@@ -220,6 +221,75 @@ running PaddlePaddle. This is reasonable as Docker now runs on all
...
@@ -220,6 +221,75 @@ running PaddlePaddle. This is reasonable as Docker now runs on all
major operating systems including Linux, Mac OS X, and Windows.
major operating systems including Linux, Mac OS X, and Windows.
Please be aware that you will need to change <aclass="reference external"href="https://github.com/PaddlePaddle/Paddle/issues/627">Dockers settings</a> to make full use
Please be aware that you will need to change <aclass="reference external"href="https://github.com/PaddlePaddle/Paddle/issues/627">Dockers settings</a> to make full use
of your hardware resource on Mac OS X and Windows.</p>
of your hardware resource on Mac OS X and Windows.</p>
docker run <spanclass="si">${</span><spanclass="nv">CUDA_SO</span><spanclass="si">}</span><spanclass="si">${</span><spanclass="nv">DEVICES</span><spanclass="si">}</span> -it paddledev/paddle:0.10.0rc1-gpu
</pre></div>
</div>
</div>
<divclass="section"id="paddlepaddle-book">
<h2>PaddlePaddle Book<aclass="headerlink"href="#paddlepaddle-book"title="Permalink to this headline">¶</a></h2>
<p>The Jupyter Notebook is an open-source web application that allows
you to create and share documents that contain live code, equations,
visualizations and explanatory text in a single browser.</p>
<p>PaddlePaddle Book is an interactive Jupyter Notebook for users and developers.
We already exposed port 8888 for this book. If you want to
dig deeper into deep learning, PaddlePaddle Book definitely is your best choice.</p>
<p>Once you are inside the container, simply issue the command:</p>
docker run <spanclass="si">${</span><spanclass="nv">CUDA_SO</span><spanclass="si">}</span><spanclass="si">${</span><spanclass="nv">DEVICES</span><spanclass="si">}</span> -it paddledev/paddle:0.10.0rc1-gpu
</pre></div>
</div>
</div>
<divclass="section"id="non-avx-images">
<h2>Non-AVX Images<aclass="headerlink"href="#non-avx-images"title="Permalink to this headline">¶</a></h2>
<p>Please be aware that the CPU-only and the GPU images both use the AVX
instruction set, but old computers produced before 2008 do not support
AVX. The following command checks if your Linux computer supports
PaddlePaddle目前唯一官方支持的运行的方式是Docker容器。因为Docker能在所有主要操作系统(包括Linux,Mac OS X和Windows)上运行。 请注意,您需要更改 `Dockers设置 <https://github.com/PaddlePaddle/Paddle/issues/627>`_ 才能充分利用Mac OS X和Windows上的硬件资源。
PaddlePaddle目前唯一官方支持的运行的方式是Docker容器。因为Docker能在所有主要操作系统(包括Linux,Mac OS X和Windows)上运行。 请注意,您需要更改 `Dockers设置 <https://github.com/PaddlePaddle/Paddle/issues/627>`_ 才能充分利用Mac OS X和Windows上的硬件资源。
通过Docker容器开发PaddlePaddle
纯CPU和GPU的docker镜像使用说明
------------------------------
------------------------------
开发人员可以在Docker中开发PaddlePaddle。这样开发人员可以以一致的方式在不同的平台上工作 - Linux,Mac OS X和Windows。
<p>PaddlePaddle目前唯一官方支持的运行的方式是Docker容器。因为Docker能在所有主要操作系统(包括Linux,Mac OS X和Windows)上运行。 请注意,您需要更改 <aclass="reference external"href="https://github.com/PaddlePaddle/Paddle/issues/627">Dockers设置</a> 才能充分利用Mac OS X和Windows上的硬件资源。</p>
<p>PaddlePaddle目前唯一官方支持的运行的方式是Docker容器。因为Docker能在所有主要操作系统(包括Linux,Mac OS X和Windows)上运行。 请注意,您需要更改 <aclass="reference external"href="https://github.com/PaddlePaddle/Paddle/issues/627">Dockers设置</a> 才能充分利用Mac OS X和Windows上的硬件资源。</p>
docker run <spanclass="si">${</span><spanclass="nv">CUDA_SO</span><spanclass="si">}</span><spanclass="si">${</span><spanclass="nv">DEVICES</span><spanclass="si">}</span> -it paddledev/paddle:0.10.0rc1-gpu
docker run <spanclass="si">${</span><spanclass="nv">CUDA_SO</span><spanclass="si">}</span><spanclass="si">${</span><spanclass="nv">DEVICES</span><spanclass="si">}</span> -it paddledev/paddle:0.10.0rc1-gpu