未验证 提交 920d998f 编写于 作者: D Dong Daxiang 提交者: GitHub

add more settings for distributed strategy (#25685)

* add more settings for distributed strategy
Basically, DistributedStrategy has several parts of configurations:
- BuildStrategy: the same as paddle.fluid.BuildStrategy, but the distributed arguments are moved out of BuildStrategy
- ExecutionStrategy: the same as paddle.fluid.ExecutionStrategy
- collective communication configs: nccl_comm_num, hierarchical allreduce and so on
- distributed algorithms: async_update(mainly used in PS), lars, lamb and so on
上级 1aaa26f1
......@@ -22,61 +22,87 @@ enum Mode {
HETER = 4; // support XPU and GPU computing server
}
message DistributedStrategy {
optional Mode mode = 1 [ default = COLLECTIVE ]; // just for serialization
// collective training strategy
optional bool amp = 2 [ default = false ];
optional int32 amp_loss_scaling = 3 [ default = 32768 ];
optional bool recompute = 4 [ default = false ];
repeated string recompute_checkpoints = 5;
optional bool localsgd = 6 [ default = false ];
optional int32 localsgd_k_step = 7 [ default = 4 ];
optional bool dgc = 8 [ default = false ];
optional bool hierachical_allreduce = 9 [ default = false ];
optional int32 hierachical_allreduce_inter_ranks = 10 [ default = 1 ];
optional int32 nccl_comm_num = 11 [ default = 1 ];
optional bool gradient_merge = 12 [ default = false ];
optional int32 gradient_merge_k_step = 13 [ default = 1 ];
optional bool sequential_execution = 14 [ default = false ];
optional bool enable_backward_optimizer_op_deps = 15 [ default = true ];
optional bool lars = 16 [ default = false ];
optional bool lamb = 17 [ default = false ];
optional bool fuse_elewise_add_act_ops = 18 [ default = false ];
optional bool fuse_bn_act_ops = 19 [ default = false ];
optional bool enable_auto_fusion = 20 [ default = false ];
optional bool fuse_relu_depthwise_conv = 21 [ default = false ];
optional bool enable_inplace = 22 [ default = false ];
optional bool fuse_all_reduce_ops = 23 [ default = false ];
optional int32 num_iteration_per_drop_scope = 24 [ default = 1 ];
optional bool sync_batch_norm = 25 [ default = false ];
optional bool fuse_all_optimizer_ops = 26 [ default = false ];
optional bool sync_nccl_allreduce = 27 [ default = true ];
optional bool fuse_broadcast_ops = 28 [ default = true ];
optional int32 num_threads = 29 [ default = 1 ];
optional int32 num_iteration_per_run = 30 [ default = 1 ];
message RecomputeConfig { repeated string checkpoints = 1; }
message AMPConfig {
optional float init_loss_scaling = 1 [ default = 32768.0 ];
optional int32 incr_every_n_steps = 2 [ default = 1000 ];
optional int32 decr_every_n_nan_or_inf = 3 [ default = 2 ];
optional float incr_ratio = 4 [ default = 2.0 ];
optional float decr_ratio = 5 [ default = 0.8 ];
optional bool use_dynamic_loss_scaling = 6 [ default = true ];
}
// pipeline training
optional bool pipeline = 101 [ default = false ];
optional int32 pipeline_micro_batch = 102;
message LocalSGDConfig { optional int32 k_steps = 1 [ default = 4 ]; }
message GradientMergeConfig {
optional int32 k_steps = 1 [ default = 1 ];
optional bool avg = 2 [ default = true ];
}
message BuildStrategy {
optional bool enable_sequential_execution = 1 [ default = false ];
optional bool fuse_elewise_add_act_ops = 2 [ default = false ];
optional bool fuse_bn_act_ops = 3 [ default = false ];
optional bool fuse_relu_depthwise_conv = 4 [ default = false ];
optional bool fuse_broadcast_ops = 5 [ default = false ];
optional bool fuse_all_optimizer_ops = 6 [ default = false ];
optional bool enable_inplace = 7 [ default = false ];
optional bool enable_backward_optimizer_op_deps = 8 [ default = true ];
optional bool cache_runtime_context = 9 [ default = false ];
}
// parameter server training
optional bool sync = 201 [ default = false ];
optional bool async = 202 [ default = true ];
optional int32 async_k_step = 203 [ default = -1 ];
optional int32 max_merge_var_num = 204 [ default = 1 ];
optional int32 send_queue_size = 205 [ default = 16 ];
optional bool independent_recv_thread = 206 [ default = false ];
optional int32 min_send_grad_num_before_recv = 207 [ default = 1 ];
optional int32 thread_pool_size = 208 [ default = 1 ];
optional int32 send_wait_times = 209 [ default = 1 ];
optional bool runtime_split_send_recv = 210 [ default = false ];
optional bool use_thread_barrier = 211 [ default = false ];
message ExecutionStrategy {
optional int32 num_threads = 1 [ default = 1 ];
optional int32 num_iteration_per_drop_scope = 2 [ default = 10 ];
optional int32 num_iteration_per_run = 3 [ default = 1 ];
optional bool use_thread_barrier = 4 [ default = false ];
}
message AsyncConfig {
optional int32 k_steps = 1 [ default = 1 ];
optional int32 max_merge_var_num = 2 [ default = 1 ];
optional int32 send_queue_size = 3 [ default = 16 ];
optional bool independent_recv_thread = 4 [ default = false ];
optional int32 min_send_grad_num_before_recv = 5 [ default = 1 ];
optional int32 thread_pool_size = 6 [ default = 1 ];
optional int32 send_wait_times = 7 [ default = 1 ];
optional bool runtime_split_send_recv = 8 [ default = false ];
}
message PipelineConfig { optional int32 micro_batch = 1 [ default = 1 ]; }
message DistributedStrategy {
// bool options
optional Mode mode = 1 [ default = COLLECTIVE ];
optional bool amp = 2 [ default = false ];
optional bool recompute = 3 [ default = false ];
optional bool localsgd = 4 [ default = false ];
optional bool dgc = 5 [ default = false ];
optional bool gradient_merge = 6 [ default = false ];
optional bool lars = 7 [ default = false ];
optional bool lamb = 8 [ default = false ];
optional bool pipeline = 9 [ default = false ];
optional bool elastic = 10 [ default = false ];
optional bool auto = 11 [ default = false ];
optional bool async = 12 [ default = true ];
optional bool sync_nccl_allreduce = 13 [ default = true ];
optional int32 nccl_comm_num = 14 [ default = 1 ];
optional bool use_hierarchical_allreduce = 15 [ default = false ];
optional int32 hierarchical_allreduce_inter_nranks = 16 [ default = 1 ];
optional bool sync_batch_norm = 17 [ default = false ];
optional bool fuse_all_reduce_ops = 18 [ default = true ];
// optional bool enable_backward_optimizer_op_deps = 19 [ default = true ];
// elastic deep learning strategies
optional bool elastic = 301 [ default = false ];
optional RecomputeConfig recompute_configs = 101;
optional AMPConfig amp_configs = 102;
optional LocalSGDConfig localsgd_configs = 103;
optional GradientMergeConfig gradient_merge_configs = 104;
optional PipelineConfig pipeline_configs = 106;
optional AsyncConfig async_configs = 107;
// auto parallel
optional bool auto = 401 [ default = false ];
optional BuildStrategy build_strategy = 201;
optional ExecutionStrategy execution_strategy = 202;
}
message DistributedJobInfo {
......
......@@ -12,11 +12,37 @@
# See the License for the specific language governing permissions and
# limitations under the License.
import paddle
from paddle.fleet.proto import distributed_strategy_pb2
from paddle.fluid.framework import Variable
import google.protobuf.text_format
def get_msg_dict(msg):
res_dict = {}
fields = msg.DESCRIPTOR.fields
for f in fields:
res_dict[f.name] = getattr(msg, f.name)
return res_dict
def assign_configs_value(msg, config):
fields = msg.DESCRIPTOR.fields
for key in config:
for f in fields:
if key == f.name:
if f.label == 3:
getattr(msg, f.name).extend(config[f.name])
elif f.label == 1 or f.label == 2:
setattr(msg, f.name, config[f.name])
def check_configs_key(msg, config, field_name):
key_list = msg.DESCRIPTOR.fields_by_name.keys()
for key in config:
assert key in key_list, "key:{} not in {}".format(key, field_name)
class DistributedJobInfo(object):
"""
DistributedJobInfo will serialize all distributed training information
......@@ -56,207 +82,241 @@ class DistributedJobInfo(object):
class DistributedStrategy(object):
def __init__(self):
"""
DistributedStrategy is the main configuration entry for distributed training of Paddle.
