Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
91631492
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
91631492
编写于
9月 07, 2022
作者:
H
houj04
提交者:
GitHub
9月 07, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[XPU] move rnn op to phi. (#45822)
上级
a9cc0274
变更
6
隐藏空白更改
内联
并排
Showing
6 changed file
with
623 addition
and
571 deletion
+623
-571
paddle/fluid/operators/rnn_op_xpu.cc
paddle/fluid/operators/rnn_op_xpu.cc
+0
-571
paddle/fluid/platform/device/npu/CMakeLists.txt
paddle/fluid/platform/device/npu/CMakeLists.txt
+6
-0
paddle/phi/kernels/funcs/math_function.cc
paddle/phi/kernels/funcs/math_function.cc
+13
-0
paddle/phi/kernels/xpu/rnn_grad_kernel.cc
paddle/phi/kernels/xpu/rnn_grad_kernel.cc
+326
-0
paddle/phi/kernels/xpu/rnn_kernel.cc
paddle/phi/kernels/xpu/rnn_kernel.cc
+229
-0
paddle/phi/kernels/xpu/rnn_util.h
paddle/phi/kernels/xpu/rnn_util.h
+49
-0
未找到文件。
paddle/fluid/operators/rnn_op_xpu.cc
已删除
100644 → 0
浏览文件 @
a9cc0274
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifdef PADDLE_WITH_XPU
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/utils.h"
#include "paddle/fluid/platform/device/device_wrapper.h"
#include "paddle/fluid/platform/device/xpu/xpu_header.h"
#include "paddle/fluid/platform/device_context.h"
#include "paddle/phi/kernels/funcs/math_function.h"
namespace
paddle
{
namespace
operators
{
using
Tensor
=
framework
::
Tensor
;
using
DDim
=
framework
::
DDim
;
using
TensorList
=
std
::
vector
<
framework
::
Tensor
>
;
template
<
typename
TensorType
,
typename
T
>
void
reset_parameter_vector
(
const
std
::
vector
<
TensorType
>&
raw_params_vec
,
const
int
&
num_layers
,
const
bool
&
is_bidirec
,
std
::
vector
<
std
::
vector
<
T
*>>*
params_vec
)
{
// the parameter raw seuquence is [FWhi, FWhh, BWhi, BWhh] * num_layers
// + [FBhi, FBhh, BBhi, BBhh] * num_layers, we will reset the parameter to
// ([FWhi, FWhh, FBhi, FBhh] + [BWhi, BWhh, BBhi, BBhh]) * num_layers
const
int
&
direction_num
=
is_bidirec
?
2
:
1
;
const
int
&
layer_weight_size
=
4
*
direction_num
;
const
int
&
all_weight_size
=
num_layers
*
layer_weight_size
;
const
int
&
bias_start_idx
=
all_weight_size
/
2
;
for
(
int
i
=
0
;
i
<
num_layers
;
i
++
)
{
params_vec
->
at
(
i
).
resize
(
layer_weight_size
);
for
(
int
j
=
0
;
j
<
layer_weight_size
;
j
++
)
{
int
k
=
j
%
4
;
const
int
&
section
=
j
/
4
;
int
tensor_idx
=
i
*
2
*
direction_num
+
section
*
2
+
k
%
2
;
if
(
k
>=
2
)
{
tensor_idx
+=
bias_start_idx
;
}
using
remove_cv_t
=
typename
std
::
remove_cv
<
T
>::
type
;
params_vec
->
at
(
i
)[
j
]
=
raw_params_vec
[
tensor_idx
]
->
template
data
<
remove_cv_t
>();
}
}
}
template
<
typename
DeviceContext
,
typename
T
>
class
RnnXPUKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
// Input
auto
*
input
=
ctx
.
Input
<
Tensor
>
(
"Input"
);
auto
pre_state
=
ctx
.
MultiInput
<
Tensor
>
(
"PreState"
);
auto
weight_list
=
ctx
.
MultiInput
<
framework
::
Tensor
>
(
"WeightList"
);
bool
has_seq_length
=
ctx
.
HasInput
(
"SequenceLength"
);
// Output
auto
state
=
ctx
.
MultiOutput
<
Tensor
>
(
"State"
);
auto
*
output
=
ctx
.
Output
<
Tensor
>
(
"Out"
);
auto
*
dropout_mask
=
ctx
.
Output
<
Tensor
>
(
"DropoutState"
);
auto
*
reserve_data
=
ctx
.
Output
<
Tensor
>
(
"Reserve"
);
// Attributes
const
int
&
num_layers
=
ctx
.
Attr
<
int
>
(
"num_layers"
);
const
bool
&
is_bidirec
=
ctx
.
Attr
<
bool
>
(
"is_bidirec"
);
const
int
&
hidden_size
=
ctx
.
Attr
<
int
>
(
"hidden_size"
);
const
std
::
string
&
mode
=
ctx
.
Attr
<
std
::
string
>
(
"mode"
);
const
Tensor
*
sequence_length
=
nullptr
;
if
(
has_seq_length
)
{
sequence_length
=
ctx
.
Input
<
Tensor
>
(
"SequenceLength"
);
}
if
(
dropout_mask
->
IsInitialized
())
{
if
(
dropout_mask
->
numel
()
!=
output
->
numel
())
dropout_mask
->
clear
();
}
dropout_mask
->
mutable_data
<
uint8_t
>
(
output
->
dims
(),
ctx
.
GetPlace
());
auto
&
dev_ctx
=
ctx
.
template
device_context
<
DeviceContext
>();
phi
::
funcs
::
SetConstant
<
platform
::
XPUDeviceContext
,
uint8_t
>
ones
;
ones
(
dev_ctx
,
dropout_mask
,
static_cast
<
uint8_t
>
(
1
));
PADDLE_ENFORCE_EQ
(
mode
,
"LSTM"
,
platform
::
errors
::
InvalidArgument
(
"XPU only support LSTM mode now, current mode is %s"
,
mode
));
auto
init_h
=
pre_state
[
0
];
auto
init_c
=
pre_state
[
1
];
auto
last_h
=
state
[
0
];
auto
last_c
=
state
[
1
];
// check shape
const
int
&
seq_len
=
input
->
dims
()[
0
];
// time_step
const
int
&
batch_size
=
input
->
dims
()[
1
];
const
int
&
input_dim
=
input
->
dims
()[
2
];
const
int
&
direction_num
=
is_bidirec
?
