mode=generator_training,data="
+
dataSource
)
dis_conf
=
parse_config
(
"gan_conf_image.py"
,
"mode=discriminator_training,data="
+
dataSource
)
generator_conf
=
parse_config
(
"gan_conf_image.py"
,
"mode=generator,data="
+
dataSource
)
if
dataSource
==
"uniform"
:
conf
=
"gan_conf.py"
num_iter
=
10000
else
:
conf
=
"gan_conf_image.py"
num_iter
=
1000
gen_conf
=
parse_config
(
conf
,
"mode=generator_training,data="
+
dataSource
)
dis_conf
=
parse_config
(
conf
,
"mode=discriminator_training,data="
+
dataSource
)
generator_conf
=
parse_config
(
conf
,
"mode=generator,data="
+
dataSource
)
batch_size
=
dis_conf
.
opt_config
.
batch_size
noise_dim
=
get_layer_size
(
gen_conf
.
model_config
,
"noise"
)
sample_dim
=
get_layer_size
(
dis_conf
.
model_config
,
"sample"
)
if
dataSource
==
"mnist"
:
data_np
=
load_mnist_data
(
"./data/
raw
_data/train-images-idx3-ubyte"
)
el
se
:
data_np
=
load_mnist_data
(
"./data/
mnist
_data/train-images-idx3-ubyte"
)
el
if
dataSource
==
"cifar"
:
data_np
=
load_cifar_data
(
"./data/cifar-10-batches-py/"
)
else
:
data_np
=
load_uniform_data
()
if
not
os
.
path
.
exists
(
"./%s_samples/"
%
dataSource
):
os
.
makedirs
(
"./%s_samples/"
%
dataSource
)
...
...
@@ -234,39 +249,37 @@ def main():
copy_shared_parameters
(
gen_training_machine
,
dis_training_machine
)
copy_shared_parameters
(
gen_training_machine
,
generator_machine
)
# constrain that either discriminator or generator can not be trained
# consecutively more than MAX_strike times
curr_train
=
"dis"
curr_strike
=
0
MAX_strike
=
10
MAX_strike
=
5
for
train_pass
in
xrange
(
100
):
dis_trainer
.
startTrainPass
()
gen_trainer
.
startTrainPass
()
for
i
in
xrange
(
1000
):
# data_batch_dis = prepare_discriminator_data_batch(
# generator_machine, batch_size, noise_dim, sample_dim)
# dis_loss = get_training_loss(dis_training_machine, data_batch_dis)
for
i
in
xrange
(
num_iter
):
noise
=
get_noise
(
batch_size
,
noise_dim
)
sample_noise
=
get_sample_noise
(
batch_size
,
sample_dim
)
data_batch_dis_pos
=
prepare_discriminator_data_batch_pos
(
batch_size
,
data_np
,
sample_noise
)
batch_size
,
data_np
)
dis_loss_pos
=
get_training_loss
(
dis_training_machine
,
data_batch_dis_pos
)
sample_noise
=
get_sample_noise
(
batch_size
,
sample_dim
)
data_batch_dis_neg
=
prepare_discriminator_data_batch_neg
(
generator_machine
,
batch_size
,
noise
,
sample_noise
)
generator_machine
,
batch_size
,
noise
)
dis_loss_neg
=
get_training_loss
(
dis_training_machine
,
data_batch_dis_neg
)
dis_loss
=
(
dis_loss_pos
+
dis_loss_neg
)
/
2.0
data_batch_gen
=
prepare_generator_data_batch
(
batch_size
,
noise
,
sample_noise
)
batch_size
,
noise
)
gen_loss
=
get_training_loss
(
gen_training_machine
,
data_batch_gen
)
if
i
%
100
==
0
:
print
"d_pos_loss is %s d_neg_loss is %s"
%
(
dis_loss_pos
,
dis_loss_neg
)
print
"d_loss is %s g_loss is %s"
%
(
dis_loss
,
gen_loss
)
if
(
not
(
curr_train
==
"dis"
and
curr_strike
==
MAX_strike
))
and
((
curr_train
==
"gen"
and
curr_strike
==
MAX_strike
)
or
dis_loss_neg
>
gen_loss
):
if
(
not
(
curr_train
==
"dis"
and
curr_strike
==
MAX_strike
))
and
\
((
curr_train
==
"gen"
and
curr_strike
==
MAX_strike
)
or
dis_loss
>
gen_loss
):
if
curr_train
==
"dis"
:
curr_strike
+=
1
else
:
...
...
@@ -274,8 +287,6 @@ def main():
curr_strike
=
1
dis_trainer
.
trainOneDataBatch
(
batch_size
,
data_batch_dis_neg
)
dis_trainer
.
trainOneDataBatch
(
batch_size
,
data_batch_dis_pos
)
# dis_loss = numpy.mean(dis_trainer.getForwardOutput()[0]["value"])
# print "getForwardOutput loss is %s" % dis_loss
copy_shared_parameters
(
dis_training_machine
,
gen_training_machine
)
else
:
...
...
@@ -290,9 +301,10 @@ def main():
dis_trainer
.
finishTrainPass
()
gen_trainer
.
finishTrainPass
()
fake_samples
=
get_fake_samples
(
generator_machine
,
batch_size
,
noise
)
if
dataSource
==
"uniform"
:
plot2DScatter
(
fake_samples
,
"./%s_samples/train_pass%s.png"
%
(
dataSource
,
train_pass
))
else
:
saveImages
(
fake_samples
,
"./%s_samples/train_pass%s.png"
%
(
dataSource
,
train_pass
))
dis_trainer
.
finishTrain
()
gen_trainer
.
finishTrain
()
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录