All of the distributed training configurations can be configured in DistributedStrategy,
such as automatic mixed precision (AMP), Layer-wise Adaptive Rate Scaling (LARS),
asynchronous update parameter server(ASGD), etc.
DistributedStrategy can be serialized into protobuf file or deserialized from protobuf file
Users who run local training usually configure BuildStrategy and ExecutionStrategy, and
DistributedStrategy supports configurations from BuildStrategy and ExecutionStrategy
"""
self.strategy = distributed_strategy_pb2.DistributedStrategy()
def save_to_prototxt(self, output):
"""
Serialize current DistributedStrategy to string and save to output file
Examples:
.. code-block:: python
import paddle.fleet as fleet
strategy = fleet.DistributedStrategy()
strategy.dgc = True
strategy.recompute = True
strategy.recompute_configs = {"checkpoint": ["x"]}
strategy.save_to_prototxt("dist_strategy.prototxt")
"""
with open(output, "w") as fout:
fout.write(str(self.strategy))
def load_from_prototxt(self, pb_file):
f = open(pb_file, 'r')
self.strategy = google.protobuf.text_format.Merge(
str(f.read()), self.strategy)
"""
Load from prototxt file for DistributedStrategy initialization
@property
def amp(self):
return self.strategy.amp
Examples:
.. code-block:: python
@amp.setter
def amp(self, flag):
if isinstance(flag, bool):
self.strategy.amp = flag
else:
print("WARNING: amp should have value of bool type")
import paddle.fleet as fleet
strategy = fleet.DistributedStrategy()
strategy.load_from_prototxt("dist_strategy.protoxt")
"""
with open(pb_file, 'r') as f:
self.strategy = google.protobuf.text_format.Merge(
str(f.read()), self.strategy)
@property
def amp_loss_scaling(self):
return self.strategy.amp_loss_scaling
@amp_loss_scaling.setter
def amp_loss_scaling(self, value):
if isinstance(value, int):
self.strategy.amp_loss_scaling = value
else:
print("WARNING: amp_loss_scaling should have value of int type")
def execution_strategy(self):
"""
Configure ExecutionStrategy for DistributedStrategy
@property
def recompute(self):
return self.strategy.recompute
Examples:
.. code-block:: python
@recompute.setter
def recompute(self, flag):
if isinstance(flag, bool):
self.strategy.recompute = flag
else:
print("WARNING: recompute should have value of bool type")
exe_strategy = paddle.fluid.ExecutionStrategy()
exe_strategy.num_threads = 10
exe_strategy.num_iteration_per_drop_scope = 10
exe_strategy.num_iteration_per_run = 10
@property
def recompute_checkpoints(self):
return self.strategy.recompute_checkpoints
@recompute_checkpoints.setter
def recompute_checkpoints(self, checkpoints):
if isinstance(checkpoints, list):
str_list = True
var_list = True
for item in checkpoints:
if not isinstance(item, str):
str_list = False
if not isinstance(item, Variable):
var_list = False
assert (str_list and var_list) == False
if str_list:
self.strategy.ClearField("recompute_checkpoints")
self.strategy.recompute_checkpoints.extend(checkpoints)
elif var_list:
names = [x.name for x in checkpoints]
self.strategy.ClearField("recompute_checkpoints")
self.strategy.recompute_checkpoints.extend(names)
else:
print(
"WARNING: recompute_checkpoints should have value of list[Variable] or list[name] type"
)
else:
print(
"WARNING: recompute_checkpoints should have value of list[Variable] or list[name] type"
)
strategy = paddle.fleet.DistributedStrategy()
strategy.execution_strategy = exe_strategy
"""
execution_strategy = paddle.fluid.ExecutionStrategy()
fields = self.strategy.execution_strategy.DESCRIPTOR.fields
for f in fields:
setattr(execution_strategy, f.name,
getattr(self.strategy.execution_strategy, f.name))
return execution_strategy
@execution_strategy.setter
def execution_strategy(self, strategy):
fields = self.strategy.execution_strategy.DESCRIPTOR.fields
for f in fields:
setattr(self.strategy.execution_strategy, f.name,
getattr(strategy, f.name))
@property
def build_strategy(self):
"""
Configure BuildStrategy for DistributedStrategy
Note that the properties of BuildStrategy are valid in DistributedStrategy
only if the property is non-distributed strategy.
Examples:
.. code-block:: python
build_strategy = paddle.fluid.BuildStrategy()
build_strategy.enable_sequential_execution = True
build_strategy.fuse_elewise_add_act_ops = True
build_strategy.fuse_bn_act_ops = True
build_strategy.enable_auto_fusion = True
build_strategy.fuse_relu_depthwise_conv = True
build_strategy.fuse_broadcast_ops = True
build_strategy.fuse_all_optimizer_ops = True
build_strategy.enable_inplace = True
strategy = paddle.fleet.DistributedStrategy()
strategy.build_strategy = build_strategy
"""
@property
def pipeline(self):
return self.strategy.pipeline
build_strategy = paddle.fluid.BuildStrategy()
fields = self.strategy.build_strategy.DESCRIPTOR.fields
for f in fields:
setattr(build_strategy, f.name,
getattr(self.strategy.build_strategy, f.name))
return build_strategy
@build_strategy.setter
def build_strategy(self, strategy):
fields = self.strategy.build_strategy.DESCRIPTOR.fields
for f in fields:
if f.label == 1 or f.label == 2: # optional and required field
setattr(self.strategy.build_strategy, f.name,
getattr(strategy, f.name))
elif f.label == 3: # repeated field
getattr(self.strategy.build_strategy,
f.name).extend(getattr(strategy, f.name))
@property
def async_update(self):
"""
Indicating whether we are using asynchronous stocastic gradient descent updates
for training. This property is valid when we are using parameter server training,
which is implied by setting approperate RoleMaker
Default value: True
@pipeline.setter
def pipeline(self, flag):
if isinstance(flag, bool):
self.strategy.pipeline = flag
else:
print("WARNING: pipeline should have value of bool type")
Examples:
.. code-block:: python
@property
def pipeline_micro_batch(self):
return self.strategy.pipeline_micro_batch
import paddle.fleet as fleet
role_maker = fleet.PaddleCloudRoleMaker()
fleet.init(role_maker)
@pipeline_micro_batch.setter
def pipeline_micro_batch(self, value):
if isinstance(value, int):
self.strategy.pipeline_micro_batch = value
else:
print("WARNING: pipeline micro batch should have value of int type")
strategy = fleet.DistributedStrategy()
strategy.async_update = True # by default this is True
@property
def localsgd(self):
return self.strategy.localsgd
# code block for defining loss and local optimizer
# sgd = fleet.distributed_optimizer(optimizer, strategy)
"""
return self.strategy.async
@localsgd.setter
def localsgd(self, flag):
@async_update.setter
def async_update(self, flag):
if isinstance(flag, bool):
self.strategy.localsgd = flag
self.strategy.async = flag
else:
print("WARNING: localsgd should have value of bool type")
print("WARNING: async_update should have value of bool type")
@property
def localsgd_k_step(self):
return self.strategy.localsgd_k_step
def async_update_configs(self):
"""
Set async update configurations. In general, asynchronous parameter server
training has serveral configurable settings that can be configured through
a dict.
