diff --git a/paddle/operators/math/im2col.cc b/paddle/operators/math/im2col.cc index b248863b4e96a90ce43cc36c78957d56bd2f9e63..2af55fa71f86acf0c08c741ccb9f4dbfb38baf70 100644 --- a/paddle/operators/math/im2col.cc +++ b/paddle/operators/math/im2col.cc @@ -73,13 +73,13 @@ class Im2ColFunctor= im_height || im_col_idx < 0 || - im_col_idx >= im_width) - ? static_cast(0) - : im_data[(im_row_idx + c_im * im_height) * im_width + - im_col_idx]; + col_data[col_idx] = (im_row_idx < 0 || im_row_idx >= im_height || + im_col_idx < 0 || im_col_idx >= im_width) + ? static_cast(0) + : im_data[im_idx]; } } } diff --git a/python/paddle/v2/framework/tests/test_conv2d_op.py b/python/paddle/v2/framework/tests/test_conv2d_op.py index 4ba67cf006f7048eff8b6be8f13bdf77462eead5..907b52c405d9e5c02c70f611e4c777ba21948c40 100644 --- a/python/paddle/v2/framework/tests/test_conv2d_op.py +++ b/python/paddle/v2/framework/tests/test_conv2d_op.py @@ -10,23 +10,33 @@ def conv2d_forward_naive(input, filter, group, conv_param): assert np.mod(out_c, group) == 0 sub_out_c = out_c / group - stride, pad = conv_param['stride'], conv_param['pad'] - out_h = 1 + (in_h + 2 * pad[0] - f_h) / stride[0] - out_w = 1 + (in_w + 2 * pad[1] - f_w) / stride[1] + stride, pad, dilation = conv_param['stride'], conv_param['pad'], conv_param[ + 'dilation'] + out_h = 1 + (in_h + 2 * pad[0] - (dilation[0] * (f_h - 1) + 1)) / stride[0] + out_w = 1 + (in_w + 2 * pad[1] - (dilation[1] * (f_w - 1) + 1)) / stride[1] out = np.zeros((in_n, out_c, out_h, out_w)) + d_bolck_w = (dilation[0] * (f_h - 1) + 1) + d_bolck_h = (dilation[1] * (f_w - 1) + 1) + input_pad = np.pad(input, ((0, ), (0, ), (pad[0], ), (pad[1], )), mode='constant', constant_values=0) + + filter_dilation = np.zeros((out_c, f_c, d_bolck_h, d_bolck_w)) + filter_dilation[:, :, 0:d_bolck_h:dilation[0], 0:d_bolck_w:dilation[ + 1]] = filter + for i in range(out_h): for j in range(out_w): for g in range(group): input_pad_masked = \ input_pad[:, g * f_c:(g + 1) * f_c, - i * stride[0]:i * stride[0] + f_h, - j * stride[1]:j * stride[1] + f_w] + i * stride[0]:i * stride[0] + d_bolck_h, + j * stride[1]:j * stride[1] + d_bolck_w] - f_sub = filter[g * sub_out_c:(g + 1) * sub_out_c, :, :, :] + f_sub = filter_dilation[g * sub_out_c:(g + 1) * + sub_out_c, :, :, :] for k in range(sub_out_c): out[:, g * sub_out_c + k, i, j] = \ np.sum(input_pad_masked * f_sub[k, :, :, :], @@ -42,7 +52,11 @@ class TestConv2dOp(OpTest): self.init_dilation() self.init_test_case() - conv2d_param = {'stride': self.stride, 'pad': self.pad} + conv2d_param = { + 'stride': self.stride, + 'pad': self.pad, + 'dilation': self.dilations + } input = np.random.random(self.input_size).astype("float32") filter = np.random.random(self.filter_size).astype("float32") output = conv2d_forward_naive(input, filter, self.groups, @@ -123,24 +137,47 @@ class TestWith1x1(TestConv2dOp): self.op_type = "conv2d" -#----------------Conv2dCudnn---------------- +class TestWithDilation(TestConv2dOp): + def init_test_case(self): + self.pad = [0, 0] + self.stride = [1, 1] + self.input_size = [2, 3, 10, 10] # NCHW + assert np.mod(self.input_size[1], self.groups) == 0 + f_c = self.input_size[1] / self.groups + self.filter_size = [6, f_c, 3, 3] + def init_dilation(self): + self.dilations = [2, 2] -class TestCudnn(TestConv2dOp): def init_group(self): - self.groups = 1 + self.groups = 3 + def init_op_type(self): + self.op_type = "conv2d" + + +#----------------Conv2dCudnn---------------- + + +class TestCudnn(TestConv2dOp): def init_op_type(self): self.op_type = "conv_cudnn" -class TestCudnnWithGroup(TestConv2dOp): - def init_group(self): - self.groups = 3 +class TestCudnnWithGroup(TestWithGroup): + def init_op_type(self): + self.op_type = "conv_cudnn" + +class TestCudnnWith1x1(TestWith1x1): def init_op_type(self): self.op_type = "conv_cudnn" +# cudnn v5 does not support dilation conv. +# class TestCudnnWithDilation(TestWithDilation): +# def init_op_type(self): +# self.op_type = "conv_cudnn" + if __name__ == '__main__': unittest.main()