Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
8f4ca2d1
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
8f4ca2d1
编写于
8月 16, 2017
作者:
C
caoying03
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add implementations.
上级
a037b099
变更
3
显示空白变更内容
内联
并排
Showing
3 changed file
with
549 addition
and
59 deletion
+549
-59
paddle/gserver/layers/CrossEntropyOverBeam.cpp
paddle/gserver/layers/CrossEntropyOverBeam.cpp
+341
-3
paddle/gserver/layers/CrossEntropyOverBeam.h
paddle/gserver/layers/CrossEntropyOverBeam.h
+98
-0
paddle/gserver/tests/test_CrossEntropyOverBeamGrad.cpp
paddle/gserver/tests/test_CrossEntropyOverBeamGrad.cpp
+110
-56
未找到文件。
paddle/gserver/layers/CrossEntropyOverBeam.cpp
浏览文件 @
8f4ca2d1
...
...
@@ -16,6 +16,168 @@ limitations under the License. */
namespace
paddle
{
void
CostForOneSequence
::
calValidExpandStep
()
{
validExpansionCount_
=
0
;
goldAsExtraPath_
=
true
;
for
(
size_t
i
=
0
;
i
<
beams_
->
expansionCount
;
++
i
)
{
real
gold
=
static_cast
<
real
>
(
beams_
->
gold
[
i
]);
if
(
i
)
{
real
*
start
=
beams_
->
candidateIds
[
i
-
1
]
->
getData
();
goldRowIds_
[
i
]
=
std
::
count_if
(
start
,
start
+
goldRowIds_
[
i
-
1
]
*
beamSize_
+
goldColIds_
[
i
-
1
],
[](
const
real
&
val
)
{
return
val
!=
-
1.
;
});
}
else
goldRowIds_
[
i
]
=
0
;
real
*
start
=
beams_
->
candidateIds
[
i
]
->
getData
()
+
goldRowIds_
[
i
]
*
beamSize_
;
real
*
findEnd
=
std
::
find
(
start
,
start
+
beamSize_
,
gold
);
validExpansionCount_
++
;
if
(
start
+
beamSize_
==
findEnd
)
return
;
goldColIds_
[
i
]
=
findEnd
-
start
;
}
if
(
goldColIds_
[
beams_
->
expansionCount
-
1
]
!=
-
1
)
goldAsExtraPath_
=
false
;
}
size_t
CostForOneSequence
::
initLastExpansion
()
{
int
beamId
=
validExpansionCount_
-
1
;
const
MatrixPtr
candidates
=
beams_
->
candidateIds
[
beamId
];
size_t
height
=
candidates
->
getHeight
();
/* initialization the last expansion. */
size_t
pathCount
=
std
::
count_if
(
candidates
->
getData
(),
candidates
->
getData
()
+
height
*
beamSize_
,
[](
const
real
&
val
)
{
return
val
!=
-
1
;
});
/*
* if the gold sequence falls off the beam during search,
* add the gold sequence as the last path into all expanded paths.
*/
if
(
goldAsExtraPath_
)
goldIdsInFinalExpansion_
=
pathCount
++
;
pathRowIdsInEachBeam_
.
clear
();
pathRowIdsInEachBeam_
.
resize
(
validExpansionCount_
,
std
::
vector
<
int
>
(
pathCount
,
0
));
parentIdsInBeam_
.
clear
();
parentIdsInBeam_
.
resize
(
pathCount
,
0
);
if
(
goldAsExtraPath_
)
{
/* add gold sequence into the total expansion. */
pathRowIdsInEachBeam_
[
beamId
].
back
()
=
beams_
->
gold
[
beamId
]
+
getSeqStartPos
(
beamId
,
goldRowIds_
[
validExpansionCount_
-
1
]);
parentIdsInBeam_
.
back
()
=
goldRowIds_
[
validExpansionCount_
-
1
];
}
else
{
size_t
goldOffset
=
goldRowIds_
[
beamId
]
*
beamSize_
+
goldColIds_
[
beamId
];
goldIdsInFinalExpansion_
=
std
::
count_if
(
candidates
->
getData
(),
candidates
->
getData
()
+
goldOffset
,
[](
const
real
&
val
)
{
return
val
!=
-
1.