**Notes**:
**Detailed arguments for async_update_configs**
**k_step**: number of local optimization updates before communication
**max_merge_var_num**: maximum number of merged gradients before communication
**send_queue_size**: a buffer size of worker communication
**independent_recv_thread**: if we are using independent recv thread for communication
**thread_pool_size**: number of thread pool
**send_wait_times**: waiting time for sending gradients
**runtime_split_send_recv**: if we are using Tensor split for send and recv during runtime
Examples:
.. code-block:: python
import paddle.fleet as fleet
role_maker = fleet.PaddleCloudRoleMaker()
fleet.init(role_maker)
strategy = fleet.DistributedStrategy()
strategy.async_update = True # by default this is True
configs = {"k_step": 10000, "send_queue_size": 32}
strategy.async_update_configs = configs
# code block for defining loss and local optimizer
# sgd = fleet.distributed_optimizer(optimizer, strategy)
"""
return get_msg_dict(self.strategy.async_configs)
@localsgd_k_step.setter
def localsgd_k_step(self, value):
if isinstance(value, int):
self.strategy.localsgd_k_step = value
else:
print("WARNING: localsgd_k_step should have value of int type")
@async_update_configs.setter
def async_update_configs(self, configs):
check_configs_key(self.strategy.async_configs, configs, "async_configs")
assign_configs_value(self.strategy.async_configs, configs)
@property
def dgc(self):
return self.strategy.dgc
@dgc.setter
def dgc(self, flag):
if isinstance(flag, bool):
self.strategy.dgc = flag
else:
print("WARNING: dgc should have value of bool type")
def amp(self):
"""
Indicating whether we are using automatic mixed precision training
Default Value: False
@property
def hierachical_allreduce(self):
return self.strategy.hierachical_allreduce
Examples:
.. code-block:: python
@hierachical_allreduce.setter
def hierachical_allreduce(self, flag):
if isinstance(flag, bool):
self.strategy.hierachical_allreduce = flag
else:
print(
"WARNING: hierachical_allreduce should have value of bool type")
import paddle.fleet as fleet
strategy = fleet.DistributedStrategy()
strategy.amp = True # by default this is false
@property
def hierachical_allreduce_inter_ranks(self):
return self.strategy.hierachical_allreduce_inter_ranks
"""
return self.strategy.amp
@hierachical_allreduce_inter_ranks.setter
def hierachical_allreduce_inter_ranks(self, flag):
@amp.setter
def amp(self, flag):
if isinstance(flag, bool):
self.strategy.hierachical_allreduce_inter_ranks = flag
else:
print(
"WARNING: hierachical_allreduce_inter_ranks should have value of bool type"
)
@property
def nccl_comm_num(self):
return self.strategy.nccl_comm_num
@nccl_comm_num.setter
def nccl_comm_num(self, value):
if isinstance(value, int):
self.strategy.nccl_comm_num = value
self.strategy.amp = flag
else:
print("WARNING: nccl_comm_num should have value of int type")
print("WARNING: amp should have value of bool type")
@property
def gradient_merge(self):
return self.strategy.gradient_merge
def amp_configs(self):
return get_msg_dict(self.strategy.amp_configs)
@gradient_merge.setter
def gradient_merge(self, flag):
if isinstance(flag, bool):
self.strategy.gradient_merge = flag
else:
print("WARNING: gradient_merge should have value of bool type")
@amp_configs.setter
def amp_configs(self, configs):
check_configs_key(self.strategy.amp_configs, configs, "amp_configs")
assign_configs_value(self.strategy.amp_configs, configs)
@property
def gradient_merge_k_step(self):
return self.strategy.gradient_merge_k_step
@gradient_merge_k_step.setter
def gradient_merge_k_step(self, value):
if isinstance(value, int):
self.strategy.gradient_merge_k_step = value
else:
print(
"WARNING: gradient_merge_k_step should have value of int type")
def recompute(self):
"""
Indicating whether we are using forward recomputation for memory optimization
Default value: False
@property
def sequential_execution(self):
return self.strategy.sequential_execution
Examples:
.. code-block:: python
@sequential_execution.setter
def sequential_execution(self, flag):
if isinstance(flag, bool):
self.strategy.sequential_execution = flag
else:
print(
"WARNING: sequential_execution should have value of bool type")
import paddle.fleet as fleet
strategy = fleet.DistributedStrategy()
strategy.recompute = True
# suppose x and y are names of checkpoint tensors for recomputation
strategy.recompute_configs = {"checkpoints": ["x", "y"]}
"""
return self.strategy.recompute
@property
def sync_nccl_allreduce(self):
......@@ -267,99 +327,44 @@ class DistributedStrategy(object):
if isinstance(flag, bool):
self.strategy.sync_nccl_allreduce = flag
else:
print("WARNING: sync_nccl_allreduce should have avlue of bool type")
print("WARNING: sync_nccl_allreduce should have value of bool type")
@property
def lars(self):
return self.strategy.lars
def use_hierarchical_allreduce(self):
return self.strategy.use_hierarchical_allreduce
@lars.setter
def lars(self, flag):
@use_hierarchical_allreduce.setter
def use_hierarchical_allreduce(self, flag):
if isinstance(flag, bool):
self.strategy.lars = flag
else:
print("WARNING: lars should have value of bool type")
@property
def lamb(self):
return self.strategy.lamb
@lamb.setter
def lamb(self, flag):
if isinstance(flag, bool):
self.strategy.lamb = flag
else:
print("WARNING: lamb should have value of bool type")
@property
def fuse_elewise_add_act_ops(self):
return self.strategy.fuse_elewise_add_act_ops
@fuse_elewise_add_act_ops.setter
def fuse_elewise_add_act_ops(self, flag):
if isinstance(flag, bool):
self.strategy.fuse_elewise_add_act_ops = flag
self.strategy.use_hierarchical_allreduce = flag
else:
print(
"WARNING: fuse_elewise_add_act_ops should have value of bool type"
"WARNING: use_hierarchical_allreduce should have value of bool type"
)
@property
def fuse_bn_act_ops(self):
return self.strategy.fuse_bn_act_ops
@fuse_bn_act_ops.setter
def fuse_bn_act_ops(self, flag):
if isinstance(flag, bool):
self.strategy.fuse_bn_act_ops = flag
else:
print("WARNING: fuse_bn_act_ops should have value of bool type")
def hierarchical_allreduce_inter_nranks(self):
return self.strategy.hierarchical_allreduce_inter_nranks
@property
def enable_auto_fusion(self):
return self.strategy.enable_auto_fusion
@enable_auto_fusion.setter
def enable_auto_fusion(self, flag):
if isinstance(flag, bool):
self.strategy.enable_auto_fusion = flag
else:
print("WARNING: enable_auto_fusion should have value of bool type")
@property
def fuse_relu_depthwise_conv(self):
return self.strategy.fuse_relu_depthwise_conv
@fuse_relu_depthwise_conv.setter
def fuse_relu_depthwise_conv(self, flag):
if isinstance(flag, bool):
self.strategy.fuse_relu_depthwise_conv = flag
@hierarchical_allreduce_inter_nranks.setter
def hierarchical_allreduce_inter_nranks(self, value):
if isinstance(value, int):
self.strategy.hierarchical_allreduce_inter_nranks = value
else:
print(
"WARNING: fuse_relu_depthwise_conv should have value of bool type"
"WARNING: hierarchical_allreduce_inter_nranks should have value of int type"
)
@property
def fuse_broadcast_ops(self):
return self.strategy.fuse_broadcast_ops
@fuse_broadcast_ops.setter
def fuse_broadcast_ops(self, flag):
if isinstance(flag, bool):
self.strategy.fuse_broadcast_ops = flag
else:
print("WARNING: fuse_broadcast_ops should have value of bool type")
@property
def enable_inplace(self):
return self.strategy.enable_inplace
def sync_batch_norm(self):
return self.strategy.sync_batch_norm
@enable_inplace.setter
def enable_inplace(self, flag):
@sync_batch_norm.setter
def sync_batch_norm(self, flag):
if isinstance(flag, bool):
self.strategy.enable_inplace = flag
self.strategy.sync_batch_norm = flag
else:
print("WARNING: enable_inplace should have value of bool type")
print("WARNING: sync_batch_norm should have value of bool type")
@property
def fuse_all_reduce_ops(self):
......@@ -373,177 +378,188 @@ class DistributedStrategy(object):
print("WARNING: fuse_all_reduce_ops should have value of bool type")
@property
def num_iteration_per_drop_scope(self):
return self.strategy.num_iteration_per_drop_scope
@num_iteration_per_drop_scope.setter
def num_iteration_per_drop_scope(self, flag):
if isinstance(flag, int):
self.strategy.num_iteration_per_drop_scope = flag
else:
print(
"WARNING: num_iteration_per_drop_scope should have value of int type"
)
@property
def num_iteration_per_run(self):
return self.strategy.num_iteration_per_run
def nccl_comm_num(self):
return self.strategy.nccl_comm_num
@num_iteration_per_run.setter
def num_iteration_per_run(self, value):
@nccl_comm_num.setter
def nccl_comm_num(self, value):
if isinstance(value, int):
self.strategy.num_iteration_per_run = value
