Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
9358b4bc
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
9358b4bc
编写于
9月 08, 2023
作者:
C
chen2016013
提交者:
GitHub
9月 08, 2023
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[IR] Refactor code in pd_op_to_kernel_pass.cc and reset vlog level (#57054)
* fix merge bug * fix codestyle
上级
14f00dc5
变更
2
显示空白变更内容
内联
并排
Showing
2 changed file
with
175 addition
and
180 deletion
+175
-180
paddle/fluid/ir/phi_kernel_adaptor/phi_kernel_util.cc
paddle/fluid/ir/phi_kernel_adaptor/phi_kernel_util.cc
+2
-22
paddle/fluid/ir/transforms/pd_op_to_kernel_pass.cc
paddle/fluid/ir/transforms/pd_op_to_kernel_pass.cc
+173
-158
未找到文件。
paddle/fluid/ir/phi_kernel_adaptor/phi_kernel_util.cc
浏览文件 @
9358b4bc
...
@@ -253,7 +253,8 @@ void HandleForSpecialOp(
...
@@ -253,7 +253,8 @@ void HandleForSpecialOp(
variable_list
);
variable_list
);
}
}
if
(
op_name
==
"pd.feed"
)
{
if
(
op_name
==
"pd.feed"
||
op_name
==
"pd.data"
)
{
VLOG
(
6
)
<<
"Handle for"
<<
op_name
;
auto
value
=
op
->
result
(
0
);
auto
value
=
op
->
result
(
0
);
VLOG
(
6
)
<<
"link feed output to feed in variable"
<<
inner_scope
;
VLOG
(
6
)
<<
"link feed output to feed in variable"
<<
inner_scope
;
...
@@ -273,27 +274,6 @@ void HandleForSpecialOp(
...
@@ -273,27 +274,6 @@ void HandleForSpecialOp(
variable_list
);
variable_list
);
}
}
if
(
op_name
==
"pd.data"
)
{
VLOG
(
6
)
<<
"Handle for pd.data"
;
auto
var_name
=
op
->
attributes
().
at
(
"name"
).
dyn_cast
<
ir
::
StrAttribute
>
().
AsString
();
auto
value
=
op
->
result
(
0
);
paddle
::
framework
::
Variable
*
var
=
inner_scope
->
FindVar
(
var_name
);
PADDLE_ENFORCE
(
var
,
paddle
::
platform
::
errors
::
InvalidArgument
(
"The variable %s shoud exist"
,
var_name
));
AddNewData
(
value
,
var_name
,
var
,
value_2_var_name
,
variable_2_var_name
,
var_name_2_id
,
variable_list
);
}
if
(
op_name
==
"builtin.combine"
)
{
if
(
op_name
==
"builtin.combine"
)
{
auto
out_value
=
op
->
result
(
0
);
auto
out_value
=
op
->
result
(
0
);
...
...
paddle/fluid/ir/transforms/pd_op_to_kernel_pass.cc
浏览文件 @
9358b4bc
...
@@ -62,6 +62,166 @@ const std::unordered_set<std::string> UnchangeOutputOps = {
...
@@ -62,6 +62,166 @@ const std::unordered_set<std::string> UnchangeOutputOps = {
"builtin.get_parameter"
,
"builtin.get_parameter"
,
"pd.shadow_output"
};
"pd.shadow_output"
};
const
std
::
unordered_set
<
std
::
string
>
SpecialOpList
=
{
"builtin.combine"
,
"builtin.slice"
,
"builtin.split"
};
ir
::
OpResult
GetNewInput
(
const
ir
::
Value
cur_in
,
const
std
::
unordered_map
<
ir
::
Value
,
ir
::
OpResult
>&
map_value_pair
,
const
int
index
,
const
std
::
string
op_name
)
{
PADDLE_ENFORCE_EQ
(
map_value_pair
.
count
(
cur_in
),
true
,
phi
::
errors
::
PreconditionNotMet
(
"[%d]'s input of [%s] op MUST be in map pair"
,
index
,
op_name
));
auto
new_in
=
map_value_pair
.