2
:
1
;
PADDLE_ENFORCE_EQ
(
init_h
->
dims
()[
0
],
num_layers
*
direction_num
,
platform
::
errors
::
InvalidArgument
(
"The num_layers of in RNN layer must"
" be the same as first dim of init "
"hidden, but received num_layers:%d,"
" dim:%d"
,
num_layers
,
init_h
->
dims
()[
0
]));
PADDLE_ENFORCE_EQ
(
init_c
->
dims
()[
0
],
num_layers
*
direction_num
,
platform
::
errors
::
InvalidArgument
(
"The num_layers of in RNN layer must"
" be the same as first dim of cell state hidden, but received"
" num_layers:%d, dim:%d"
,
num_layers
,
init_c
->
dims
()[
0
]));
// weightlist
std
::
vector
<
std
::
vector
<
const
T
*>>
parameter_lists
;
parameter_lists
.
resize
(
num_layers
);
reset_parameter_vector
(
weight_list
,
num_layers
,
is_bidirec
,
&
parameter_lists
);
// init the output and allocate the memory
output
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
last_h
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
last_c
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
int
gate_num
=
4
;
int
hidden_data_idx
=
(
num_layers
-
1
);
hidden_data_idx
+=
(
gate_num
+
1
)
*
num_layers
;
const
int
&
block_size
=
direction_num
*
seq_len
*
batch_size
*
hidden_size
;
reserve_data
->
Resize
({
hidden_data_idx
,
block_size
});
reserve_data
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
// get ptr from tensor
auto
x
=
input
->
data
<
T
>
();
auto
init_h_ptr
=
init_h
->
data
<
T
>
();
auto
init_c_ptr
=
init_c
->
data
<
T
>
();
auto
y
=
output
->
data
<
T
>
();
auto
last_h_ptr
=
last_h
->
data
<
T
>
();
auto
last_c_ptr
=
last_c
->
data
<
T
>
();
auto
i_f_g_o_ptr
=
reserve_data
->
data
<
T
>
();
auto
c_ptr
=
i_f_g_o_ptr
+
num_layers
*
block_size
*
4
;
// 4 for i_f_g_o offset
auto
hidden_data_ptr
=
c_ptr
+
num_layers
*
block_size
*
1
;
// 1 for c offset
std
::
vector
<
int
>
seq_len_tensor
(
batch_size
,
seq_len
);
if
(
has_seq_length
)
{
seq_len_tensor
=
operators
::
GetDataFromTensor
(
sequence_length
);
}
int
state_offset
=
pre_state
[
0
]
->
dims
()[
1
]
*
pre_state
[
0
]
->
dims
()[
2
];
const
T
*
cur_input_ptr
=
nullptr
;
int
cur_xdim
=
-
1
;
T
*
cur_output_ptr
=
y
;
for
(
int
i
=
0
;
i
<
num_layers
;
i
++
)
{
auto
i_f_g_o
=
i_f_g_o_ptr
+
i
*
block_size
*
4
;
auto
c
=
c_ptr
+
i
*
block_size
;
cur_output_ptr
=
y
;
if
(
i
<
num_layers
-
1
&&
num_layers
>
1
)
{
cur_output_ptr
=
hidden_data_ptr
+
i
*
block_size
;
}
if
(
i
==
0
)
{
cur_input_ptr
=
x
;
cur_xdim
=
input_dim
;
}
else
{
cur_input_ptr
=
hidden_data_ptr
+
(
i
-
1
)
*
block_size
;
cur_xdim
=
is_bidirec
?
2
*
hidden_size
:
hidden_size
;
}
auto
h_0
=
init_h_ptr
+
direction_num
*
i
*
state_offset
;
auto
c_0
=
init_c_ptr
+
direction_num
*
i
*
state_offset
;
auto
last_h
=
last_h_ptr
+
direction_num
*
i
*
state_offset
;
auto
last_c
=
last_c_ptr
+
direction_num
*
i
*
state_offset
;
auto
w_x
=
parameter_lists
[
i
][
0
];
auto
w_h
=
parameter_lists
[
i
][
1
];
auto
b_x
=
parameter_lists
[
i
][
2
];
auto
b_h
=
parameter_lists
[
i
][
3
];
if
(
is_bidirec
)
{
auto
bw_x
=
parameter_lists
[
i
][
4
];
auto
bw_h
=
parameter_lists
[
i
][
5
];
auto
bb_x
=
parameter_lists
[
i
][
6
];
auto
bb_h
=
parameter_lists
[
i
][
7
];
int
r
=
xpu
::
bilstm_train
<
T
,
T
,
int16_t
>
(
dev_ctx
.
x_context
(),
(
const
T
*
)
cur_input_ptr
,
(
const
T
*
)
h_0
,
(
const
T
*
)
c_0
,
(
const
T
*
)
w_x
,
(
const
T
*
)
w_h
,
(
const
T
*
)
b_x
,
(
const
T
*
)
b_h
,
(
const
T
*
)
bw_x
,
(
const
T
*
)
bw_h
,
(
const
T
*
)
bb_x
,
(
const
T
*
)
bb_h
,
reinterpret_cast
<
T
*>
(
cur_output_ptr
),
reinterpret_cast
<
T
*>
(
last_h
),
reinterpret_cast
<
T
*>
(
last_c
),
batch_size
,
cur_xdim
,
hidden_size
,
seq_len
,
seq_len_tensor
,
nullptr
,
nullptr
,
nullptr
,
nullptr
,
nullptr
,
nullptr
,
reinterpret_cast
<
T
*>
(
i_f_g_o
),
reinterpret_cast
<
T
*>
(
c
));
PADDLE_ENFORCE_XDNN_SUCCESS
(
r
,
"bilstm_train"
);
}
else
{
int
r
=
xpu
::
lstm_train
<
T
,
T
,
int16_t
>
(
dev_ctx
.
x_context
(),
(
const
T
*
)
cur_input_ptr
,
(
const
T
*
)
h_0
,
(
const
T
*
)
c_0
,
(
const
T
*
)
w_x
,
(
const
T
*
)
w_h
,
(
const
T
*
)
b_x
,
(
const
T
*
)
b_h
,
reinterpret_cast
<
T
*>
(
cur_output_ptr
),
reinterpret_cast
<
T
*>
(
last_h
),
reinterpret_cast
<
T
*>
(
last_c
),
batch_size
,
cur_xdim
,
hidden_size
,
seq_len
,
seq_len_tensor
,
nullptr
,
nullptr
,
nullptr
,
nullptr
,
reinterpret_cast
<
T
*>
(
i_f_g_o
),
reinterpret_cast
<
T
*>
(
c
),
xpu
::
Activation_t
::
TANH
,
xpu
::
Activation_t
::
SIGMOID
);
PADDLE_ENFORCE_XDNN_SUCCESS
(
r
,
"lstm_train"
);
}
}
}
};
template
<
typename
DeviceContext
,
typename
T
>
class
RnnXPUGradKernel
:
public
framework
::
OpKernel
<
T
>
{
using
XPUTyp
=
typename
XPUTypeTrait
<
T
>::
Type
;
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
// get the tensor pointer for the input
auto
*
input
=
ctx
.
Input
<
Tensor
>
(
"Input"
);
auto
pre_state
=
ctx
.
MultiInput
<
Tensor
>
(
"PreState"
);
auto
weight_list
=
ctx
.
MultiInput
<
framework
::
Tensor
>
(
"WeightList"
);
auto
*
output
=
ctx
.
Input
<
Tensor
>
(
"Out"
);
auto
*
reserve_data
=
ctx
.
Input
<
Tensor
>
(
"Reserve"
);
const
int
&
num_layers
=
ctx
.
Attr
<
int
>
(
"num_layers"
);
const
bool
&
is_bidirec
=
ctx
.