self.strategy.nccl_comm_num = value
else:
print(
"WARNING: num_iteration_per_run should have value of int type")
@property
def sync_batch_norm(self):
return self.strategy.sync_batch_norm
print("WARNING: nccl_comm_num should have value of int type")
@sync_batch_norm.setter
def sync_batch_norm(self, flag):
@recompute.setter
def recompute(self, flag):
if isinstance(flag, bool):
self.strategy.sync_batch_norm = flag
self.strategy.recompute = flag
else:
print("WARNING: sync_batch_norm should have value of bool type")
print("WARNING: recompute should have value of bool type")
@property
def fuse_all_optimizer_ops(self):
return self.strategy.fuse_all_optimizer_ops
def recompute_configs(self):
"""
Set recompute configurations. In general, the recompute strategy of current
implementation should have some manually assign checkpoints
@fuse_all_optimizer_ops.setter
def fuse_all_optimizer_ops(self, flag):
if isinstance(flag, bool):
self.strategy.fuse_all_optimizer_ops = flag
else:
print(
"WARNING: fuse_all_optimizer_ops should have value of bool type")
Examples:
.. code-block:: python
import paddle.fleet as fleet
strategy = fleet.DistributedStrategy()
strategy.recompute = True
strategy.recompute_configs = {"checkpionts": ["x", "y"]}
"""
return get_msg_dict(self.strategy.recompute_configs)
@recompute_configs.setter
def recompute_configs(self, configs):
check_configs_key(self.strategy.recompute_configs, configs,
"checkpoint_configs")
assign_configs_value(self.strategy.recompute_configs, configs)
@property
def sync(self):
return self.strategy.sync
def pipeline(self):
"""
Indicating whether we are using pipeline parallelism for distributed training.
Current implementation mainly focus on single GPU machine pipeline parallelism and
data parallelism across GPU machine. The pipeline information is indicated through
device_guard information in user-defined program.
Examples:
.. code-block:: python
import paddle.fleet as fleet
strategy = fleet.DistributedStrategy()
strategy.pipeline = True
@sync.setter
def sync(self, flag):
"""
return self.strategy.pipeline
@pipeline.setter
def pipeline(self, flag):
if isinstance(flag, bool):
self.strategy.sync = flag
self.strategy.pipeline = flag
else:
print("WARNING: sync should have value of bool type")
print("WARNING: pipeline should have value of bool type")
@property
def async_k_step(self):
return self.strategy.async_k_step
def pipeline_configs(self):
"""
Set pipeline parallelism configurations. In pipeline parallelism,
different parts of neural networks are running on different GPUS.
There are Tensor queue buffer between each pair of neighborhood GPUS
that are responsible for synchronizing hidden Tensor results between
GPUs. Pipeline parallelism consists of serveral producer-consumer style
hardware pairs, such as GPU-GPU, CPU-GPU, GPU-XPU. The best way to speedup
pipeline parallelism is to make the size of Tensor in Tensor queue smaller,
so that we will have a faster producer for downstream consumers.
**Notes**:
**Detailed arguments for pipeline_configs**
**micro_batch**: the number of small batches in each user defined batch
Examples:
.. code-block:: python
import paddle.fleet as fleet
strategy = fleet.DistributedStrategy()
strategy.pipeline = True
strategy.pipeline_configs = {"micro_batch": 12}
@async_k_step.setter
def async_k_step(self, value):
if isinstance(value, int):
self.strategy.async_k_step = value
else:
print("WARNING: async_k_step should have value of int type")
"""
@property
def max_merge_var_num(self):
return self.strategy.max_merge_var_num
return get_msg_dict(self.strategy.pipeline_configs)
@max_merge_var_num.setter
def max_merge_var_num(self, value):
if isinstance(value, int):
self.strategy.max_merge_var_num = value
else:
print("WARNING: max_merge_var_num should have value of int type")
@pipeline_configs.setter
def pipeline_configs(self, configs):
check_configs_key(self.strategy.pipeline_configs, configs,
"pipeline_configs")
assign_configs_value(self.strategy.pipeline_configs, configs)
@property
def send_queue_size(self):
return self.strategy.send_queue_size
def localsgd(self):
return self.strategy.localsgd
@send_queue_size.setter
def send_queue_size(self, value):
if isinstance(value, int):
self.strategy.send_queue_size = value
@localsgd.setter
def localsgd(self, flag):
if isinstance(flag, bool):
self.strategy.localsgd = flag
else:
print("WARNING: send_queue_size should have value of int type")
print("WARNING: localsgd should have value of bool type")
@property
def independent_recv_thread(self):
return self.strategy.independent_recv_thread
def localsgd_configs(self):
return get_msg_dict(self.strategy.localsgd_configs)
@independent_recv_thread.setter
def independent_recv_thread(self, value):
if isinstance(value, bool):
self.strategy.independent_recv_thread = value
else:
print(
"WARNING: independent_recv_thread should have value of int type")
@localsgd_configs.setter
def localsgd_configs(self, configs):
check_configs_key(self.strategy.localsgd_configs, configs,
"localsgd_configs")
assign_configs_value(self.strategy.localsgd_configs, configs)
@property
def min_send_grad_num_before_recv(self):
return self.strategy.min_send_grad_num_before_recv
def dgc(self):
return self.strategy.dgc
@min_send_grad_num_before_recv.setter
def min_send_grad_num_before_recv(self, value):
if isinstance(value, int):
self.strategy.min_send_grad_num_before_recv = value
@dgc.setter
def dgc(self, flag):
if isinstance(flag, bool):
self.strategy.dgc = flag
else:
print(
"WARNING: min_send_grad_num_before_recv should have value of int type"
)
print("WARNING: dgc should have value of bool type")
@property
def thread_pool_size(self):
return self.strategy.thread_pool_size
def dgc_configs(self):
return get_msg_dict(self.strategy.dgc_configs)
@thread_pool_size.setter
def thread_pool_size(self, value):
if isinstance(value, int):
self.strategy.thread_pool_size = value
else:
print("WARNING:thread_pool_size should have value of int type")
@dgc_configs.setter
def dgc_configs(self, configs):
check_configs_key(self.strategy.dgc_configs, configs, "dgc_configs")
assign_configs_value(self.strategy.dgc_configs, configs)
@property
def send_wait_times(self):
return self.strategy.send_wait_times
def gradient_merge(self):
return self.strategy.gradient_merge
@send_wait_times.setter
def send_wait_times(self, value):
if isinstance(value, int):
self.strategy.send_wait_times = value
@gradient_merge.setter
def gradient_merge(self, flag):
if isinstance(flag, bool):
self.strategy.gradient_merge = flag
else:
print("WARNING: send_wait_times should have value of int type")
print("WARNING: gradient_merge should have value of bool type")
@property
def runtime_split_send_recv(self):
return self.strategy.runtime_split_send_recv
def gradient_merge_configs(self):
return get_msg_dict(self.strategy.gradient_merge_configs)
@runtime_split_send_recv.setter
def runtime_split_send_recv(self, flag):
if isinstance(flag, bool):
self.strategy.runtime_split_send_recv = flag
else:
print("WARNING: runtime_split_send_recv should be bool type")
@gradient_merge_configs.setter
def gradient_merge_configs(self, configs):
check_configs_key(self.strategy.gradient_merge_configs, configs,
"gradient_configs")
assign_configs_value(self.strategy.gradient_merge_configs, configs)
@property
def use_thread_barrier(self):
return self.strategy.use_thread_barrier
def lars(self):
return self.strategy.lars
@use_thread_barrier.setter
def use_thread_barrier(self, flag):
@lars.setter
def lars(self, flag):
if isinstance(flag, bool):
self.strategy.use_thread_barrier = flag
self.strategy.lars = flag
else:
print("WARNING: use_thread_barrier should be bool type")
print("WARNING: lars should have value of bool type")
@property
def enable_backward_optimizer_op_deps(self):
return self.strategy.enable_backward_optimizer_op_deps
def lamb(self):
return self.strategy.lamb
@enable_backward_optimizer_op_deps.setter
def enable_backward_optimizer_op_deps(self, flag):
@lamb.setter
def lamb(self, flag):
if isinstance(flag, bool):
self.strategy.enable_backward_optimizer_op_deps = flag
self.strategy.lamb = flag
else:
print(
"WARNING: enable_backward_optimizer_op_deps should be bool type")
print("WARNING: lamb should have value of bool type")
@property
def elastic(self):
......@@ -556,17 +572,6 @@ class DistributedStrategy(object):
else:
print("WARNING: elastic should have value of bool type")
@property
def num_threads(self):
return self.strategy.num_threads
@num_threads.setter
def num_threads(self, value):
if isinstance(value, int):
self.strategy.num_threads = value
else:
print("WARNING: num_threads should have value of int type")
@property
def auto(self):
return self.strategy.auto
......