at
(
cur_in
);
return
new_in
;
}
void
DealWithSpecialBuiltinOps
(
ir
::
Operation
*
op_item
,
ir
::
Program
*
program
,
std
::
unordered_map
<
ir
::
Operation
*
,
ir
::
Operation
*>*
map_op_pair
,
std
::
unordered_map
<
ir
::
Value
,
ir
::
OpResult
>*
map_value_pair
,
ir
::
IrContext
*
ctx
)
{
if
(
op_item
->
name
()
==
"builtin.combine"
)
{
std
::
vector
<
phi
::
Place
>
out_places
;
// Copy op inputs
std
::
vector
<
ir
::
OpResult
>
vec_inputs
;
std
::
vector
<
ir
::
Type
>
vec_inner_types
;
if
(
op_item
->
num_operands
()
>
0
)
{
for
(
size_t
i
=
0
;
i
<
op_item
->
num_operands
();
++
i
)
{
auto
cur_in
=
op_item
->
operand_source
(
i
);
if
(
!
cur_in
)
{
vec_inputs
.
emplace_back
();
continue
;
}
auto
new_in
=
GetNewInput
(
cur_in
,
*
map_value_pair
,
i
,
op_item
->
name
());
vec_inputs
.
push_back
(
new_in
);
vec_inner_types
.
push_back
(
new_in
.
type
());
if
(
new_in
.
type
().
isa
<
paddle
::
dialect
::
AllocatedDenseTensorType
>
())
{
out_places
.
push_back
(
new_in
.
type
()
.
dyn_cast
<
paddle
::
dialect
::
AllocatedDenseTensorType
>
()
.
place
());
}
else
if
(
new_in
.
type
()
.
isa
<
paddle
::
dialect
::
AllocatedSelectedRowsType
>
())
{
out_places
.
push_back
(
new_in
.
type
()
.
dyn_cast
<
paddle
::
dialect
::
AllocatedSelectedRowsType
>
()
.
place
());
}
else
{
PADDLE_THROW
(
phi
::
errors
::
Unimplemented
(
"only support dense tensor type for now"
));
}
}
}
// Copy op output type
std
::
vector
<
ir
::
Type
>
op_output_types
;
ir
::
Type
t1
=
ir
::
VectorType
::
get
(
ctx
,
vec_inner_types
);
op_output_types
.
push_back
(
t1
);
// Get op info
ir
::
OpInfo
op_info
=
ctx
->
GetRegisteredOpInfo
(
op_item
->
name
());
// Generate new op
ir
::
Operation
*
op
=
ir
::
Operation
::
Create
(
vec_inputs
,
op_item
->
attributes
(),
op_output_types
,
op_info
);
program
->
block
()
->
push_back
(
op
);
(
*
map_op_pair
)[
op_item
]
=
op
;
// only deal with single output
if
(
op_item
->
num_results
()
>
0
)
{
for
(
size_t
i
=
0
;
i
<
op_item
->
num_results
();
++
i
)
{
(
*
map_value_pair
)[
op_item
->
result
(
i
)]
=
op
->
result
(
i
);
}
}
}
if
(
op_item
->
name
()
==
"builtin.slice"
)
{
std
::
vector
<
ir
::
OpResult
>
vec_inputs
;
std
::
vector
<
ir
::
Type
>
op_output_types
;
if
(
op_item
->
num_operands
()
>
0
)
{
for
(
size_t
i
=
0
;
i
<
op_item
->
num_operands
();
++
i
)
{
auto
cur_in
=
op_item
->
operand_source
(
i
);
if
(
!
cur_in
)
{
vec_inputs
.
emplace_back
();
continue
;
}
auto
new_in
=
GetNewInput
(
cur_in
,
*
map_value_pair
,
i
,
op_item
->
name
());
vec_inputs
.
push_back
(
new_in
);
if
(
new_in
.
type
().
isa
<
ir
::
VectorType
>
())
{
auto
vec_types
=
new_in
.
type
().
dyn_cast
<
ir
::
VectorType
>
().
data
();
auto
index
=
op_item
->
attributes
()
.
at
(
"index"
)
.
dyn_cast
<
ir
::
Int32Attribute
>
()
.
data
();
op_output_types
.