;
});
}
/*
* TODO(caoying): fix this, store the indices of selected candidate
* paths into Argument.ids
*/
real
*
ids
=
candidates
->
getData
();
size_t
curIdx
=
0
;
for
(
size_t
i
=
0
;
i
<
height
;
++
i
)
{
int
basePos
=
getSeqStartPos
(
beamId
,
i
);
for
(
size_t
j
=
0
;
j
<
beamSize_
;
++
j
)
{
int
id
=
ids
[
i
*
beamSize_
+
j
];
if
(
id
==
-
1
)
continue
;
pathRowIdsInEachBeam_
[
beamId
][
curIdx
]
=
id
+
basePos
;
parentIdsInBeam_
[
curIdx
++
]
=
i
;
}
}
return
pathCount
;
}
void
CostForOneSequence
::
constructTotalExpansion
()
{
/*
* construct the entire expanded beam by begining with the last search
* in which gold falls off the beam.
*/
size_t
totalPathCount
=
initLastExpansion
();
for
(
int
beamId
=
validExpansionCount_
-
2
;
beamId
>=
0
;
--
beamId
)
{
const
MatrixPtr
candidates
=
beams_
->
candidateIds
[
beamId
];
real
*
ids
=
candidates
->
getData
();
int
lastParentIdInBeam
=
-
1
;
int
basePos
=
-
1
;
for
(
size_t
i
=
0
;
i
<
(
goldAsExtraPath_
?
totalPathCount
-
1
:
totalPathCount
);
++
i
)
{
int
id
=
ids
[
parentIdsInBeam_
[
i
]];
int
parentRowId
=
std
::
div
(
parentIdsInBeam_
[
i
],
beamSize_
).
quot
;
if
(
parentIdsInBeam_
[
i
]
!=
lastParentIdInBeam
)
basePos
=
getSeqStartPos
(
beamId
,
parentRowId
);
pathRowIdsInEachBeam_
[
beamId
][
i
]
=
id
+
basePos
;
lastParentIdInBeam
=
parentIdsInBeam_
[
i
];
parentIdsInBeam_
[
i
]
=
parentRowId
;
if
(
goldAsExtraPath_
)
pathRowIdsInEachBeam_
[
beamId
][
totalPathCount
-
1
]
=
beams_
->
gold
[
beamId
]
+
getSeqStartPos
(
beamId
,
goldRowIds_
[
beamId
]);
}
}
}
real
CostForOneSequence
::
globallyNormalizedScore
()
{
expandedPathScores_
.
resize
(
validExpansionCount_
);
Matrix
::
resizeOrCreate
(
softmaxOut_
,
1
,
pathRowIdsInEachBeam_
[
0
].
size
(),
false
,
false
);
softmaxOut_
->
zero
();
MatrixPtr
tmp
=
Matrix
::
create
(
softmaxOut_
->
getData
(),
softmaxOut_
->
getWidth
(),
1
,
false
,
false
);
for
(
size_t
i
=
0
;
i
<
validExpansionCount_
;
++
i
)
{
Matrix
::
resizeOrCreate
(
expandedPathScores_
[
i
],
pathRowIdsInEachBeam_
[
i
].
size
(),
1
,
false
,
false
);
IVectorPtr
rowIds
=
IVector
::
create
(
pathRowIdsInEachBeam_
[
i
].
data
(),
pathRowIdsInEachBeam_
[
i
].
size
(),
false
);
expandedPathScores_
[
i
]
->
selectRows
(
*
(
beams_
->
scores
[
i
]),
*
rowIds
);
tmp
->
add
(
*
expandedPathScores_
[
i
]);
}
softmaxOut_
->
softmax
(
*
softmaxOut_
);
return
-
std
::
log
(
softmaxOut_
->
getData
()[
goldIdsInFinalExpansion_
]);
}
real
CostForOneSequence
::
forward
()
{
calValidExpandStep
();
constructTotalExpansion
();
return
globallyNormalizedScore
();
}
void
CostForOneSequence
::
backward
()
{
softmaxOut_
->
getData
()[
goldIdsInFinalExpansion_
]
-=
1.