......@@ -18,39 +18,6 @@ from .meta_optimizer_base import MetaOptimizerBase
from ..base.private_helper_function import wait_server_ready
def get_build_strategy(dist_strategy):
build_strategy = paddle.BuildStrategy()
build_strategy.enable_sequential_execution = \
dist_strategy.sequential_execution
build_strategy.remove_unnecessary_lock = True
build_strategy.fuse_elewise_add_act_ops = \
dist_strategy.fuse_elewise_add_act_ops
build_strategy.fuse_bn_act_ops = \
dist_strategy.fuse_bn_act_ops
build_strategy.enable_auto_fusion = \
dist_strategy.enable_auto_fusion
build_strategy.fuse_relu_depthwise_conv = \
dist_strategy.fuse_relu_depthwise_conv
build_strategy.fuse_broadcast_ops = \
dist_strategy.fuse_broadcast_ops
build_strategy.sync_batch_norm = \
dist_strategy.sync_batch_norm
return build_strategy
def get_execution_strategy(dist_strategy):
execution_strategy = paddle.ExecutionStrategy()
execution_strategy.num_threads = \
dist_strategy.num_threads
execution_strategy.num_iteration_per_drop_scope = \
dist_strategy.num_iteration_per_drop_scope
execution_strategy.num_iteration_per_run = \
dist_strategy.num_iteration_per_run
execution_strategy.use_thread_barrier = \
dist_strategy.use_thread_barrier
return execution_strategy
class GraphExecutionOptimizer(MetaOptimizerBase):
def __init__(self, optimizer):
super(GraphExecutionOptimizer, self).__init__(optimizer)
......@@ -76,7 +43,7 @@ class GraphExecutionOptimizer(MetaOptimizerBase):
pass
# should fix the variable
def _setup_nccl_op(self, startup_program, main_program):
def _setup_nccl_op(self, startup_program, main_program, build_strategy):
trainer_endpoints = self.role_maker.get_trainer_endpoints()
trainer_id = self.role_maker.worker_index()
current_endpoint = self.role_maker.get_trainer_endpoints()[trainer_id]
......@@ -88,14 +55,14 @@ class GraphExecutionOptimizer(MetaOptimizerBase):
wait_server_ready(other_trainer_endpoints)
nccl_id_var = startup_program.global_block().create_var(
name="NCCLID", persistable=True, type=core.VarDesc.VarType.RAW)
for i in range(1, self.user_defined_strategy.nccl_comm_num):
for i in range(1, build_strategy.nccl_comm_num):
startup_program.global_block().create_var(
name="NCCLID_{}".format(i),
persistable=True,
type=core.VarDesc.VarType.RAW)
if self.user_defined_strategy.hierachical_allreduce:
for i in range(0, self.user_defined_strategy.nccl_comm_num):
if build_strategy.use_hierarchical_allreduce:
for i in range(0, build_strategy.nccl_comm_num):
startup_program.global_block().create_var(
name="Hierarchical_inter_NCCLID_{}".format(i),
persistable=True,
......@@ -112,48 +79,80 @@ class GraphExecutionOptimizer(MetaOptimizerBase):
attrs={
"trainers": trainer_endpoints,
"trainer_id": trainer_id,
"nccl_comm_num": self.user_defined_strategy.nccl_comm_num,
"nccl_comm_num": build_strategy.nccl_comm_num,
"use_hierarchical_allreduce":
self.user_defined_strategy.hierachical_allreduce,
build_strategy.use_hierarchical_allreduce,
"hierarchical_allreduce_inter_ranks":
self.user_defined_strategy.hierachical_allreduce_inter_ranks
build_strategy.hierarchical_allreduce_inter_nranks
})
def _try_to_compile(self, startup_program, main_program, loss):
build_strategy = get_build_strategy(self.user_defined_strategy)
exe_strategy = get_execution_strategy(self.user_defined_strategy)
import copy
dist_strategy = self.user_defined_strategy
local_build_strategy = paddle.fluid.BuildStrategy()
local_build_strategy.enable_sequential_execution = \
dist_strategy.build_strategy.enable_sequential_execution
local_build_strategy.fuse_elewise_add_act_ops = \
dist_strategy.build_strategy.fuse_elewise_add_act_ops
local_build_strategy.fuse_bn_act_ops = \
dist_strategy.build_strategy.fuse_bn_act_ops
local_build_strategy.enable_auto_fusion = \
dist_strategy.build_strategy.enable_auto_fusion
local_build_strategy.fuse_relu_depthwise_conv = \
dist_strategy.build_strategy.fuse_relu_depthwise_conv
local_build_strategy.fuse_broadcast_ops = \
dist_strategy.build_strategy.fuse_broadcast_ops
local_build_strategy.fuse_all_optimizer_ops = \
dist_strategy.build_strategy.fuse_all_optimizer_ops
local_build_strategy.enable_inplace = \
dist_strategy.build_strategy.enable_inplace
local_build_strategy.use_hierarchical_allreduce = \
dist_strategy.use_hierarchical_allreduce
local_build_strategy.hierarchical_allreduce_inter_nranks = \
dist_strategy.hierarchical_allreduce_inter_nranks
local_build_strategy.sync_batch_norm = \
dist_strategy.sync_batch_norm
local_build_strategy.fuse_all_reduce_ops = \
dist_strategy.fuse_all_reduce_ops
local_build_strategy.nccl_comm_num = \
dist_strategy.nccl_comm_num
exe_strategy = self.user_defined_strategy.execution_strategy
node_num = self.role_maker.worker_num()
if self.role_maker._is_collective:
assert node_num >= 1, "nccl2 node_num must >= 1, now:{}" % node_num
if node_num <= 1:
# local mode
if self.user_defined_strategy.nccl_comm_num > 1:
if local_build_strategy.nccl_comm_num > 1:
logging.warn("set nccl_comm_num=1 since you only have 1 node.")
self.user_defined_strategy.nccl_comm_num = 1
local_build_strategy.nccl_comm_num = 1
if self.user_defined_strategy.hierachical_allreduce:
if local_build_strategy.use_hierarchical_allreduce:
logging.warn(
"set hierachical_allreduce=False since you only have 1 node."