Attr
<
bool
>
(
"is_bidirec"
);
const
float
&
dropout_prob
=
ctx
.
Attr
<
float
>
(
"dropout_prob"
);
const
int
&
hidden_size
=
ctx
.
Attr
<
int
>
(
"hidden_size"
);
const
std
::
string
&
mode
=
ctx
.
Attr
<
std
::
string
>
(
"mode"
);
bool
has_seq_length
=
ctx
.
HasInput
(
"SequenceLength"
);
const
Tensor
*
sequence_length
=
nullptr
;
if
(
has_seq_length
)
{
sequence_length
=
ctx
.
Input
<
Tensor
>
(
"SequenceLength"
);
}
PADDLE_ENFORCE_EQ
(
mode
,
"LSTM"
,
platform
::
errors
::
InvalidArgument
(
"XPU only support LSTM mode now, current mode is %s"
,
mode
));
auto
init_h
=
pre_state
[
0
];
auto
init_c
=
pre_state
[
1
];
auto
output_grad
=
ctx
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Out"
));
auto
state_grad
=
ctx
.
MultiInput
<
Tensor
>
(
framework
::
GradVarName
(
"State"
));
auto
last_h_grad
=
state_grad
[
0
];
auto
last_c_grad
=
state_grad
[
1
];
// get the tensor pointer for the output
auto
*
input_grad
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"Input"
));
auto
weight_grad_list
=
ctx
.
MultiOutput
<
framework
::
Tensor
>
(
framework
::
GradVarName
(
"WeightList"
));
auto
pre_state_grad
=
ctx
.
MultiOutput
<
Tensor
>
(
framework
::
GradVarName
(
"PreState"
));
Tensor
*
init_h_grad
=
nullptr
;
Tensor
*
init_c_grad
=
nullptr
;
if
(
pre_state_grad
.
size
()
>
0
)
{
// has gradient
init_h_grad
=
pre_state_grad
[
0
];
init_c_grad
=
pre_state_grad
[
1
];
}
// check shape
const
int
&
seq_len
=
input
->
dims
()[
0
];
const
int
&
batch_size
=
input
->
dims
()[
1
];
const
int
&
input_dim
=
input
->
dims
()[
2
];
const
int
&
direction_num
=
is_bidirec
?
2
:
1
;
PADDLE_ENFORCE_EQ
(
init_h
->
dims
()[
0
],
num_layers
*
direction_num
,
platform
::
errors
::
InvalidArgument
(
"The num_layers of in RNN layer must"
" be the same as first dim of init "
"hidden, but received num_layers:%d,"
" dim:%d"
,
num_layers
,
init_h
->
dims
()[
0
]));
PADDLE_ENFORCE_EQ
(
init_c
->
dims
()[
0
],
num_layers
*
direction_num
,
platform
::
errors
::
InvalidArgument
(
"The num_layers of in RNN layer must"
" be the same as first dim of cell state hidden, but received"
" num_layers:%d, dim:%d"
,
num_layers
,
init_c
->
dims
()[
0
]));
std
::
vector
<
std
::
vector
<
const
T
*>>
parameter_lists
;
parameter_lists
.
resize
(
num_layers
);
reset_parameter_vector
(
weight_list
,
num_layers
,
is_bidirec
,
&
parameter_lists
);
for
(
unsigned
int
i
=
0
;
i
<
weight_grad_list
.
size
();
++
i
)
{
weight_grad_list
[
i
]
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
}
std
::
vector
<
std
::
vector
<
T
*>>
parameter_lists_grad
;
parameter_lists_grad
.
resize
(
num_layers
);
reset_parameter_vector
(
weight_grad_list
,
num_layers
,
is_bidirec
,
&
parameter_lists_grad
);
// allocate the memory and initization the input_grad
input_grad
->
mutable_data
<
T
>
(
input
->
dims
(),
ctx
.
GetPlace
());
auto
&
dev_ctx
=
ctx
.
template
device_context
<
DeviceContext
>();
phi
::
funcs
::
SetConstant
<
platform
::
XPUDeviceContext
,
T
>
zero
;
zero
(
dev_ctx
,
input_grad
,
static_cast
<
T
>
(
0.0
));
Tensor
a
,
b
;
Tensor
*
dynamic_grad_pre_h
=
&
a
;
Tensor
*
dynamic_grad_pre_c
=
&
b
;
if
(
init_h_grad
)
{
init_h_grad
->
mutable_data
<
T
>
(
last_h_grad
->
dims
(),
ctx
.
GetPlace
());
zero
(
dev_ctx
,
init_h_grad
,
static_cast
<
T
>
(
0.0
));
}
else
{
dynamic_grad_pre_h
->
Resize
(
last_h_grad
->
dims
());
dynamic_grad_pre_h
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
zero
(
dev_ctx
,
dynamic_grad_pre_h
,
static_cast
<
T
>
(
0.0
));
init_h_grad
=
dynamic_grad_pre_h
;
}
if
(
init_c_grad
)
{
init_c_grad
->
mutable_data
<
T
>
(
last_c_grad
->
dims
(),
ctx
.
GetPlace
());
}
else
{
dynamic_grad_pre_c
->
Resize
(
last_h_grad
->
dims
());
dynamic_grad_pre_c
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
init_c_grad
=
dynamic_grad_pre_c
;
}
Tensor
temp_input_grad_1
,
temp_input_grad_2
;
T
*
input_grad_1_ptr
=
nullptr
;
T
*
input_grad_2_ptr
=
nullptr
;
if
(
num_layers
>=
2
)
{
temp_input_grad_1
.
Resize
(
output_grad
->
dims
());
input_grad_1_ptr
=
temp_input_grad_1
.
mutable_data
<
T
>
(
ctx
.
GetPlace
());
}
if
(
num_layers
>=
3
)
{
temp_input_grad_2
.
Resize
(
output_grad
->
dims
());
input_grad_2_ptr
=
temp_input_grad_2
.
mutable_data
<
T
>
(
ctx
.
GetPlace
());
}
// get ptr from tensor
auto
x
=
input
->
data
<
T
>
();
auto
init_h_ptr
=
init_h
->
data
<
T
>
();
auto
init_c_ptr
=
init_c
->
data
<
T
>
();
auto
y
=
output
->
data
<
T
>
();
auto
y_grad
=
output_grad
->
data
<
T
>
();
auto
last_h_grad_ptr
=
last_h_grad
->
data
<
T
>
();
auto
last_c_grad_ptr
=
last_c_grad
->
data
<
T
>
();
auto
x_grad
=
input_grad
->
data
<
T
>
();
auto
init_h_grad_ptr
=
init_h_grad
->
data
<
T
>
();
auto
init_c_grad_ptr
=
init_c_grad
->
data
<
T
>
();
const
int
&
block_size
=
direction_num
*
seq_len
*
batch_size
*
hidden_size
;
auto
i_f_g_o_ptr
=
reserve_data
->
data
<
T
>
();
auto
c_ptr
=
i_f_g_o_ptr
+
num_layers
*
block_size
*
4
;
auto
hidden_data_ptr
=
c_ptr
+
num_layers
*
block_size
*
1
;
int
state_offset
=
pre_state
[
0
]
->
dims
()[
1
]
*
pre_state
[
0
]
->
dims
()[
2
];
std
::
vector
<
int
>
seq_len_tensor
(
batch_size
,
seq_len
);
if
(
has_seq_length
)
{
seq_len_tensor
=
operators
::
GetDataFromTensor
(
sequence_length
);
}
for
(
int
i
=
num_layers
-
1
;
i
>=
0
;
--
i
)
{
// the layer input output had saved, just use the data
auto
w_x
=
parameter_lists
[
i
][
0
];
auto
w_h
=
parameter_lists
[
i
][
1
];
auto
bw_x
=
parameter_lists
[
i
][
4
];
auto
bw_h
=
parameter_lists
[
i
][
5
];
auto
i_f_g_o
=
i_f_g_o_ptr
+
i
*
block_size
*
4
;
auto
c
=
c_ptr
+
i
*
block_size
;
Tensor
layer_input_t
;
auto
layer_input
=
x
;
if
(
i
>
0
)
{
layer_input_t
.