;
MatrixPtr
tmp
=
Matrix
::
create
(
softmaxOut_
->
getData
(),
softmaxOut_
->
getWidth
(),
1
,
false
,
false
);
for
(
size_t
i
=
0
;
i
<
validExpansionCount_
;
++
i
)
{
IVectorPtr
rowIds
=
IVector
::
create
(
pathRowIdsInEachBeam_
[
i
].
data
(),
pathRowIdsInEachBeam_
[
i
].
size
(),
false
);
/*
beams_->scoreGrad[i] has been intialized outside this class, this
class only keeps a pointer pointing to the original input gradients,
so here does not need to allocate or initalize the memory.
*/
tmp
->
addToRows
(
*
beams_
->
scoreGrad
[
i
],
*
rowIds
);
}
}
REGISTER_LAYER
(
cross_entropy_over_beam
,
CrossEntropyOverBeam
);
bool
CrossEntropyOverBeam
::
init
(
const
LayerMap
&
layerMap
,
...
...
@@ -24,13 +186,189 @@ bool CrossEntropyOverBeam::init(const LayerMap& layerMap,
Layer
::
init
(
layerMap
,
parameterMap
);
CHECK_EQ
(
0U
,
inputLayers_
.
size
()
%
3
)
<<
"Error input number."
;
setNeedSequenceInfo
(
false
);
beamExpanCount_
=
inputLayers_
.
size
()
/
3
;
candidateScores_
.
resize
(
beamExpanCount_
);
candidateScoreGrad_
.
resize
(
beamExpanCount_
);
candidateInBeam_
.
resize
(
beamExpanCount_
);
goldSequence_
.
resize
(
beamExpanCount_
);
gradToInputs_
.
resize
(
beamExpanCount_
);
setNeedSequenceInfo
(
false
);
return
true
;
}
void
CrossEntropyOverBeam
::
forward
(
PassType
passType
)
{}
void
CrossEntropyOverBeam
::
checkInputs
()
{
batchSize_
=
0
;
for
(
size_t
i
=
0
;
i
<
beamExpanCount_
;
++
i
)
{
const
Argument
&
scores
=
getInput
(
i
*
3
);
const
Argument
&
selCandidates
=
getInput
(
i
*
3
+
1
);
const
Argument
&
goldSeq
=
getInput
(
i
*
3
+
2
);
if
(
i
)
{
CHECK
(
scores
.
hasSubseq
())
<<
"Beam expansion expect the first one, "
"should be a nested sequence"
;
CHECK_EQ
(
getInputValue
(
i
*
3
+
1
)
->
getWidth
(),
beamSize_
);
CHECK_EQ
(
scores
.
getNumSequences
(),
batchSize_
);
CHECK_EQ
(
scores
.
getNumSubSequences
(),
selCandidates
.
getBatchSize
());
}
else
{
CHECK
(
scores
.
hasSeq
())
<<
"The first beam expansion should be a sequence"
;
batchSize_
=
scores
.
getNumSequences
();
beamSize_
=
getInputValue
(
i
*
3
+
1
)
->
getWidth
();
CHECK_EQ
(
batchSize_
,
selCandidates
.
getBatchSize
());
}
CHECK_EQ
(
1U
,
scores
.
value
->
getWidth
());
CHECK_EQ
(
batchSize_
,
goldSeq
.
getBatchSize
());
}
}
void
CrossEntropyOverBeam
::
copyInputsToCpu
()
{
auto
copyValue
=
[](
const
MatrixPtr
&
src
,
MatrixPtr
&
trg
)
{
if
(
dynamic_cast
<
GpuMatrix
*>
(
src
.
