未验证 提交 912022fa 编写于 作者: A Aurelius84 提交者: GitHub

[CustomOp]Add cpp_extension en doc (#31187)

* add cpp_extension en doc

* remove cuda_cflags and add optional in doc

* refine style

* fix indent problem

* add default None
上级 e8cdb49a
......@@ -32,7 +32,6 @@ dispatch_op = load(
sources=['dispatch_test_op.cc'],
extra_include_paths=paddle_includes, # add for Coverage CI
extra_cxx_cflags=extra_compile_args,
extra_cuda_cflags=extra_compile_args, # add for Coverage CI
verbose=True)
......
......@@ -36,7 +36,6 @@ multi_out_module = load(
sources=['multi_out_test_op.cc'],
extra_include_paths=paddle_includes, # add for Coverage CI
extra_cxx_cflags=extra_compile_args, # add for Coverage CI
extra_cuda_cflags=extra_compile_args, # add for Coverage CI
verbose=True)
......
......@@ -25,6 +25,5 @@ from . import cpp_extension
from . import extension_utils
__all__ = [
'CppExtension', 'CUDAExtension', 'BuildExtension', 'load', 'setup',
'get_build_directory'
'CppExtension', 'CUDAExtension', 'load', 'setup', 'get_build_directory'
]
......@@ -41,24 +41,93 @@ CUDA_HOME = find_cuda_home()
def setup(**attr):
"""
Wrapper setuptools.setup function to valid `build_ext` command and
implement paddle api code injection by switching `write_stub`
function in bdist_egg with `custom_write_stub`.
The interface is used to config the process of compiling customized operators,
mainly includes how to complile shared library, automatically generate python API
and install it into site-package. It supports using customized operators directly with
``import`` statement.
Its usage is almost same as `setuptools.setup` except for `ext_modules`
arguments. For compiling multi custom operators, all necessary source files
can be include into just one Extension (CppExtension/CUDAExtension).
Moreover, only one `name` argument is required in `setup` and no need to specify
`name` in Extension.
It encapsulates the python built-in ``setuptools.setup`` function and keeps arguments
and usage same as the native interface. Meanwhile, it hiddens Paddle inner framework
concepts, such as necessary compiling flags, included paths of head files, and linking
flags. It also will automatically search and valid local enviromment and versions of ``cc`` and
``nvcc`` , then compiles customized operators supporting CPU or GPU device according to
the specified Extension type.
Example:
Moreover, `ABI compatibility <https://gcc.gnu.org/onlinedocs/libstdc++/manual/abi.html>`_
will be checked to ensure that compiler version from ``cc``
on local machine is compatible with pre-installed Paddle whl in python site-packages.
For example if Paddle with CUDA 10.1 is built with GCC 8.2, then the version of user's
local machine should satisfy GCC >= 8.2. Otherwise, a fatal error will occur because of
ABI compatibility.
>> from paddle.utils.cpp_extension import CUDAExtension, setup
>> setup(name='custom_module',
.. note::
1. Compiler ABI compatibility is forward compatible. On Linux platform,
we recommend to use GCC 8.2 as soft linking condidate of ``/usr/bin/cc`` .
2. Using ``which cc`` to ensure location of ``cc`` and using ``cc --version``
to ensure linking GCC version on Linux.
3. Currently we support Linux and Windows platfrom. MacOS is supporting...
Compared with Just-In-Time ``load`` interface, it only compiles once by executing
``python setup.py install`` . Then customized operators API will be available everywhere
after importing it.
A simple example of ``setup.py`` as followed:
.. code-block:: text
# setup.py
# Case 1: Compiling customized operators supporting CPU and GPU devices
from paddle.utils.cpp_extension import CUDAExtension, setup
setup(
name='custom_op', # name of package used by "import"
ext_modules=CUDAExtension(
sources=['relu_op.cc', 'relu_op.cu'],
include_dirs=[], # specific user-defined include dirs
extra_compile_args=[]) # specific user-defined compiler arguments.
sources=['relu_op.cc', 'relu_op.cu', 'tanh_op.cc', 'tanh_op.cu'] # Support for compilation of multiple OPs
)
)
# Case 2: Compiling customized operators supporting only CPU device
from paddle.utils.cpp_extension import CppExtension, setup
setup(
name='custom_op', # name of package used by "import"
ext_modules=CppExtension(
sources=['relu_op.cc', 'tanh_op.cc'] # Support for compilation of multiple OPs
)
)
Applying compilation and installation by executing ``python setup.py install`` under source files directory.