Resize
(
output
->
dims
());
layer_input
=
layer_input_t
.
mutable_data
<
T
>
(
ctx
.
GetPlace
());
float
scale
=
static_cast
<
float
>
(
1.0
f
-
dropout_prob
);
auto
hidden_data
=
hidden_data_ptr
+
(
i
-
1
)
*
block_size
;
int
r
=
xpu
::
scale
(
dev_ctx
.
x_context
(),
reinterpret_cast
<
const
XPUTyp
*>
(
hidden_data
),
const_cast
<
XPUTyp
*>
(
layer_input
),
output
->
numel
(),
false
,
scale
,
0.0
f
);
PADDLE_ENFORCE_XDNN_SUCCESS
(
r
,
"scale"
);
}
else
{
layer_input
=
x
;
}
auto
layer_output
=
y
;
if
(
i
==
num_layers
-
1
)
{
layer_output
=
y
;
}
else
{
layer_output
=
hidden_data_ptr
+
i
*
block_size
;
}
const
T
*
cur_input_ptr
=
nullptr
;
if
(
i
==
num_layers
-
1
)
{
cur_input_ptr
=
y_grad
;
}
else
if
(
i
%
2
!=
0
)
{
cur_input_ptr
=
input_grad_2_ptr
;
}
else
{
cur_input_ptr
=
input_grad_1_ptr
;
}
T
*
cur_output_ptr
=
nullptr
;
int
cur_xdim
=
-
1
;
if
(
i
==
0
)
{
cur_output_ptr
=
x_grad
;
cur_xdim
=
input_dim
;
}
else
if
(
i
%
2
!=
0
)
{
cur_output_ptr
=
input_grad_1_ptr
;
cur_xdim
=
is_bidirec
?
2
*
hidden_size
:
hidden_size
;
}
else
{
cur_output_ptr
=
input_grad_2_ptr
;
cur_xdim
=
is_bidirec
?
2
*
hidden_size
:
hidden_size
;
}
auto
w_x_grad
=
parameter_lists_grad
[
i
][
0
];
auto
w_h_grad
=
parameter_lists_grad
[
i
][
1
];
auto
b_x_grad
=
parameter_lists_grad
[
i
][
2
];
auto
b_h_grad
=
parameter_lists_grad
[
i
][
3
];
auto
h_0
=
init_h_ptr
+
direction_num
*
i
*
state_offset
;
auto
c_0
=
init_c_ptr
+
direction_num
*
i
*
state_offset
;
auto
h_0_grad
=
init_h_grad_ptr
+
direction_num
*
i
*
state_offset
;
auto
c_0_grad
=
init_c_grad_ptr
+
direction_num
*
i
*
state_offset
;
auto
h_t_grad
=
last_h_grad_ptr
+
direction_num
*
i
*
state_offset
;
auto
c_t_grad
=
last_c_grad_ptr
+
direction_num
*
i
*
state_offset
;
if
(
is_bidirec
)
{
auto
bw_x_grad
=
parameter_lists_grad
[
i
][
4
];
auto
bw_h_grad
=
parameter_lists_grad
[
i
][
5
];
auto
bb_x_grad
=
parameter_lists_grad
[
i
][
6
];
auto
bb_h_grad
=
parameter_lists_grad
[
i
][
7
];
int
r
=
xpu
::
bilstm_grad
<
T
,
T
,
int16_t
>
(
dev_ctx
.
x_context
(),
(
const
T
*
)
layer_input
,
(
const
T
*
)
h_0
,
(
const
T
*
)
c_0
,
(
const
T
*
)
w_x
,
(
const
T
*
)
w_h
,
(
const
T
*
)
bw_x
,
(
const
T
*
)
bw_h
,
(
const
T
*
)
layer_output
,
(
const
T
*
)
cur_input_ptr
,
(
const
T
*
)
h_t_grad
,
(
const
T
*
)
c_t_grad
,
reinterpret_cast
<
T
*>
(
cur_output_ptr
),
reinterpret_cast
<
T
*>
(
h_0_grad
),
reinterpret_cast
<
T
*>
(
c_0_grad
),
w_x_grad
,
w_h_grad
,
b_x_grad
,
b_h_grad
,
bw_x_grad
,
bw_h_grad
,
bb_x_grad
,
bb_h_grad
,
batch_size
,
cur_xdim
,
hidden_size
,
seq_len
,
seq_len_tensor
,
nullptr
,
nullptr
,
nullptr
,
nullptr
,
nullptr
,
nullptr
,
i_f_g_o
,
c
);
PADDLE_ENFORCE_XDNN_SUCCESS
(
r
,
"bilstm_grad"
);
}
else
{
int
r
=
xpu
::
lstm_grad
<
T
,
T
,
int16_t
>
(
dev_ctx
.
x_context
(),
(
const
T
*
)
layer_input
,
(
const
T
*
)
h_0
,
(
const
T
*
)
c_0
,
(
const
T
*
)
w_x
,
(
const
T
*
)
w_h
,
(
const
T
*
)
layer_output
,
(
const
T
*
)
cur_input_ptr
,
(
const
T
*
)
h_t_grad
,
(
const
T
*
)
c_t_grad
,
reinterpret_cast
<
T
*>
(
cur_output_ptr
),
reinterpret_cast
<
T
*>
(
h_0_grad
),
reinterpret_cast
<
T
*>
(
c_0_grad
),
w_x_grad
,
w_h_grad
,
b_x_grad
,
b_h_grad
,
batch_size
,
cur_xdim
,
hidden_size
,
seq_len
,
seq_len_tensor
,
nullptr
,
nullptr
,
nullptr
,
nullptr
,
i_f_g_o
,
c
);
PADDLE_ENFORCE_XDNN_SUCCESS
(
r
,
"lstm_grad"
);
}
}
}
};
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
REGISTER_OP_XPU_KERNEL
(
rnn
,
ops
::
RnnXPUKernel
<
paddle
::
platform
::
XPUDeviceContext
,
float
>
);
REGISTER_OP_XPU_KERNEL
(
rnn_grad
,
ops
::
RnnXPUGradKernel
<
paddle
::
platform
::
XPUDeviceContext
,
float
>
);
#endif // PADDLE_WITH_XPU
paddle/fluid/platform/device/npu/CMakeLists.txt
浏览文件 @
91631492
...