get
()))
{
Matrix
::
resizeOrCreate
(
trg
,
src
->
getHeight
(),
src
->
getWidth
(),
false
,
false
);
trg
->
copyFrom
(
*
src
);
}
else
{
trg
=
std
::
move
(
src
);
}
};
auto
copyIds
=
[](
const
IVectorPtr
&
src
,
IVectorPtr
&
trg
)
{
if
(
dynamic_cast
<
GpuIVector
*>
(
src
.
get
()))
{
IVector
::
resizeOrCreate
(
trg
,
src
->
getSize
(),
false
);
trg
->
copyFrom
(
*
src
);
}
else
{
trg
=
std
::
move
(
src
);
}
};
beamSplitPos_
.
clear
();
beamSplitPos_
.
resize
(
batchSize_
,
std
::
vector
<
int
>
(
beamExpanCount_
,
0
));
for
(
size_t
i
=
0
;
i
<
beamExpanCount_
;
++
i
)
{
copyValue
(
getInputValue
(
i
*
3
),
candidateScores_
[
i
]);
copyValue
(
getInputValue
(
i
*
3
+
1
),
candidateInBeam_
[
i
]);
copyIds
(
getInput
(
i
*
3
+
2
).
ids
,
goldSequence_
[
i
]);
if
(
i
)
{
ICpuGpuVectorPtr
seqInfo
=
getInput
(
i
*
3
).
sequenceStartPositions
;
const
int
*
seqStarts
=
seqInfo
->
getMutableData
(
false
);
ICpuGpuVectorPtr
subSeqInfo
=
getInput
(
i
*
3
).
subSequenceStartPositions
;
const
int
*
subSeqStarts
=
subSeqInfo
->
getMutableData
(
false
);
size_t
seqId
=
1
;
for
(
size_t
subSeqId
=
0
;
subSeqId
<
subSeqInfo
->
getSize
()
-
1
;
++
subSeqId
)
{
CHECK_LT
(
seqId
,
seqInfo
->
getSize
());
if
(
subSeqStarts
[
subSeqId
]
==
seqStarts
[
seqId
])
{
beamSplitPos_
[
seqId
][
i
]
=
beamSplitPos_
[
seqId
-
1
][
i
];
seqId
++
;
}
beamSplitPos_
[
seqId
-
1
][
i
]
++
;
}
}
else
{
for
(
size_t
j
=
0
;
j
<
batchSize_
;
++
j
)
beamSplitPos_
[
j
][
i
]
=
j
+
1
;
}
}
}
void
CrossEntropyOverBeam
::
splitBatchBeams
()
{
beamCosts_
.
resize
(
batchSize_
);
beamPerSeq_
.
resize
(
batchSize_
,
beamExpanCount_
);
for
(
size_t
i
=
0
;
i
<
beamExpanCount_
;
++
i
)
{
int
*
seqStarts
=
getInput
(
i
*
3
).
sequenceStartPositions
->
getMutableData
(
false
);
int
*
subSeqStarts
=
nullptr
;
int
maxLen
=
0
;
if
(
i
)
{
subSeqStarts
=
getInput
(
i
*
3
).
subSequenceStartPositions
->
getMutableData
(
false
);
maxLen
=
getInput
(
i
*
3
).
subSequenceStartPositions
->
getSize
()
-
1
;
}
else
maxLen
=
getInput
(
i
).
sequenceStartPositions
->
getSize
()
-
1
;
for
(
size_t
j
=
0
;
j
<
batchSize_
;
++
j
)
{
beamPerSeq_
[
j
].
scores
[
i
]
=
Matrix
::
create
(
candidateScores_
[
i
]
->
getData
()
+
seqStarts
[
j
],
seqStarts
[
j
+
1
]
-
seqStarts
[
j
],
1
,
false
,
false
);
beamPerSeq_
[
j
].