push_back
(
vec_types
[
index
]);
}
else
{
PADDLE_THROW
(
phi
::
errors
::
Unimplemented
(
"only support vector type for now"
));
}
}
}
// Get op info
ir
::
OpInfo
op_info
=
ctx
->
GetRegisteredOpInfo
(
op_item
->
name
());
// Generate new op
ir
::
Operation
*
op
=
ir
::
Operation
::
Create
(
vec_inputs
,
op_item
->
attributes
(),
op_output_types
,
op_info
);
program
->
block
()
->
push_back
(
op
);
(
*
map_op_pair
)[
op_item
]
=
op
;
// only deal with single output
if
(
op_item
->
num_results
()
>
0
)
{
for
(
size_t
i
=
0
;
i
<
op_item
->
num_results
();
++
i
)
{
(
*
map_value_pair
)[
op_item
->
result
(
i
)]
=
op
->
result
(
i
);
}
}
}
if
(
op_item
->
name
()
==
"builtin.split"
)
{
std
::
vector
<
phi
::
Place
>
out_places
(
op_item
->
num_results
());
// Copy op inputs
std
::
vector
<
ir
::
OpResult
>
vec_inputs
;
std
::
vector
<
ir
::
Type
>
op_output_types
;
if
(
op_item
->
num_operands
()
>
0
)
{
for
(
size_t
i
=
0
;
i
<
op_item
->
num_operands
();
++
i
)
{
auto
cur_in
=
op_item
->
operand_source
(
i
);
if
(
!
cur_in
)
{
vec_inputs
.
emplace_back
();
continue
;
}
auto
new_in
=
GetNewInput
(
cur_in
,
*
map_value_pair
,
i
,
op_item
->
name
());
vec_inputs
.
push_back
(
new_in
);
if
(
new_in
.
type
().
isa
<
ir
::
VectorType
>
())
{
auto
vec_types
=
new_in
.
type
().
dyn_cast
<
ir
::
VectorType
>
().
data
();
for
(
uint64_t
idx
=
0
;
idx
<
vec_types
.
size
();
idx
++
)
{
op_output_types
.
push_back
(
vec_types
[
idx
]);
}
}
else
{
PADDLE_THROW
(
phi
::
errors
::
Unimplemented
(
"only support vector type for now"
));
}
}
}
// Get op info
ir
::
OpInfo
op_info
=
ctx
->
GetRegisteredOpInfo
(
op_item
->
name
());
// Generate new op
ir
::
Operation
*
op
=
ir
::
Operation
::
Create
(
vec_inputs
,
op_item
->
attributes
(),
op_output_types
,
op_info
);
program
->
block
()
->
push_back
(
op
);
(
*
map_op_pair
)[
op_item
]
=
op
;
// only deal with single output
if
(
op_item
->
num_results
()
>
0
)
{
for
(
size_t
i
=
0
;
i
<
op_item
->
num_results
();
++
i
)
{
(
*
map_value_pair
)[
op_item
->
result
(
i
)]
=
op
->
result
(
i
);
}
}
}
VLOG
(
6
)
<<
"Deep copy a new builtin op: "
<<
op_item
->
name
();
}
bool
NeedFallBackCpu
(
const
ir
::
Operation
*
op
,
bool
NeedFallBackCpu
(
const
ir
::
Operation
*
op
,
const
std
::
string
&
kernel_fn_name
,
const
std
::
string
&
kernel_fn_name
,
const
phi
::
KernelKey
&
kernel_key
)
{
const
phi
::
KernelKey
&
kernel_key
)
{
...
@@ -620,6 +780,11 @@ phi::KernelKey GetKernelKey(
...
@@ -620,6 +780,11 @@ phi::KernelKey GetKernelKey(
std
::
unique_ptr
<
ir
::
Program
>
PdOpLowerToKernelPass
(
ir
::
Program
*
prog
,
std
::
unique_ptr
<
ir
::
Program
>
PdOpLowerToKernelPass
(
ir
::
Program
*
prog
,
phi
::
Place
place
)
{
phi
::
Place
place
)
{
if
(
VLOG_IS_ON
(
2
))
{
std
::
stringstream
ss
;
prog
->
Print
(
ss
);
VLOG
(
2
)
<<
"Program after lowering to kernel pass : "
<<
ss
.
str
();
}
auto
program
=
std
::
make_unique
<
ir
::
Program
>
(
ir
::
IrContext
::
Instance
());
auto
program
=
std
::
make_unique
<
ir
::
Program
>
(
ir
::
IrContext
::
Instance
());
auto
block
=
prog
->
block
();
auto
block
=
prog
->
block
();
...
@@ -647,163 +812,9 @@ std::unique_ptr<ir::Program> PdOpLowerToKernelPass(ir::Program* prog,
...