)
self.user_defined_strategy.hierachical_allreduce = False
local_build_strategy.use_hierarchical_allreduce = False
sync_allreduce = self.user_defined_strategy.sync_nccl_allreduce
sync_allreduce = dist_strategy.sync_nccl_allreduce
if sync_allreduce:
exe_strategy.num_threads = self.user_defined_strategy.nccl_comm_num + 1
if self.user_defined_strategy.hierachical_allreduce:
exe_strategy.num_threads = 2 * self.user_defined_strategy.nccl_comm_num + 1
paddle.fluid.framework.set_flags({
"FLAGS_sync_nccl_allreduce": True
})
exe_strategy.num_threads = local_build_strategy.nccl_comm_num + 1
if local_build_strategy.use_hierarchical_allreduce:
exe_strategy.num_threads = 2 * local_build_strategy.nccl_comm_num + 1
if exe_strategy.num_threads > 4:
logging.warn(
"if you use hierachical_allreduce or "
"with multi nccl comm, please export FLAGS_sync_nccl_allreduce = 0"
"with multi nccl comm, please set distributed_strategy.sync_nccl_allreduce=False"
)
# TODO(guru4elephant): should be an independent optimizer
sync_batch_norm = self.user_defined_strategy.sync_batch_norm
sync_batch_norm = local_build_strategy.sync_batch_norm
if sync_batch_norm:
self.user_defined_strategy.nccl_comm_num = 1
self.user_defined_strategy.hierachical_allreduce = False
local_build_strategy.nccl_comm_num = 1
local_build_strategy.use_hierarchical_allreduce = False
exe_strategy.num_threads = 1
logging.warn(
"use sync_batch_norm will hang when set num_threads > 1, so "
......@@ -161,19 +160,19 @@ class GraphExecutionOptimizer(MetaOptimizerBase):
)
# TODO(guru4elephant): should be an independent optimizer
self._setup_nccl_op(startup_program, main_program)
self._setup_nccl_op(startup_program, main_program, local_build_strategy)
build_strategy.num_trainers = self.role_maker.worker_num()
build_strategy.trainer_id = self.role_maker.worker_index()
build_strategy.trainers_endpoints = self.role_maker.get_trainer_endpoints(
local_build_strategy.num_trainers = self.role_maker.worker_num()
local_build_strategy.trainer_id = self.role_maker.worker_index()
local_build_strategy.trainers_endpoints = self.role_maker.get_trainer_endpoints(
)
build_strategy.enable_backward_optimizer_op_deps = True
local_build_strategy.enable_backward_optimizer_op_deps = True
self._compiled_program = compiler.CompiledProgram(main_program)
self._compiled_program.with_data_parallel(
loss_name=loss.name,
build_strategy=build_strategy,
build_strategy=local_build_strategy,
exec_strategy=exe_strategy,
share_vars_from=None)
......@@ -188,7 +187,7 @@ class GraphExecutionOptimizer(MetaOptimizerBase):
startup_program = paddle.default_startup_program()
compiled_program = self._try_to_compile(startup_program,
loss.block.program, loss)
loss.block.program.graph = compiled_program
loss.block.program._graph = compiled_program
# just return self.optimizer_ops and self.param_grads
return None, None
......@@ -3936,6 +3936,9 @@ class Program(object):
# appending gradients times
self._appending_grad_times = 0
# compiled program, i.e. Graph
self._graph = None
def global_seed(self, seed=0):
"""
Set global seed for Program
......
......@@ -27,12 +27,18 @@ class TestStrategyConfig(unittest.TestCase):
strategy.amp = "True"
self.assertEqual(strategy.amp, False)
def test_amp_loss_scaling(self):
strategy = paddle.fleet.DistributedStrategy()
strategy.amp_loss_scaling = 32768
self.assertEqual(strategy.amp_loss_scaling, 32768)
strategy.amp_loss_scaling = 0.1
self.assertEqual(strategy.amp_loss_scaling, 32768)
def test_amp_configs(self):
strategy = paddle.fleet.DistributedStrategy()
configs = {
"init_loss_scaling": 32768,
"decr_every_n_nan_or_inf": 2,
"incr_every_n_steps": 1000,
"incr_ratio": 2.0,
"use_dynamic_loss_scaling": True,
"decr_ratio": 0.5
}
strategy.amp_configs = configs
self.assertEqual(strategy.amp_configs["init_loss_scaling"], 32768)
def test_recompute(self):
strategy = paddle.fleet.DistributedStrategy()
......@@ -43,21 +49,12 @@ class TestStrategyConfig(unittest.TestCase):
strategy.recompute = "True"
self.assertEqual(strategy.recompute, False)
def test_recompute_checkpoints(self):
def test_recompute_configs(self):
strategy = paddle.fleet.DistributedStrategy()
strategy.recompute_checkpoints = ["var1", "var2", "var3"]
self.assertEqual(len(strategy.recompute_checkpoints), 3)
import paddle.fluid as fluid
program = fluid.Program()
cur_block = program.current_block()
var1 = cur_block.create_var(name="var4", shape=[1, 1], dtype="int32")
var2 = cur_block.create_var(name="var5", shape=[1, 1], dtype="int32")
var3 = cur_block.create_var(name="var6", shape=[1, 1], dtype="int32")
strategy.recompute_checkpoints = [var1, var2, var3]
self.assertEqual(len(strategy.recompute_checkpoints), 3)
self.assertEqual(strategy.recompute_checkpoints[0], "var4")
strategy.recompute_checkpoints = [var1, "var2", var3]
self.assertEqual(strategy.recompute_checkpoints[1], "var5")
configs = {"checkpoints": ["x", "y"]}
strategy.recompute_configs = configs
self.assertEqual(len(strategy.recompute_configs["checkpoints"]), 2)
print(strategy.recompute_configs)
def test_pipeline(self):
strategy = paddle.fleet.DistributedStrategy()
......@@ -68,12 +65,11 @@ class TestStrategyConfig(unittest.TestCase):
strategy.pipeline = "True"
self.assertEqual(strategy.pipeline, False)
def test_pipeline_micro_batch(self):
def test_pipeline_configs(self):
strategy = paddle.fleet.DistributedStrategy()
strategy.pipeline_micro_batch = 1
self.assertEqual(strategy.pipeline_micro_batch, 1)
strategy.pipeline_micro_batch = 0.1
self.assertEqual(strategy.pipeline_micro_batch, 1)
configs = {"micro_batch": 4}
strategy.pipeline_configs = configs
self.assertEqual(strategy.pipeline_configs["micro_batch"], 4)
def test_localsgd(self):
strategy = paddle.fleet.DistributedStrategy()
......@@ -84,12 +80,11 @@ class TestStrategyConfig(unittest.TestCase):
strategy.localsgd = "True"
self.assertEqual(strategy.localsgd, False)
def test_localsgd_k_step(self):
def test_localsgd_configs(self):
strategy = paddle.fleet.DistributedStrategy()
strategy.localsgd_k_step = 1
self.assertEqual(strategy.localsgd_k_step, 1)
strategy.localsgd_k_step = "2"
self.assertEqual(strategy.localsgd_k_step, 1)
configs = {"k_steps": 4}
strategy.localsgd_configs = configs
self.assertEqual(strategy.localsgd_configs["k_steps"], 4)
def test_dgc(self):
strategy = paddle.fleet.DistributedStrategy()
......@@ -100,21 +95,14 @@ class TestStrategyConfig(unittest.TestCase):
strategy.dgc = "True"
self.assertEqual(strategy.dgc, False)
def test_hierachical_allreduce(self):
strategy = paddle.fleet.DistributedStrategy()
strategy.hierachical_allreduce = True
self.assertEqual(strategy.hierachical_allreduce, True)
strategy.hierachical_allreduce = False
self.assertEqual(strategy.hierachical_allreduce, False)
strategy.hierachical_allreduce = "True"
self.assertEqual(strategy.hierachical_allreduce, False)
def test_hierachical_allreduce_inter_ranks(self):
def test_sync_nccl_allreduce(self):
strategy = paddle.fleet.DistributedStrategy()
strategy.hierachical_allreduce_inter_ranks = 1