scoreGrad
[
i
]
=
Matrix
::
create
(
candidateScoreGrad_
[
i
]
->
getData
()
+
seqStarts
[
j
],
seqStarts
[
j
+
1
]
-
seqStarts
[
j
],
1
,
false
,
false
);
int
offset
=
j
?
beamSplitPos_
[
j
-
1
][
i
]
:
0
;
int
height
=
beamSplitPos_
[
j
][
i
]
-
(
j
?
beamSplitPos_
[
j
-
1
][
i
]
:
0
);
CHECK_GE
(
maxLen
,
offset
+
height
);
beamPerSeq_
[
j
].
seqInfo
[
i
]
=
IVector
::
create
(
(
i
?
subSeqStarts
:
seqStarts
)
+
offset
,
height
+
1
,
false
);
void
CrossEntropyOverBeam
::
backward
(
const
UpdateCallback
&
callback
)
{}
beamPerSeq_
[
j
].
candidateIds
[
i
]
=
Matrix
::
create
(
candidateInBeam_
[
i
]
->
getData
()
+
offset
*
beamSize_
,
height
,
beamSize_
,
false
,
false
);
beamPerSeq_
[
j
].
gold
[
i
]
=
goldSequence_
[
i
]
->
getData
()[
j
];
}
}
}
void
CrossEntropyOverBeam
::
resizeOutput
()
{
Matrix
::
resizeOrCreate
(
output_
.
value
,
batchSize_
,
1
,
false
,
false
);
output_
.
value
->
zero
();
for
(
size_t
i
=
0
;
i
<
beamExpanCount_
;
++
i
)
{
MatrixPtr
inGrad
=
getInputGrad
(
i
*
3
);
if
(
dynamic_cast
<
GpuMatrix
*>
(
inGrad
.
get
()))
{
Matrix
::
resizeOrCreate
(
candidateScoreGrad_
[
i
],
inGrad
->
getHeight
(),
inGrad
->
getWidth
(),
false
,
false
);
}
else
candidateScoreGrad_
[
i
]
=
std
::
move
(
inGrad
);
candidateScoreGrad_
[
i
]
->
zero
();
}
}
void
CrossEntropyOverBeam
::
copyGradToGpu
(
size_t
copyCount
)
{
for
(
size_t
i
=
0
;
i
<
beamExpanCount_
;
++
i
)
{
if
(
dynamic_cast
<
GpuMatrix
*>
(
getInputGrad
(
i
*
3
).
get
()))
getInputGrad
(
i
*
3
)
->
copyFrom
(
*
candidateScoreGrad_
[
i
]);
if
(
i
==
copyCount
-
1
)
break
;
}
}
void
CrossEntropyOverBeam
::
forward
(
PassType
passType
)
{
Layer
::
forward
(
passType
);
checkInputs
();
copyInputsToCpu
();
resizeOutput
();
splitBatchBeams
();
MatrixPtr
outputValue
=
getOutputValue
();
for
(
size_t
i
=
0
;
i
<
batchSize_
;
++
i
)
{
beamCosts_
[
i
].
setData
(
std
::
move
(
std
::
make_shared
<
BeamExpansion
>
(
beamPerSeq_
[
i
])),
beamSize_
);
outputValue
->
getData
()[
i
]
=
beamCosts_
[
i
].
forward
();
}
}
void
CrossEntropyOverBeam
::
backward
(
const
UpdateCallback
&
callback
)
{
for
(
size_t
i
=
0
;
i
<
batchSize_
;
++
i
)
{
beamCosts_
[
i
].
backward
();
copyGradToGpu
(
beamCosts_
[
i
].
getValidExpansionCount
());
}
}
}
// namespace paddle
paddle/gserver/layers/CrossEntropyOverBeam.h
浏览文件 @
8f4ca2d1
...
...