@@ -647,163 +812,9 @@ std::unique_ptr<ir::Program> PdOpLowerToKernelPass(ir::Program* prog,
continue
;
continue
;
}
}
if
(
op_item
->
name
()
==
"builtin.combine"
)
{
if
(
SpecialOpList
.
count
(
op_item
->
name
()))
{
std
::
vector
<
phi
::
Place
>
out_places
;
DealWithSpecialBuiltinOps
(
// Copy op inputs
op_item
,
program
.
get
(),
&
map_op_pair
,
&
map_value_pair
,
ctx
);
std
::
vector
<
ir
::
OpResult
>
vec_inputs
;
std
::
vector
<
ir
::
Type
>
vec_inner_types
;
if
(
op_item
->
num_operands
()
>
0
)
{
for
(
size_t
i
=
0
;
i
<
op_item
->
num_operands
();
++
i
)
{
auto
cur_in
=
op_item
->
operand_source
(
i
);
if
(
!
cur_in
)
{
vec_inputs
.
emplace_back
();
continue
;
}
PADDLE_ENFORCE_EQ
(
map_value_pair
.
count
(
cur_in
),
true
,
phi
::
errors
::
PreconditionNotMet
(
"[%d]'s input of [%s] op MUST in map pair"
,
i
,
op_item
->
name
()));
auto
new_in
=
map_value_pair
.
at
(
cur_in
);
vec_inputs
.
push_back
(
new_in
);
vec_inner_types
.
push_back
(
new_in
.
type
());
if
(
new_in
.
type
().
isa
<
paddle
::
dialect
::
AllocatedDenseTensorType
>
())
{
out_places
.
push_back
(
new_in
.
type
()
.
dyn_cast
<
paddle
::
dialect
::
AllocatedDenseTensorType
>
()
.
place
());
}
else
if
(
new_in
.
type
()
.
isa
<
paddle
::
dialect
::
AllocatedSelectedRowsType
>
())
{
out_places
.
push_back
(
new_in
.
type
()
.
dyn_cast
<
paddle
::
dialect
::
AllocatedSelectedRowsType
>
()
.
place
());
}
else
{
PADDLE_THROW
(
phi
::
errors
::
Unimplemented
(
"only support dense tensor type for now"
));
}
}
}
// Copy op output type
std
::
vector
<
ir
::
Type
>
op_output_types
;
ir
::
Type
t1
=
ir
::
VectorType
::
get
(
ctx
,
vec_inner_types
);
op_output_types
.
push_back
(
t1
);
// Get op info
ir
::
OpInfo
op_info
=
ctx
->
GetRegisteredOpInfo
(
op_item
->
name
());
// Generate new op
ir
::
Operation
*
op
=
ir
::
Operation
::
Create
(
vec_inputs
,
op_item
->
attributes
(),
op_output_types
,
op_info
);
program
->
block
()
->
push_back
(
op
);
map_op_pair
[
op_item
]
=
op
;
// only deal with single output
if
(
op_item
->
num_results
()
>
0
)
{
for
(
size_t
i
=
0
;
i
<
op_item
->
num_results
();
++
i
)
{
map_value_pair
[
op_item
->
result
(
i
)]
=
op
->
result
(
i
);
}
}
VLOG
(
6
)
<<
"Deep copy a new builtin op: "
<<
op_item
->
name
();
continue
;
}
if
(
op_item
->
name
()
==
"builtin.slice"
)
{
std
::
vector
<
ir
::
OpResult
>
vec_inputs
;
std
::
vector
<
ir
::
Type
>
op_output_types
;
if
(
op_item
->
num_operands
()
>
0
)
{
for
(
size_t
i
=
0
;
i
<
op_item
->
num_operands
();
++
i
)
{
auto
cur_in
=
op_item
->
operand_source
(
i
);
if
(
!
cur_in
)
{
vec_inputs
.
emplace_back
();
continue
;
}
PADDLE_ENFORCE_EQ
(
map_value_pair
.
count
(
cur_in
),
true
,
phi
::
errors
::
PreconditionNotMet
(
"[%d]'s input of [%s] op MUST in map pair"
,
i
,
op_item
->
name
()));
auto
new_in
=
map_value_pair
.
at
(
cur_in
);
vec_inputs
.
push_back
(
new_in
);
if
(
new_in
.
type
().
isa
<
ir
::
VectorType
>
())
{
auto
vec_types
=
new_in
.