...
@@ -31,3 +31,9 @@ if(WITH_ASCEND_CL)
SRCS npu_op_runner.cc
DEPS operator npu_info
)
endif
()
# every source file that includes "dnnl.h" must depends on mkldnn
# or, the first one should depends on mkldnn
if
(
WITH_MKLDNN
)
add_dependencies
(
npu_collective_helper mkldnn
)
endif
()
paddle/phi/kernels/funcs/math_function.cc
浏览文件 @
91631492
...
...
@@ -67,6 +67,19 @@ template struct SetConstant<paddle::platform::XPUDeviceContext,
phi
::
dtype
::
complex
<
float
>
>
;
template
struct
SetConstant
<
paddle
::
platform
::
XPUDeviceContext
,
phi
::
dtype
::
complex
<
double
>
>
;
template
struct
SetConstant
<
phi
::
XPUContext
,
phi
::
dtype
::
float16
>;
template
struct
SetConstant
<
phi
::
XPUContext
,
phi
::
dtype
::
bfloat16
>;
template
struct
SetConstant
<
phi
::
XPUContext
,
float
>;
template
struct
SetConstant
<
phi
::
XPUContext
,
double
>;
template
struct
SetConstant
<
phi
::
XPUContext
,
uint8_t
>;
template
struct
SetConstant
<
phi
::
XPUContext
,
int16_t
>;
template
struct
SetConstant
<
phi
::
XPUContext
,
int
>;
template
struct
SetConstant
<
phi
::
XPUContext
,
int64_t
>;
template
struct
SetConstant
<
phi
::
XPUContext
,
bool
>;
template
struct
SetConstant
<
phi
::
XPUContext
,
phi
::
dtype
::
complex
<
float
>
>
;
template
struct
SetConstant
<
phi
::
XPUContext
,
phi
::
dtype
::
complex
<
double
>
>
;
#endif
#define DEFINE_CPU_TRANS(RANK) \
...
...
paddle/phi/kernels/xpu/rnn_grad_kernel.cc
0 → 100644
浏览文件 @
91631492
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/phi/kernels/rnn_grad_kernel.h"
#include "paddle/fluid/operators/utils.h"
#include "paddle/phi/backends/xpu/enforce_xpu.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/funcs/math_function.h"
#include "paddle/phi/kernels/xpu/rnn_util.h"
namespace
phi
{
template
<
typename
T
,
typename
Context
>
void
RnnGradKernel
(
const
Context
&
dev_ctx
,
const
DenseTensor
&
x
,
const
std
::
vector
<
const
DenseTensor
*>&
pre_state
,
const
std
::
vector
<
const
DenseTensor
*>&
weight_list
,
const
paddle
::
optional
<
DenseTensor
>&
sequence_length
,
const
DenseTensor
&
out
,
const
DenseTensor
&
dropout_state
,
const
DenseTensor
&
reserve
,
const
DenseTensor
&
out_grad
,
const
std
::
vector
<
const
DenseTensor
*>&
state_grad
,
float
dropout_prob
,
bool
is_bidirec
,
int
input_size
,
int
hidden_size
,
int
num_layers
,
const
std
::
string
&
mode
,
int
seed
,
bool
is_test
,
DenseTensor
*
x_grad
,
std
::
vector
<
DenseTensor
*>
pre_state_grad
,
std
::
vector
<
DenseTensor
*>
weight_grad_list
)
{
using
XPUTyp
=
typename
XPUTypeTrait
<
T
>::
Type
;
PADDLE_ENFORCE_EQ
(
mode
,
"LSTM"
,
errors
::
InvalidArgument
(
"XPU only support LSTM mode now, current mode is %s"
,
mode
));
auto
init_h
=
pre_state
[
0
];
auto
init_c
=
pre_state
[
1
];
auto
last_h_grad
=
state_grad
[
0
];
auto
last_c_grad
=
state_grad
[
1
];
// get the tensor pointer for the output
DenseTensor
*
init_h_grad
=
nullptr
;
DenseTensor
*
init_c_grad
=
nullptr
;
if
(
pre_state_grad
.
size
()
>
0
)
{
// has gradient
init_h_grad
=
pre_state_grad
[
0
];
init_c_grad
=
pre_state_grad
[
1
];
}
// check shape
const
int
&
seq_len
=
x
.
dims
()[
0
];
const
int
&
batch_size
=
x
.
dims
()[
1
];
const
int
&
input_dim
=
x
.
dims
()[
2
];
const
int
&
direction_num
=
is_bidirec
?
2
:
1
;
PADDLE_ENFORCE_EQ
(
init_h
->
dims
()[
0
],
num_layers
*
direction_num
,
errors
::
InvalidArgument
(
"The num_layers of in RNN layer must"
" be the same as first dim of init "
"hidden, but received num_layers:%d,"
" dim:%d"
,
num_layers
,
init_h
->
dims
()[
0
]));
PADDLE_ENFORCE_EQ
(
init_c
->
dims
()[
0
],
num_layers
*
direction_num
,
errors
::
InvalidArgument
(
"The num_layers of in RNN layer must"
" be the same as first dim of cell state hidden, but received"
" num_layers:%d, dim:%d"
,
num_layers
,
init_c
->
dims
()[
0
]));
std
::
vector
<
std
::
vector
<
const
T
*>>
parameter_lists
;
parameter_lists
.
resize
(
num_layers
);
reset_parameter_vector
(
weight_list
,
num_layers
,
is_bidirec
,
&
parameter_lists
);
for
(
unsigned
int
i
=
0
;
i
<
weight_grad_list
.
size
();
++
i
)
{
dev_ctx
.
template
Alloc
<
T
>(
weight_grad_list
[
i
]);
}
std
::
vector
<
std
::
vector
<
T
*>>
parameter_lists_grad
;
parameter_lists_grad
.
resize
(
num_layers
);
reset_parameter_vector
(
weight_grad_list
,
num_layers
,
is_bidirec
,
&
parameter_lists_grad
);
// allocate the memory and initization the x_grad
x_grad
->
Resize
(
x
.
dims
());
dev_ctx
.
template
Alloc
<
T
>(
x_grad
);
phi
::
funcs
::
SetConstant
<
phi
::
XPUContext
,
T
>
zero
;
zero
(
dev_ctx
,
x_grad
,
static_cast
<
T
>
(
0.0
));
DenseTensor
a
,
b
;
DenseTensor
*
dynamic_grad_pre_h
=
&
a
;
DenseTensor
*
dynamic_grad_pre_c
=
&
b
;
if
(
init_h_grad
)
{
init_h_grad
->
Resize
(
last_h_grad
->
dims
());
dev_ctx
.
template
Alloc
<
T
>(
init_h_grad
);
zero
(
dev_ctx
,
init_h_grad
,
static_cast
<
T
>
(
0.0
));
}
else
{
dynamic_grad_pre_h
->
Resize
(
last_h_grad
->
dims
());
dev_ctx
.
template
Alloc
<
T
>(
dynamic_grad_pre_h
);
zero
(
dev_ctx
,
dynamic_grad_pre_h
,
static_cast
<
T
>
(
0.0
));
init_h_grad
=
dynamic_grad_pre_h
;
}
if
(
init_c_grad
)
{
init_c_grad
->
Resize
(
last_c_grad
->
dims
());
dev_ctx
.
template
Alloc
<
T
>(
init_c_grad
);
}
else
{
dynamic_grad_pre_c
->
Resize
(
last_h_grad
->
dims
());
dev_ctx
.
template
Alloc
<
T
>(
dynamic_grad_pre_c
);
init_c_grad
=
dynamic_grad_pre_c
;
}
DenseTensor
temp_input_grad_1
,
temp_input_grad_2
;
T
*
input_grad_1_ptr
=
nullptr
;
T
*
input_grad_2_ptr
=
nullptr
;
if
(
num_layers
>=
2
)
{
temp_input_grad_1
.