Then we can use the layer api as followed:
.. code-block:: text
import paddle
from custom_op import relu, tanh
x = paddle.randn([4, 10], dtype='float32')
relu_out = relu(x)
tanh_out = tanh(x)
Args:
name(str): Specify the name of shared library file and installed python package.
ext_modules(Extension): Specify the Extension instance including customized operator source files, compiling flags et.al.
If only compile operator supporting CPU device, please use ``CppExtension`` ; If compile operator
supporting CPU and GPU devices, please use ``CUDAExtension`` .
include_dirs(list[str], optional): Specify the extra include directoies to search head files. The interface will automatically add
``site-package/paddle/include`` . Please add the corresponding directory path if including third-party
head files. Default is None.
extra_compile_args(list[str] | dict, optional): Specify the extra compiling flags such as ``-O3`` . If set ``list[str]`` , all these flags
will be applied for ``cc`` and ``nvcc`` compiler. It support specify flags only applied ``cc`` or ``nvcc``
compiler using dict type with ``{'cxx': [...], 'nvcc': [...]}`` . Default is None.
**attr(dict, optional): Specify other arguments same as ``setuptools.setup`` .
Returns: None
"""
cmdclass = attr.get('cmdclass', {})
assert isinstance(cmdclass, dict)
......@@ -124,16 +193,41 @@ def setup(**attr):
def CppExtension(sources, *args, **kwargs):
"""
Returns setuptools.CppExtension instance for setup.py to make it easy
to specify compile flags while building C++ custommed op kernel.
The interface is used to config source files of customized operators and complies
Op Kernel only supporting CPU device. Please use ``CUDAExtension`` if you want to
compile Op Kernel that supports both CPU and GPU devices.
It furtherly encapsulates python built-in ``setuptools.Extension`` .The arguments and
usage are same as the native interface, except for no need to explicitly specify
``name`` .
**A simple example:**
.. code-block:: text
# setup.py
# Compiling customized operators supporting only CPU device
from paddle.utils.cpp_extension import CppExtension, setup
setup(
name='custom_op',
ext_modules=CppExtension(sources=['relu_op.cc'])
)
.. note::
It is mainly used in ``setup`` and the nama of built shared library keeps same
as ``name`` argument specified in ``setup`` interface.
Args:
sources(list[str]): The C++/CUDA source file names
args(list[options]): list of config options used to compile shared library
kwargs(dict[option]): dict of config options used to compile shared library
sources(list[str]): Specify the C++/CUDA source files of customized operators.
*args(list[options], optional): Specify other arguments same as ``setuptools.Extension`` .
**kwargs(dict[option], optional): Specify other arguments same as ``setuptools.Extension`` .
Returns:
Extension: An instance of setuptools.Extension
setuptools.Extension: An instance of ``setuptools.Extension``
"""
kwargs = normalize_extension_kwargs(kwargs, use_cuda=False)
# Note(Aurelius84): While using `setup` and `jit`, the Extension `name` will
......@@ -149,16 +243,43 @@ def CppExtension(sources, *args, **kwargs):
def CUDAExtension(sources, *args, **kwargs):
"""
Returns setuptools.CppExtension instance for setup.py to make it easy
to specify compile flags while build CUDA custommed op kernel.
The interface is used to config source files of customized operators and complies
Op Kernel supporting both CPU and GPU devices. Please use ``CppExtension`` if you want to
compile Op Kernel that supports only CPU device.
It furtherly encapsulates python built-in ``setuptools.Extension`` .The arguments and
usage are same as the native interface, except for no need to explicitly specify
``name`` .