type
().
dyn_cast
<
ir
::
VectorType
>
().
data
();
auto
index
=
op_item
->
attributes
()
.
at
(
"index"
)
.
dyn_cast
<
ir
::
Int32Attribute
>
()
.
data
();
op_output_types
.
push_back
(
vec_types
[
index
]);
}
else
{
PADDLE_THROW
(
phi
::
errors
::
Unimplemented
(
"only support vector type for now"
));
}
}
}
// Get op info
ir
::
OpInfo
op_info
=
ctx
->
GetRegisteredOpInfo
(
op_item
->
name
());
// Generate new op
ir
::
Operation
*
op
=
ir
::
Operation
::
Create
(
vec_inputs
,
op_item
->
attributes
(),
op_output_types
,
op_info
);
program
->
block
()
->
push_back
(
op
);
map_op_pair
[
op_item
]
=
op
;
// only deal with single output
if
(
op_item
->
num_results
()
>
0
)
{
for
(
size_t
i
=
0
;
i
<
op_item
->
num_results
();
++
i
)
{
map_value_pair
[
op_item
->
result
(
i
)]
=
op
->
result
(
i
);
}
}
VLOG
(
6
)
<<
"Deep copy a new builtin op: "
<<
op_item
->
name
();
continue
;
}
if
(
op_item
->
name
()
==
"builtin.split"
)
{
std
::
vector
<
phi
::
Place
>
out_places
(
op_item
->
num_results
());
// Copy op inputs
std
::
vector
<
ir
::
OpResult
>
vec_inputs
;
std
::
vector
<
ir
::
Type
>
op_output_types
;
if
(
op_item
->
num_operands
()
>
0
)
{
for
(
size_t
i
=
0
;
i
<
op_item
->
num_operands
();
++
i
)
{
auto
cur_in
=
op_item
->
operand_source
(
i
);
if
(
!
cur_in
)
{
vec_inputs
.
emplace_back
();
continue
;
}
PADDLE_ENFORCE_EQ
(
map_value_pair
.
count
(
cur_in
),
true
,
phi
::
errors
::
PreconditionNotMet
(
"[%d]'s input of [%s] op MUST in map pair"
,
i
,
op_item
->
name
()));
auto
new_in
=
map_value_pair
.
at
(
cur_in
);
vec_inputs
.
push_back
(
new_in
);
if
(
new_in
.
type
().
isa
<
ir
::
VectorType
>
())
{
auto
vec_types
=
new_in
.
type
().
dyn_cast
<
ir
::
VectorType
>
().
data
();
for
(
uint64_t
idx
=
0
;
idx
<
vec_types
.
size
();
idx
++
)
{
op_output_types
.
push_back
(
vec_types
[
idx
]);
}
}
else
{
PADDLE_THROW
(
phi
::
errors
::
Unimplemented
(
"only support vector type for now"
));
}
}
}
// Get op info
ir
::
OpInfo
op_info
=
ctx
->
GetRegisteredOpInfo
(
op_item
->
name
());
// Generate new op
ir
::
Operation
*
op
=
ir
::
Operation
::
Create
(
vec_inputs
,
op_item
->
attributes
(),
op_output_types
,
op_info
);
program
->
block
()
->
push_back
(
op
);
map_op_pair
[
op_item
]
=
op
;
// only deal with single output
if
(
op_item
->
num_results
()
>
0
)
{
for
(
size_t
i
=
0
;
i
<
op_item
->
num_results
();
++
i
)
{
map_value_pair
[
op_item
->
result
(
i
)]
=
op
->
result
(
i
);
}
}
VLOG
(
6
)
<<
"Deep copy a new builtin op: "
<<
op_item
->
name
();
continue
;
continue
;
}
}
...
@@ -1167,7 +1178,11 @@ std::unique_ptr<ir::Program> PdOpLowerToKernelPass(ir::Program* prog,
...
@@ -1167,7 +1178,11 @@ std::unique_ptr<ir::Program> PdOpLowerToKernelPass(ir::Program* prog,
}
}
}
}
}
}
if
(
VLOG_IS_ON
(
2
))
{
std
::
stringstream
ss1
;
program
->
Print
(
ss1
);
VLOG
(
2
)
<<
"Program after lowering to kernel pass : "
<<
ss1
.
str
();
}
return
program
;
return
program
;
}
}
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录