Resize
(
x_grad
->
dims
());
input_grad_1_ptr
=
dev_ctx
.
template
Alloc
<
T
>(
&
temp_input_grad_1
);
}
if
(
num_layers
>=
3
)
{
temp_input_grad_2
.
Resize
(
x_grad
->
dims
());
input_grad_2_ptr
=
dev_ctx
.
template
Alloc
<
T
>(
&
temp_input_grad_2
);
}
// get ptr from tensor
auto
x_data
=
x
.
data
<
T
>
();
auto
init_h_ptr
=
init_h
->
data
<
T
>
();
auto
init_c_ptr
=
init_c
->
data
<
T
>
();
auto
y
=
out
.
data
<
T
>
();
auto
y_grad
=
out_grad
.
data
<
T
>
();
auto
last_h_grad_ptr
=
last_h_grad
->
data
<
T
>
();
auto
last_c_grad_ptr
=
last_c_grad
->
data
<
T
>
();
auto
x_grad_data
=
x_grad
->
data
<
T
>
();
auto
init_h_grad_ptr
=
init_h_grad
->
data
<
T
>
();
auto
init_c_grad_ptr
=
init_c_grad
->
data
<
T
>
();
const
int
&
block_size
=
direction_num
*
seq_len
*
batch_size
*
hidden_size
;
auto
i_f_g_o_ptr
=
reserve
.
data
<
T
>
();
auto
c_ptr
=
i_f_g_o_ptr
+
num_layers
*
block_size
*
4
;
auto
hidden_data_ptr
=
c_ptr
+
num_layers
*
block_size
*
1
;
int
state_offset
=
pre_state
[
0
]
->
dims
()[
1
]
*
pre_state
[
0
]
->
dims
()[
2
];
bool
has_seq_length
=
sequence_length
.
is_initialized
();
std
::
vector
<
int
>
seq_len_tensor
(
batch_size
,
seq_len
);
if
(
has_seq_length
)
{
seq_len_tensor
=
paddle
::
operators
::
GetDataFromTensor
<
int
>
(
sequence_length
.
get_ptr
());
}
for
(
int
i
=
num_layers
-
1
;
i
>=
0
;
--
i
)
{
// the layer input output had saved, just use the data
auto
w_x
=
parameter_lists
[
i
][
0
];
auto
w_h
=
parameter_lists
[
i
][
1
];
auto
bw_x
=
parameter_lists
[
i
][
4
];
auto
bw_h
=
parameter_lists
[
i
][
5
];
auto
i_f_g_o
=
i_f_g_o_ptr
+
i
*
block_size
*
4
;
auto
c
=
c_ptr
+
i
*
block_size
;
DenseTensor
layer_input_t
;
auto
layer_input
=
x_data
;
if
(
i
>
0
)
{
layer_input_t
.
Resize
(
out
.
dims
());
layer_input
=
dev_ctx
.
template
Alloc
<
T
>(
&
layer_input_t
);
float
scale
=
static_cast
<
float
>
(
1.0
f
-
dropout_prob
);
auto
hidden_data
=
hidden_data_ptr
+
(
i
-
1
)
*
block_size
;
int
r
=
xpu
::
scale
(
dev_ctx
.
x_context
(),
reinterpret_cast
<
const
XPUTyp
*>
(
hidden_data
),
const_cast
<
XPUTyp
*>
(
layer_input
),
out
.
numel
(),
false
,
scale
,
0.0
f
);
PADDLE_ENFORCE_XDNN_SUCCESS
(
r
,
"scale"
);
}
else
{
layer_input
=
x_data
;
}
auto
layer_output
=
y
;
if
(
i
==
num_layers
-
1
)
{
layer_output
=
y
;
}
else
{
layer_output
=
hidden_data_ptr
+
i
*
block_size
;
}
const
T
*
cur_input_ptr
=
nullptr
;
if
(
i
==
num_layers
-
1
)
{
cur_input_ptr
=
y_grad
;
}
else
if
(
i
%
2
!=
0
)
{
cur_input_ptr
=
input_grad_2_ptr
;
}
else
{
cur_input_ptr
=
input_grad_1_ptr
;
}
T
*
cur_output_ptr
=
nullptr
;
int
cur_xdim
=
-
1
;
if
(
i
==
0
)
{
cur_output_ptr
=
x_grad_data
;
cur_xdim
=
input_dim
;
}
else
if
(
i
%
2
!=
0
)
{
cur_output_ptr
=
input_grad_1_ptr
;
cur_xdim
=
is_bidirec
?
2
*
hidden_size
:
hidden_size
;
}
else
{
cur_output_ptr
=
input_grad_2_ptr
;
cur_xdim
=
is_bidirec
?
2
*
hidden_size
:
hidden_size
;
}
auto
w_x_grad
=
parameter_lists_grad
[
i
][
0
];
auto
w_h_grad
=
parameter_lists_grad
[
i
][
1
];
auto
b_x_grad
=
parameter_lists_grad
[
i
][
2
];
auto
b_h_grad
=
parameter_lists_grad
[
i
][
3
];
auto
h_0
=
init_h_ptr
+
direction_num
*
i
*
state_offset
;
auto
c_0
=
init_c_ptr
+
direction_num
*
i
*
state_offset
;
auto
h_0_grad
=
init_h_grad_ptr
+
direction_num
*
i
*
state_offset
;
auto
c_0_grad
=
init_c_grad_ptr
+
direction_num
*
i
*
state_offset
;
auto
h_t_grad
=
last_h_grad_ptr
+
direction_num
*
i
*
state_offset
;
auto
c_t_grad
=
last_c_grad_ptr
+
direction_num
*
i
*
state_offset
;
if
(
is_bidirec
)
{
auto
bw_x_grad
=
parameter_lists_grad
[
i
][
4
];
auto
bw_h_grad
=
parameter_lists_grad
[
i
][
5
];
auto
bb_x_grad
=
parameter_lists_grad
[
i
][
6
];
auto
bb_h_grad
=
parameter_lists_grad
[
i
][
7
];
int
r
=
xpu
::
bilstm_grad
<
T
,
T
,
int16_t
>
(
dev_ctx
.