**A simple example:**
.. code-block:: text
# setup.py
# Compiling customized operators supporting CPU and GPU devices
from paddle.utils.cpp_extension import CUDAExtension, setup
setup(
name='custom_op',
ext_modules=CUDAExtension(
sources=['relu_op.cc', 'relu_op.cu']
)
)
.. note::
It is mainly used in ``setup`` and the nama of built shared library keeps same
as ``name`` argument specified in ``setup`` interface.
Args:
sources(list[str]): The C++/CUDA source file names
args(list[options]): list of config options used to compile shared library
kwargs(dict[option]): dict of config options used to compile shared library
sources(list[str]): Specify the C++/CUDA source files of customized operators.
*args(list[options], optional): Specify other arguments same as ``setuptools.Extension`` .
**kwargs(dict[option], optional): Specify other arguments same as ``setuptools.Extension`` .
Returns:
Extension: An instance of setuptools.Extension
setuptools.Extension: An instance of setuptools.Extension
"""
kwargs = normalize_extension_kwargs(kwargs, use_cuda=True)
# Note(Aurelius84): While using `setup` and `jit`, the Extension `name` will
......@@ -539,48 +660,86 @@ def load(name,
"""
An Interface to automatically compile C++/CUDA source files Just-In-Time
and return callable python function as other Paddle layers API. It will
append user defined custom op in background.
append user defined custom operators in background while building models.
It will perform compiling, linking, Python API generation and module loading
processes under a individual subprocess. It does not require CMake or Ninja environment
and only ``g++/nvcc`` on Linux and clang++ on MacOS. For example it requires
GCC compiler with version is greater than 5.4 and linked into ``/usr/bin/cc`` .
If compiling Operators supporting GPU device, please make sure ``nvcc`` compiler
is installed in local environment.
Moreover, `ABI compatibility <https://gcc.gnu.org/onlinedocs/libstdc++/manual/abi.html>`_
will be checked to ensure that compiler version from ``cc``
on local machine is compatible with pre-installed Paddle whl in python site-packages.
For example if Paddle with CUDA 10.1 is built with GCC 8.2, then the version of user's
local machine should satisfy GCC >= 8.2. Otherwise, a fatal error will occur because of
ABI compatibility.
Compared with ``setup`` interface, it doesn't need extra ``setup.py`` and excute
``python setup.py install`` command. The interface contains all compiling and installing
process underground.
.. note::
1. Compiler ABI compatibility is forward compatible. On Linux platform,
we recommend to use GCC 8.2 as soft linking condidate of ``/usr/bin/cc`` .
2. Using ``which cc`` to ensure location of ``cc`` and using ``cc --version``
to ensure linking GCC version on Linux.
3. Currenly we support Linux and Windows platfrom. MacOS is supporting...
**A simple example:**
.. code-block:: text
import paddle
from paddle.utils.cpp_extension import load
custom_op_module = load(
name="op_shared_libary_name", # name of shared library
sources=['relu_op.cc', 'relu_op.cu'], # source files of cusomized op
extra_cxx_cflags=['-DPADDLE_WITH_MKLDNN'], # need to specify the flag if pre-installed Paddle supports MKLDNN
extra_cuda_cflags=['-DPADDLE_WITH_MKLDNN'], # need to specify the flag if pre-installed Paddle supports MKLDNN
interpreter='python3.7', # optional, specify another python interpreter
verbose=True # output log information
)
x = paddle.randn([4, 10], dtype='float32')
out = custom_op_module.relu(x)
This module will perform compiling, linking, api generation and module loading
processes for users. It does not require CMake or Ninja environment and only
g++/nvcc on Linux and clang++ on MacOS. Moreover, ABI compatibility will be
checked to ensure that compiler version on local machine is compatible with
pre-installed Paddle whl in python site-packages. For example if Paddle is built
with GCC5.4, the version of user's local machine should satisfy GCC >= 5.4.
Otherwise, a fatal error will occur because ABI compatibility.