self.assertEqual(strategy.hierachical_allreduce_inter_ranks, 1)
strategy.hierachical_allreduce_inter_ranks = "2"
self.assertEqual(strategy.hierachical_allreduce_inter_ranks, 1)
strategy.sync_nccl_allreduce = True
self.assertEqual(strategy.sync_nccl_allreduce, True)
strategy.sync_nccl_allreduce = False
self.assertEqual(strategy.sync_nccl_allreduce, False)
strategy.sync_nccl_allreduce = "True"
self.assertEqual(strategy.sync_nccl_allreduce, False)
def test_nccl_comm_num(self):
strategy = paddle.fleet.DistributedStrategy()
......@@ -123,6 +111,40 @@ class TestStrategyConfig(unittest.TestCase):
strategy.nccl_comm_num = "2"
self.assertEqual(strategy.nccl_comm_num, 1)
def test_use_hierarchical_allreduce(self):
strategy = paddle.fleet.DistributedStrategy()
strategy.use_hierarchical_allreduce = True
self.assertEqual(strategy.use_hierarchical_allreduce, True)
strategy.use_hierarchical_allreduce = False
self.assertEqual(strategy.use_hierarchical_allreduce, False)
strategy.use_hierarchical_allreduce = "True"
self.assertEqual(strategy.use_hierarchical_allreduce, False)
def test_hierarchical_allreduce_inter_nranks(self):
strategy = paddle.fleet.DistributedStrategy()
strategy.hierarchical_allreduce_inter_nranks = 8
self.assertEqual(strategy.hierarchical_allreduce_inter_nranks, 8)
strategy.hierarchical_allreduce_inter_nranks = "4"
self.assertEqual(strategy.hierarchical_allreduce_inter_nranks, 8)
def test_sync_batch_norm(self):
strategy = paddle.fleet.DistributedStrategy()
strategy.sync_batch_norm = True
self.assertEqual(strategy.sync_batch_norm, True)
strategy.sync_batch_norm = False
self.assertEqual(strategy.sync_batch_norm, False)
strategy.sync_batch_norm = "True"
self.assertEqual(strategy.sync_batch_norm, False)
def test_fuse_all_reduce_ops(self):
strategy = paddle.fleet.DistributedStrategy()
strategy.fuse_all_reduce_ops = True
self.assertEqual(strategy.fuse_all_reduce_ops, True)
strategy.fuse_all_reduce_ops = False
self.assertEqual(strategy.fuse_all_reduce_ops, False)
strategy.fuse_all_reduce_ops = "True"
self.assertEqual(strategy.fuse_all_reduce_ops, False)
def test_gradient_merge(self):
strategy = paddle.fleet.DistributedStrategy()
strategy.gradient_merge = True
......@@ -132,21 +154,11 @@ class TestStrategyConfig(unittest.TestCase):
strategy.gradient_merge = "True"
self.assertEqual(strategy.gradient_merge, False)
def test_gradient_merge_k_step(self):
def test_gradient_merge_configs(self):
strategy = paddle.fleet.DistributedStrategy()
strategy.gradient_merge_k_step = 1
self.assertEqual(strategy.gradient_merge_k_step, 1)
strategy.gradient_merge_k_step = "2"
self.assertEqual(strategy.gradient_merge_k_step, 1)
def test_sequential_execution(self):
strategy = paddle.fleet.DistributedStrategy()
strategy.sequential_execution = True
self.assertEqual(strategy.sequential_execution, True)
strategy.sequential_execution = False
self.assertEqual(strategy.sequential_execution, False)
strategy.sequential_execution = "True"
self.assertEqual(strategy.sequential_execution, False)
configs = {"k_steps": 4}
strategy.gradient_merge_configs = configs
self.assertEqual(strategy.gradient_merge_configs["k_steps"], 4)
def test_lars(self):
strategy = paddle.fleet.DistributedStrategy()
......@@ -166,171 +178,20 @@ class TestStrategyConfig(unittest.TestCase):
strategy.lamb = "True"
self.assertEqual(strategy.lamb, False)
def test_fuse_elewise_add_act_ops(self):
strategy = paddle.fleet.DistributedStrategy()
strategy.fuse_elewise_add_act_ops = True
self.assertEqual(strategy.fuse_elewise_add_act_ops, True)
strategy.fuse_elewise_add_act_ops = False
self.assertEqual(strategy.fuse_elewise_add_act_ops, False)
strategy.fuse_elewise_add_act_ops = "True"
self.assertEqual(strategy.fuse_elewise_add_act_ops, False)
def test_fuse_bn_act_ops(self):
def test_async_update(self):
strategy = paddle.fleet.DistributedStrategy()
strategy.fuse_bn_act_ops = True
self.assertEqual(strategy.fuse_bn_act_ops, True)
strategy.fuse_bn_act_ops = False
self.assertEqual(strategy.fuse_bn_act_ops, False)
strategy.fuse_bn_act_ops = "True"
self.assertEqual(strategy.fuse_bn_act_ops, False)
def test_enable_auto_fusion(self):
strategy = paddle.fleet.DistributedStrategy()
strategy.enable_auto_fusion = True
self.assertEqual(strategy.enable_auto_fusion, True)
strategy.enable_auto_fusion = False
self.assertEqual(strategy.enable_auto_fusion, False)
strategy.enable_auto_fusion = "True"
self.assertEqual(strategy.enable_auto_fusion, False)
def test_fuse_relu_depthwise_conv(self):
strategy = paddle.fleet.DistributedStrategy()
strategy.fuse_relu_depthwise_conv = True
self.assertEqual(strategy.fuse_relu_depthwise_conv, True)
strategy.fuse_relu_depthwise_conv = False
self.assertEqual(strategy.fuse_relu_depthwise_conv, False)
strategy.fuse_relu_depthwise_conv = "True"
self.assertEqual(strategy.fuse_relu_depthwise_conv, False)
def test_enable_inplace(self):
strategy = paddle.fleet.DistributedStrategy()
strategy.enable_inplace = True
self.assertEqual(strategy.enable_inplace, True)
strategy.enable_inplace = False
self.assertEqual(strategy.enable_inplace, False)
strategy.enable_inplace = "True"
self.assertEqual(strategy.enable_inplace, False)
strategy.async_update = True
self.assertEqual(strategy.async_update, True)
strategy.async_update = False
self.assertEqual(strategy.async_update, False)
strategy.async_update = "True"
self.assertEqual(strategy.async_update, False)
def test_fuse_all_reduce_ops(self):
def test_async_configs(self):
strategy = paddle.fleet.DistributedStrategy()
strategy.fuse_all_reduce_ops = True
self.assertEqual(strategy.fuse_all_reduce_ops, True)
strategy.fuse_all_reduce_ops = False
self.assertEqual(strategy.fuse_all_reduce_ops, False)
strategy.fuse_all_reduce_ops = "True"
self.assertEqual(strategy.fuse_all_reduce_ops, False)
def test_num_iteration_per_drop_scope(self):
strategy = paddle.fleet.DistributedStrategy()
strategy.num_iteration_per_drop_scope = 1
self.assertEqual(strategy.num_iteration_per_drop_scope, 1)
strategy.num_iteration_per_drop_scope = 0.1
self.assertEqual(strategy.num_iteration_per_drop_scope, 1)
def test_num_iteration_per_run(self):
strategy = paddle.fleet.DistributedStrategy()
strategy.num_iteration_per_run = 1
self.assertEqual(strategy.num_iteration_per_run, 1)
strategy.num_iteration_per_run = 0.1
self.assertEqual(strategy.num_iteration_per_run, 1)
def test_sync_batch_norm(self):
strategy = paddle.fleet.DistributedStrategy()
strategy.sync_batch_norm = True
self.assertEqual(strategy.sync_batch_norm, True)
strategy.sync_batch_norm = False
self.assertEqual(strategy.sync_batch_norm, False)
strategy.sync_batch_norm = "True"
self.assertEqual(strategy.sync_batch_norm, False)
def test_fuse_all_optimizer_ops(self):
strategy = paddle.fleet.DistributedStrategy()
strategy.fuse_all_optimizer_ops = True
self.assertEqual(strategy.fuse_all_optimizer_ops, True)
strategy.fuse_all_optimizer_ops = False
self.assertEqual(strategy.fuse_all_optimizer_ops, False)
strategy.fuse_all_optimizer_ops = "True"
self.assertEqual(strategy.fuse_all_optimizer_ops, False)
def test_sync(self):