x_context
(),
(
const
T
*
)
layer_input
,
(
const
T
*
)
h_0
,
(
const
T
*
)
c_0
,
(
const
T
*
)
w_x
,
(
const
T
*
)
w_h
,
(
const
T
*
)
bw_x
,
(
const
T
*
)
bw_h
,
(
const
T
*
)
layer_output
,
(
const
T
*
)
cur_input_ptr
,
(
const
T
*
)
h_t_grad
,
(
const
T
*
)
c_t_grad
,
reinterpret_cast
<
T
*>
(
cur_output_ptr
),
reinterpret_cast
<
T
*>
(
h_0_grad
),
reinterpret_cast
<
T
*>
(
c_0_grad
),
w_x_grad
,
w_h_grad
,
b_x_grad
,
b_h_grad
,
bw_x_grad
,
bw_h_grad
,
bb_x_grad
,
bb_h_grad
,
batch_size
,
cur_xdim
,
hidden_size
,
seq_len
,
seq_len_tensor
,
nullptr
,
nullptr
,
nullptr
,
nullptr
,
nullptr
,
nullptr
,
i_f_g_o
,
c
);
PADDLE_ENFORCE_XDNN_SUCCESS
(
r
,
"bilstm_grad"
);
}
else
{
int
r
=
xpu
::
lstm_grad
<
T
,
T
,
int16_t
>
(
dev_ctx
.
x_context
(),
(
const
T
*
)
layer_input
,
(
const
T
*
)
h_0
,
(
const
T
*
)
c_0
,
(
const
T
*
)
w_x
,
(
const
T
*
)
w_h
,
(
const
T
*
)
layer_output
,
(
const
T
*
)
cur_input_ptr
,
(
const
T
*
)
h_t_grad
,
(
const
T
*
)
c_t_grad
,
reinterpret_cast
<
T
*>
(
cur_output_ptr
),
reinterpret_cast
<
T
*>
(
h_0_grad
),
reinterpret_cast
<
T
*>
(
c_0_grad
),
w_x_grad
,
w_h_grad
,
b_x_grad
,
b_h_grad
,
batch_size
,
cur_xdim
,
hidden_size
,
seq_len
,
seq_len_tensor
,
nullptr
,
nullptr
,
nullptr
,
nullptr
,
i_f_g_o
,
c
);
PADDLE_ENFORCE_XDNN_SUCCESS
(
r
,
"lstm_grad"
);
}
}
}
}
// namespace phi
PD_REGISTER_KERNEL
(
rnn_grad
,
XPU
,
ALL_LAYOUT
,
phi
::
RnnGradKernel
,
float
)
{}
paddle/phi/kernels/xpu/rnn_kernel.cc
0 → 100644
浏览文件 @
91631492
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/phi/kernels/rnn_kernel.h"
#include "paddle/fluid/operators/utils.h"
#include "paddle/phi/backends/xpu/enforce_xpu.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/funcs/math_function.h"
#include "paddle/phi/kernels/xpu/rnn_util.h"
namespace
phi
{
template
<
typename
T
,
typename
Context
>
void
RnnKernel
(
const
Context
&
dev_ctx
,
const
DenseTensor
&
x
,
const
std
::
vector
<
const
DenseTensor
*>&
pre_state
,
const
std
::
vector
<
const
DenseTensor
*>&
weight_list
,
const
paddle
::
optional
<
DenseTensor
>&
sequence_length
,
float
dropout_prob
,
bool
is_bidirec
,
int
input_size
,
int
hidden_size
,
int
num_layers
,
const
std
::
string
&
mode
,
int
seed
,
bool
is_test
,
DenseTensor
*
out
,
DenseTensor
*
dropout_state
,
std
::
vector
<
DenseTensor
*>
state
,
DenseTensor
*
reserve
)
{
using
XPUTyp
=
typename
XPUTypeTrait
<
T
>::
Type
;
if
(
dropout_state
->
IsInitialized
())
{
if
(
dropout_state
->
numel
()
!=
out
->
numel
())
dropout_state
->
clear
();
}
dropout_state
->
Resize
(
out
->
dims
());
dev_ctx
.
template
Alloc
<
T
>(
dropout_state
);
phi
::
funcs
::
SetConstant
<
phi
::
XPUContext
,
uint8_t
>
ones
;
ones
(
dev_ctx
,
dropout_state
,
static_cast
<
uint8_t
>
(
1
));
PADDLE_ENFORCE_EQ
(
mode
,
"LSTM"
,
errors
::
InvalidArgument
(
"XPU only support LSTM mode now, current mode is %s"
,
mode
));
auto
init_h
=
pre_state
[
0
];
auto
init_c
=
pre_state
[
1
];
auto
last_h
=
state
[
0
];
auto
last_c
=
state
[
1
];
// check shape
const
int
&
seq_len
=
x
.
dims
()[
0
];
// time_step
const
int
&
batch_size
=
x
.
dims
()[
1
];
const
int
&
input_dim
=
x
.
dims
()[
2
];
const
int
&
direction_num
=
is_bidirec
?
2
:
1
;
PADDLE_ENFORCE_EQ
(
init_h
->
dims
()[
0
],
num_layers
*
direction_num
,
errors
::
InvalidArgument
(
"The num_layers of in RNN layer must"
" be the same as first dim of init "
"hidden, but received num_layers:%d,"
" dim:%d"
,
num_layers
,
init_h
->
dims
()[
0
]));
PADDLE_ENFORCE_EQ
(
init_c
->
dims
()[
0
],
num_layers
*
direction_num
,
errors
::
InvalidArgument
(
"The num_layers of in RNN layer must"
" be the same as first dim of cell state hidden, but received"
" num_layers:%d, dim:%d"
,
num_layers
,
init_c
->
dims
()[
0
]));
// weightlist
std
::
vector
<
std
::
vector
<
const
T
*>>
parameter_lists
;
parameter_lists
.
resize
(
num_layers
);
reset_parameter_vector
(
weight_list
,
num_layers
,
is_bidirec
,
&
parameter_lists
);
// init the output and allocate the memory
dev_ctx
.
template
Alloc
<
T
>(
out
);
dev_ctx
.
template
Alloc
<
T
>(
last_h
);
dev_ctx
.
template
Alloc
<
T
>(
last_c
);
int
gate_num
=
4
;
int
hidden_data_idx
=
(
num_layers
-
1
);
hidden_data_idx
+=
(
gate_num
+
1
)
*
num_layers
;
const
int
&
block_size
=
direction_num
*
seq_len
*
batch_size
*
hidden_size
;
reserve
->
Resize
({
hidden_data_idx
,
block_size
});
dev_ctx
.
template
Alloc
<
T
>(
reserve
);
// get ptr from tensor
auto
x_data
=
x
.