Args:
name(str): generated shared library file name.
sources(list[str]): custom op source files name with .cc/.cu suffix.
extra_cxx_cflags(list[str]): additional flags used to compile CPP files. By default
name(str): Specify the name of generated shared library file name, not including ``.so`` and ``.dll`` suffix.
sources(list[str]): Specify source files name of customized operators. Supporting ``.cc`` , ``.cpp`` for CPP file
and ``.cu`` for CUDA file.
extra_cxx_cflags(list[str], optional): Specify additional flags used to compile CPP files. By default
all basic and framework related flags have been included.
If your pre-insall Paddle supported MKLDNN, please add
'-DPADDLE_WITH_MKLDNN'. Default None.
extra_cuda_cflags(list[str]): additional flags used to compile CUDA files. See
https://docs.nvidia.com/cuda/cuda-compiler-driver-nvcc/index.html
for details. Default None.
extra_ldflags(list[str]): additional flags used to link shared library. See
https://gcc.gnu.org/onlinedocs/gcc/Link-Options.html for details.
Default None.
extra_include_paths(list[str]): additional include path used to search header files.
Default None.
build_directory(str): specific directory path to put shared library file. If set None,
it will use `PADDLE_EXTENSION_DIR` from os.environ. Use
`paddle.utils.cpp_extension.get_build_directory()` to see the location.
interpreter(str): alias or full interpreter path to specific which one to use if have installed multiple.
If set None, will use `python` as default interpreter.
verbose(bool): whether to verbose compiled log information
``-DPADDLE_WITH_MKLDNN`` . Default is None.
extra_cuda_cflags(list[str], optional): Specify additional flags used to compile CUDA files. By default
all basic and framework related flags have been included. If your pre-insall Paddle supported MKLDNN,
please add ``-DPADDLE_WITH_MKLDNN`` . Default None. See `Cuda Compiler Driver NVCC <https://docs.nvidia.com/cuda/cuda-compiler-driver-nvcc/index.html>`_
for details. Default is None.
extra_ldflags(list[str], optional): Specify additional flags used to link shared library. See
`GCC Link Options <https://gcc.gnu.org/onlinedocs/gcc/Link-Options.html>`_ for details.
Default is None.
extra_include_paths(list[str], optional): Specify additional include path used to search header files. By default
all basic headers are included implicitly from ``site-package/paddle/include`` .
Default is None.
build_directory(str, optional): Specify root directory path to put shared library file. If set None,
it will use ``PADDLE_EXTENSION_DIR`` from os.environ. Use
``paddle.utils.cpp_extension.get_build_directory()`` to see the location. Default is None.
interpreter(str, optional): Specify nterpreter path, supporting alias and full path.
If set None, it will use `python` as default interpreter. If local environment contains
more than one python interpreters and want to use new interpreter to apply compilation,
please specify this parameter, such as ``python3.7`` . Default is None.
verbose(bool, optional): whether to verbose compiled log information. Default is False
Returns:
custom api: A callable python function with same signature as CustomOp Kernel definition.
Example:
Moudle: A callable python module contains all CustomOp Layer APIs.
>> from paddle.utils.cpp_extension import load
>> relu2 = load(name='relu2',
sources=['relu_op.cc', 'relu_op.cu'])
>> x = paddle.rand([4, 10]], dtype='float32')
>> out = relu2(x)
"""
if build_directory is None:
......
......@@ -440,7 +440,22 @@ def is_cuda_file(path):
def get_build_directory(verbose=False):
"""
Return paddle extension root directory, default specific by `PADDLE_EXTENSION_DIR`
Return paddle extension root directory to put shared library. It could be specified by
``export PADDLE_EXTENSION_DIR=XXX`` . If not set, ``~/.cache/paddle_extension`` will be used
by default.
Returns:
The root directory of compiling customized operators.
Examples:
.. code-block:: python
from paddle.utils.cpp_extension import get_build_directory
build_dir = get_build_directory()
print(build_dir)
"""
root_extensions_directory = os.environ.get('PADDLE_EXTENSION_DIR')
if root_extensions_directory is None:
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册