strategy = paddle.fleet.DistributedStrategy()
strategy.sync = True
self.assertEqual(strategy.sync, True)
strategy.sync = False
self.assertEqual(strategy.sync, False)
strategy.sync = "True"
self.assertEqual(strategy.sync, False)
def test_async_k_step(self):
strategy = paddle.fleet.DistributedStrategy()
strategy.async_k_step = 10000
self.assertEqual(strategy.async_k_step, 10000)
strategy.async_k_step = 0.1
self.assertEqual(strategy.async_k_step, 10000)
def test_send_queue_size(self):
strategy = paddle.fleet.DistributedStrategy()
strategy.send_queue_size = 10000
self.assertEqual(strategy.send_queue_size, 10000)
strategy.send_queue_size = 0.1
self.assertEqual(strategy.send_queue_size, 10000)
def test_independent_recv_thread(self):
strategy = paddle.fleet.DistributedStrategy()
strategy.independent_recv_thread = True
self.assertEqual(strategy.independent_recv_thread, True)
strategy.independent_recv_thread = False
self.assertEqual(strategy.independent_recv_thread, False)
strategy.independent_recv_thread = "True"
self.assertEqual(strategy.independent_recv_thread, False)
def test_min_send_grad_num_before_recv(self):
strategy = paddle.fleet.DistributedStrategy()
strategy.min_send_grad_num_before_recv = 10000
self.assertEqual(strategy.min_send_grad_num_before_recv, 10000)
strategy.min_send_grad_num_before_recv = 0.1
self.assertEqual(strategy.min_send_grad_num_before_recv, 10000)
def test_thread_pool_size(self):
strategy = paddle.fleet.DistributedStrategy()
strategy.thread_pool_size = 10000
self.assertEqual(strategy.thread_pool_size, 10000)
strategy.thread_pool_size = 0.1
self.assertEqual(strategy.thread_pool_size, 10000)
def test_send_wait_times(self):
strategy = paddle.fleet.DistributedStrategy()
strategy.send_wait_times = 10000
self.assertEqual(strategy.send_wait_times, 10000)
strategy.send_wait_times = 0.1
self.assertEqual(strategy.send_wait_times, 10000)
def test_runtime_split_send_recv(self):
strategy = paddle.fleet.DistributedStrategy()
strategy.runtime_split_send_recv = True
self.assertEqual(strategy.runtime_split_send_recv, True)
strategy.runtime_split_send_recv = False
self.assertEqual(strategy.runtime_split_send_recv, False)
strategy.runtime_split_send_recv = "True"
self.assertEqual(strategy.runtime_split_send_recv, False)
def use_thread_barrier(self):
strategy = paddle.fleet.DistributedStrategy()
strategy.thread_barrier = True
self.assertEqual(strategy.thread_barrier, True)
strategy.thread_barrier = False
self.assertEqual(strategy.thread_barrier, False)
strategy.thread_barrier = "True"
self.assertEqual(strategy.thread_barrier, False)
def test_enable_backward_optimizer_op_deps(self):
strategy = paddle.fleet.DistributedStrategy()
strategy.enable_backward_optimizer_op_deps = True
self.assertEqual(strategy.enable_backward_optimizer_op_deps, True)
strategy.enable_backward_optimizer_op_deps = False
self.assertEqual(strategy.enable_backward_optimizer_op_deps, False)
strategy.enable_backward_optimizer_op_deps = "True"
self.assertEqual(strategy.enable_backward_optimizer_op_deps, False)
configs = {"k_steps": 1000}
strategy.async_update_configs = configs
self.assertEqual(strategy.async_update_configs["k_steps"], 1000)
def test_elastic(self):
strategy = paddle.fleet.DistributedStrategy()
......@@ -350,39 +211,69 @@ class TestStrategyConfig(unittest.TestCase):
strategy.auto = "True"
self.assertEqual(strategy.auto, False)
def test_sync_nccl_allreduce(self):
strategy = paddle.fleet.DistributedStrategy()
strategy.sync_nccl_allreduce = True
self.assertEqual(strategy.sync_nccl_allreduce, True)
strategy.sync_nccl_allreduce = False
self.assertEqual(strategy.sync_nccl_allreduce, False)
strategy.sync_nccl_allreduce = "True"
self.assertEqual(strategy.sync_nccl_allreduce, False)
def test_fuse_broadcast_ops(self):
strategy = paddle.fleet.DistributedStrategy()
strategy.fuse_broadcast_ops = True
self.assertEqual(strategy.fuse_broadcast_ops, True)
strategy.fuse_broadcast_ops = False
self.assertEqual(strategy.fuse_broadcast_ops, False)
strategy.fuse_broadcast_ops = "True"
self.assertEqual(strategy.fuse_broadcast_ops, False)
def test_num_threads(self):
strategy = paddle.fleet.DistributedStrategy()
strategy.num_threads = 1
self.assertEqual(strategy.num_threads, 1)
strategy.num_threads = 0.1
self.assertEqual(strategy.num_threads, 1)
def test_strategy_prototxt(self):
strategy = paddle.fleet.DistributedStrategy()
strategy.sync_nccl_allreduce = True
strategy.async_update = True
strategy.localsgd = True
strategy.dgc = True
localsgd_configs = {"k_steps": 5}
strategy.localsgd_configs = localsgd_configs
build_strategy = paddle.fluid.BuildStrategy()
build_strategy.enable_sequential_execution = True
build_strategy.nccl_comm_num = 10
build_strategy.use_hierarchical_allreduce = True
build_strategy.hierarchical_allreduce_inter_nranks = 1
build_strategy.fuse_elewise_add_act_ops = True
build_strategy.fuse_bn_act_ops = True
build_strategy.enable_auto_fusion = True
build_strategy.fuse_relu_depthwise_conv = True
build_strategy.fuse_broadcast_ops = True
build_strategy.fuse_all_optimizer_ops = True
build_strategy.sync_batch_norm = True
build_strategy.enable_inplace = True
build_strategy.fuse_all_reduce_ops = True
build_strategy.enable_backward_optimizer_op_deps = True
build_strategy.trainers_endpoints = ["1", "2"]
strategy.build_strategy = build_strategy
exe_strategy = paddle.fluid.ExecutionStrategy()
exe_strategy.num_threads = 10
exe_strategy.num_iteration_per_drop_scope = 10
exe_strategy.num_iteration_per_run = 10
strategy.execution_strategy = exe_strategy
strategy.save_to_prototxt("dist_strategy.prototxt")
strategy2 = paddle.fleet.DistributedStrategy()
strategy2.load_from_prototxt("dist_strategy.prototxt")
self.assertEqual(strategy.sync_nccl_allreduce,
strategy2.sync_nccl_allreduce)
self.assertEqual(strategy.dgc, strategy2.dgc)
def test_build_strategy(self):
build_strategy = paddle.fluid.BuildStrategy()
build_strategy.enable_sequential_execution = True
build_strategy.nccl_comm_num = 10
build_strategy.use_hierarchical_allreduce = True
build_strategy.hierarchical_allreduce_inter_nranks = 1
build_strategy.fuse_elewise_add_act_ops = True
build_strategy.fuse_bn_act_ops = True
build_strategy.enable_auto_fusion = True
build_strategy.fuse_relu_depthwise_conv = True
build_strategy.fuse_broadcast_ops = True
build_strategy.fuse_all_optimizer_ops = True
build_strategy.sync_batch_norm = True
build_strategy.enable_inplace = True
build_strategy.fuse_all_reduce_ops = True
build_strategy.enable_backward_optimizer_op_deps = True
build_strategy.trainers_endpoints = ["1", "2"]
strategy = paddle.fleet.DistributedStrategy()
strategy.build_strategy = build_strategy
def test_execution_strategy(self):
exe_strategy = paddle.fluid.ExecutionStrategy()
exe_strategy.num_threads = 10
exe_strategy.num_iteration_per_drop_scope = 10
exe_strategy.num_iteration_per_run = 10
strategy = paddle.fleet.DistributedStrategy()
strategy.execution_strategy = exe_strategy
if __name__ == '__main__':
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册