data
<
T
>
();
auto
init_h_ptr
=
init_h
->
data
<
T
>
();
auto
init_c_ptr
=
init_c
->
data
<
T
>
();
auto
y
=
out
->
data
<
T
>
();
auto
last_h_ptr
=
last_h
->
data
<
T
>
();
auto
last_c_ptr
=
last_c
->
data
<
T
>
();
auto
i_f_g_o_ptr
=
reserve
->
data
<
T
>
();
auto
c_ptr
=
i_f_g_o_ptr
+
num_layers
*
block_size
*
4
;
// 4 for i_f_g_o offset
auto
hidden_data_ptr
=
c_ptr
+
num_layers
*
block_size
*
1
;
// 1 for c offset
std
::
vector
<
int
>
seq_len_tensor
(
batch_size
,
seq_len
);
bool
has_seq_length
=
sequence_length
.
is_initialized
();
if
(
has_seq_length
)
{
seq_len_tensor
=
paddle
::
operators
::
GetDataFromTensor
<
int
>
(
sequence_length
.
get_ptr
());
}
int
state_offset
=
pre_state
[
0
]
->
dims
()[
1
]
*
pre_state
[
0
]
->
dims
()[
2
];
const
T
*
cur_input_ptr
=
nullptr
;
int
cur_xdim
=
-
1
;
T
*
cur_output_ptr
=
y
;
for
(
int
i
=
0
;
i
<
num_layers
;
i
++
)
{
auto
i_f_g_o
=
i_f_g_o_ptr
+
i
*
block_size
*
4
;
auto
c
=
c_ptr
+
i
*
block_size
;
cur_output_ptr
=
y
;
if
(
i
<
num_layers
-
1
&&
num_layers
>
1
)
{
cur_output_ptr
=
hidden_data_ptr
+
i
*
block_size
;
}
if
(
i
==
0
)
{
cur_input_ptr
=
x_data
;
cur_xdim
=
input_dim
;
}
else
{
cur_input_ptr
=
hidden_data_ptr
+
(
i
-
1
)
*
block_size
;
cur_xdim
=
is_bidirec
?
2
*
hidden_size
:
hidden_size
;
}
auto
h_0
=
init_h_ptr
+
direction_num
*
i
*
state_offset
;
auto
c_0
=
init_c_ptr
+
direction_num
*
i
*
state_offset
;
auto
last_h
=
last_h_ptr
+
direction_num
*
i
*
state_offset
;
auto
last_c
=
last_c_ptr
+
direction_num
*
i
*
state_offset
;
auto
w_x
=
parameter_lists
[
i
][
0
];
auto
w_h
=
parameter_lists
[
i
][
1
];
auto
b_x
=
parameter_lists
[
i
][
2
];
auto
b_h
=
parameter_lists
[
i
][
3
];
if
(
is_bidirec
)
{
auto
bw_x
=
parameter_lists
[
i
][
4
];
auto
bw_h
=
parameter_lists
[
i
][
5
];
auto
bb_x
=
parameter_lists
[
i
][
6
];
auto
bb_h
=
parameter_lists
[
i
][
7
];
int
r
=
xpu
::
bilstm_train
<
T
,
T
,
int16_t
>
(
dev_ctx
.
x_context
(),
(
const
T
*
)
cur_input_ptr
,
(
const
T
*
)
h_0
,
(
const
T
*
)
c_0
,
(
const
T
*
)
w_x
,
(
const
T
*
)
w_h
,
(
const
T
*
)
b_x
,
(
const
T
*
)
b_h
,
(
const
T
*
)
bw_x
,
(
const
T
*
)
bw_h
,
(
const
T
*
)
bb_x
,
(
const
T
*
)
bb_h
,
reinterpret_cast
<
T
*>
(
cur_output_ptr
),
reinterpret_cast
<
T
*>
(
last_h
),
reinterpret_cast
<
T
*>
(
last_c
),
batch_size
,
cur_xdim
,
hidden_size
,
seq_len
,
seq_len_tensor
,
nullptr
,
nullptr
,
nullptr
,
nullptr
,
nullptr
,
nullptr
,
reinterpret_cast
<
T
*>
(
i_f_g_o
),
reinterpret_cast
<
T
*>
(
c
));
PADDLE_ENFORCE_XDNN_SUCCESS
(
r
,
"bilstm_train"
);
}
else
{
int
r
=
xpu
::
lstm_train
<
T
,
T
,
int16_t
>
(
dev_ctx
.
x_context
(),
(
const
T
*
)
cur_input_ptr
,
(
const
T
*
)
h_0
,
(
const
T
*
)
c_0
,
(
const
T
*
)
w_x
,
(
const
T
*
)
w_h
,
(
const
T
*
)
b_x
,
(
const
T
*
)
b_h
,
reinterpret_cast
<
T
*>
(
cur_output_ptr
),
reinterpret_cast
<
T
*>
(
last_h
),
reinterpret_cast
<
T
*>
(
last_c
),
batch_size
,
cur_xdim
,
hidden_size
,
seq_len
,
seq_len_tensor
,
nullptr
,
nullptr
,
nullptr
,
nullptr
,
reinterpret_cast
<
T
*>
(
i_f_g_o
),
reinterpret_cast
<
T
*>
(
c
),
xpu
::
Activation_t
::
TANH
,
xpu
::
Activation_t
::
SIGMOID
);
PADDLE_ENFORCE_XDNN_SUCCESS
(
r
,
"lstm_train"
);
}
}
}
}
// namespace phi
PD_REGISTER_KERNEL
(
rnn
,
XPU
,
ALL_LAYOUT
,
phi
::
RnnKernel
,
float
)
{}
paddle/phi/kernels/xpu/rnn_util.h
0 → 100644
浏览文件 @
91631492
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <vector>
namespace
phi
{
template
<
typename
TensorType
,
typename
T
>
void
reset_parameter_vector
(
const
std
::
vector
<
TensorType
>&
raw_params_vec
,
const
int
&
num_layers
,
const
bool
&
is_bidirec
,
std
::
vector
<
std
::
vector
<
T
*>>*
params_vec
)
{
// the parameter raw seuquence is [FWhi, FWhh, BWhi, BWhh] * num_layers
// + [FBhi, FBhh, BBhi, BBhh] * num_layers, we will reset the parameter to
// ([FWhi, FWhh, FBhi, FBhh] + [BWhi, BWhh, BBhi, BBhh]) * num_layers
const
int
&
direction_num
=
is_bidirec
?
2
:
1
;
const
int
&
layer_weight_size
=
4
*
direction_num
;
const
int
&
all_weight_size
=
num_layers
*
layer_weight_size
;
const
int
&
bias_start_idx
=
all_weight_size
/
2
;
for
(
int
i
=
0
;
i
<
num_layers
;
i
++
)
{
params_vec
->
at
(
i
).
resize
(
layer_weight_size
);
for
(
int
j
=
0
;
j
<
layer_weight_size
;
j
++
)
{
int
k
=
j
%
4
;
const
int
&
section
=
j
/
4
;
int
tensor_idx
=
i
*
2
*
direction_num
+
section
*
2
+
k
%
2
;
if
(
k
>=
2
)
{
tensor_idx
+=
bias_start_idx
;
}
using
remove_cv_t
=
typename
std
::
remove_cv
<
T
>::
type
;
params_vec
->
at
(
i
)[
j
]
=
raw_params_vec
[
tensor_idx
]
->
template
data
<
remove_cv_t
>();
}
}
}
}
// namespace phi
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录