diff --git a/paddle/fluid/operators/detection/mine_hard_examples_op.cc b/paddle/fluid/operators/detection/mine_hard_examples_op.cc index f70e6adb5b4aefc02dabd4425ee4d633fff82e31..c68fe2439cad9bc5a49a742c1a38e704a7618156 100644 --- a/paddle/fluid/operators/detection/mine_hard_examples_op.cc +++ b/paddle/fluid/operators/detection/mine_hard_examples_op.cc @@ -195,25 +195,31 @@ class MineHardExamplesOp : public framework::OperatorWithKernel { auto loc_loss_dims = ctx->GetInputDim("LocLoss"); PADDLE_ENFORCE_EQ(loc_loss_dims.size(), 2UL, "The shape of LocLoss is [N, Np]."); - PADDLE_ENFORCE_EQ(cls_loss_dims[0], loc_loss_dims[0], - "Batch size of ClsLoss and LocLoss must be the same."); - PADDLE_ENFORCE_EQ( - cls_loss_dims[1], loc_loss_dims[1], - "Prior box number of ClsLoss and LocLoss must be the same."); + if (ctx->IsRuntime()) { + PADDLE_ENFORCE_EQ( + cls_loss_dims[0], loc_loss_dims[0], + "Batch size of ClsLoss and LocLoss must be the same."); + PADDLE_ENFORCE_EQ( + cls_loss_dims[1], loc_loss_dims[1], + "Prior box number of ClsLoss and LocLoss must be the same."); + } } - PADDLE_ENFORCE_EQ( - cls_loss_dims[0], idx_dims[0], - "Batch size of ClsLoss and MatchIndices must be the same."); - PADDLE_ENFORCE_EQ( - cls_loss_dims[1], idx_dims[1], - "Prior box number of ClsLoss and MatchIndices must be the same."); - - PADDLE_ENFORCE_EQ(cls_loss_dims[0], dis_dims[0], - "Batch size of ClsLoss and MatchDist must be the same."); - PADDLE_ENFORCE_EQ( - cls_loss_dims[1], idx_dims[1], - "Prior box number of ClsLoss and MatchDist must be the same."); + if (ctx->IsRuntime()) { + PADDLE_ENFORCE_EQ( + cls_loss_dims[0], idx_dims[0], + "Batch size of ClsLoss and MatchIndices must be the same."); + PADDLE_ENFORCE_EQ( + cls_loss_dims[1], idx_dims[1], + "Prior box number of ClsLoss and MatchIndices must be the same."); + + PADDLE_ENFORCE_EQ( + cls_loss_dims[0], dis_dims[0], + "Batch size of ClsLoss and MatchDist must be the same."); + PADDLE_ENFORCE_EQ( + cls_loss_dims[1], idx_dims[1], + "Prior box number of ClsLoss and MatchDist must be the same."); + } auto mining_type = GetMiningType(ctx->Attrs().Get("mining_type")); diff --git a/python/paddle/fluid/layers/detection.py b/python/paddle/fluid/layers/detection.py index b4b56de84e44eea05691093f5f829e53e27ff075..27a28f30c866bd3e22def916ce33f8bfcf1cdc08 100644 --- a/python/paddle/fluid/layers/detection.py +++ b/python/paddle/fluid/layers/detection.py @@ -1393,8 +1393,10 @@ def ssd_loss(location, # 3. Mining hard examples actual_shape = nn.slice(conf_shape, axes=[0], starts=[0], ends=[2]) actual_shape.stop_gradient = True + # shape=(-1, 0) is set for compile-time, the correct shape is set by + # actual_shape in runtime. conf_loss = nn.reshape( - x=conf_loss, shape=(num, num_prior), actual_shape=actual_shape) + x=conf_loss, shape=(-1, 0), actual_shape=actual_shape) conf_loss.stop_gradient = True neg_indices = helper.create_variable_for_type_inference(dtype='int32') dtype = matched_indices.dtype @@ -1464,7 +1466,9 @@ def ssd_loss(location, # 5.3 Compute overall weighted loss. loss = conf_loss_weight * conf_loss + loc_loss_weight * loc_loss # reshape to [N, Np], N is the batch size and Np is the prior box number. - loss = nn.reshape(x=loss, shape=(num, num_prior), actual_shape=actual_shape) + # shape=(-1, 0) is set for compile-time, the correct shape is set by + # actual_shape in runtime. + loss = nn.reshape(x=loss, shape=(-1, 0), actual_shape=actual_shape) loss = nn.reduce_sum(loss, dim=1, keep_dim=True) if normalize: normalizer = nn.reduce_sum(target_loc_weight) @@ -1927,13 +1931,7 @@ def multi_box_head(inputs, stride=stride) mbox_loc = nn.transpose(mbox_loc, perm=[0, 2, 3, 1]) - compile_shape = [ - mbox_loc.shape[0], cpt.floor_division( - mbox_loc.shape[1] * mbox_loc.shape[2] * mbox_loc.shape[3], 4), 4 - ] - run_shape = tensor.assign(numpy.array([0, -1, 4]).astype("int32")) - mbox_loc_flatten = nn.reshape( - mbox_loc, shape=compile_shape, actual_shape=run_shape) + mbox_loc_flatten = nn.flatten(mbox_loc, axis=1) mbox_locs.append(mbox_loc_flatten) # get conf @@ -1945,16 +1943,7 @@ def multi_box_head(inputs, padding=pad, stride=stride) conf_loc = nn.transpose(conf_loc, perm=[0, 2, 3, 1]) - new_shape = [0, -1, num_classes] - compile_shape = [ - conf_loc.shape[0], - cpt.floor_division(conf_loc.shape[1] * conf_loc.shape[2] * - conf_loc.shape[3], num_classes), num_classes - ] - run_shape = tensor.assign( - numpy.array([0, -1, num_classes]).astype("int32")) - conf_loc_flatten = nn.reshape( - conf_loc, shape=compile_shape, actual_shape=run_shape) + conf_loc_flatten = nn.flatten(conf_loc, axis=1) mbox_confs.append(conf_loc_flatten) if len(box_results) == 1: @@ -1972,7 +1961,10 @@ def multi_box_head(inputs, box = tensor.concat(reshaped_boxes) var = tensor.concat(reshaped_vars) mbox_locs_concat = tensor.concat(mbox_locs, axis=1) + mbox_locs_concat = nn.reshape(mbox_locs_concat, shape=[0, -1, 4]) mbox_confs_concat = tensor.concat(mbox_confs, axis=1) + mbox_confs_concat = nn.reshape( + mbox_confs_concat, shape=[0, -1, num_classes]) box.stop_gradient = True var.stop_gradient = True