@@ -19,6 +19,79 @@ limitations under the License. */
namespace
paddle
{
struct
BeamExpansion
{
// store the entire beam expansion for a single sequence
std
::
vector
<
MatrixPtr
>
scores
;
std
::
vector
<
IVectorPtr
>
seqInfo
;
std
::
vector
<
MatrixPtr
>
candidateIds
;
std
::
vector
<
int
>
gold
;
std
::
vector
<
MatrixPtr
>
scoreGrad
;
size_t
expansionCount
;
BeamExpansion
(
int
n
)
{
expansionCount
=
n
;
scores
.
resize
(
expansionCount
);
seqInfo
.
resize
(
expansionCount
);
candidateIds
.
resize
(
expansionCount
);
scoreGrad
.
resize
(
expansionCount
);
gold
.
resize
(
expansionCount
);
};
};
typedef
std
::
shared_ptr
<
BeamExpansion
>
BeamExpansionPtr
;
class
CostForOneSequence
{
public:
CostForOneSequence
()
:
beamSize_
(
0
),
validExpansionCount_
(
0
),
goldAsExtraPath_
(
false
)
{}
void
setData
(
const
BeamExpansionPtr
bPtr
,
size_t
beamSize
)
{
beams_
=
bPtr
;
beamSize_
=
beamSize
;
expandedPathScores_
.
clear
();
expandedPathScores_
.
resize
(
beams_
->
expansionCount
);
goldRowIds_
.
clear
();
goldRowIds_
.
resize
(
beams_
->
expansionCount
,
0
);
goldColIds_
.
clear
();
goldColIds_
.
resize
(
beams_
->
expansionCount
,
-
1
);
}
size_t
getValidExpansionCount
()
{
return
validExpansionCount_
;
}
real
forward
();
void
backward
();
private:
void
calValidExpandStep
();
void
constructTotalExpansion
();
size_t
initLastExpansion
();
real
globallyNormalizedScore
();
int
getSeqStartPos
(
size_t
beamId
,
size_t
rowId
)
{
CHECK_GT
(
beams_
->
seqInfo
[
beamId
]
->
getSize
()
-
1
,
rowId
);
int
*
starts
=
beams_
->
seqInfo
[
beamId
]
->
getData
();
return
starts
[
rowId
]
-
starts
[
0
];
};
size_t
beamSize_
;
size_t
validExpansionCount_
;
bool
goldAsExtraPath_
;
std
::
vector
<
int
>
goldRowIds_
;
std
::
vector
<
int
>
goldColIds_
;
BeamExpansionPtr
beams_
;
std
::
vector
<
std
::
vector
<
int
>>
pathRowIdsInEachBeam_
;
std
::
vector
<
int
>
parentIdsInBeam_
;
size_t
goldIdsInFinalExpansion_
;
std
::
vector
<
MatrixPtr
>
expandedPathScores_
;
MatrixPtr
softmaxOut_
;
};
class
CrossEntropyOverBeam
:
public
Layer
{
public:
explicit
CrossEntropyOverBeam
(
const
LayerConfig
&
config
)
:
Layer
(
config
)
{}
...
...
@@ -26,6 +99,31 @@ public:
const
ParameterMap
&
parameterMap
)
override
;
void
forward
(
PassType
passType
)
override
;
void
backward
(
const
UpdateCallback
&
callback
)
override
;
private:
void
checkInputs
();
void
copyInputsToCpu
();
void
resizeOutput
();
void
copyGradToGpu
(
size_t
copyCount
);
void
splitBatchBeams
();
size_t
beamExpanCount_
;
size_t
batchSize_
;
size_t
beamSize_
;
// Currently, this layer only works on CPU, if its inputs is on GPU,
// copy them to CPU memory.
std
::
vector
<
MatrixPtr
>
candidateScores_
;
std
::
vector
<
MatrixPtr
>
candidateScoreGrad_
;
std
::
vector
<
MatrixPtr
>
candidateInBeam_
;
std
::
vector
<
MatrixPtr
>
gradToInputs_
;
std
::
vector
<
IVectorPtr
>
goldSequence_
;
std
::
vector
<
std
::
vector
<
int
>>
beamSplitPos_
;
// split entire bath of beams into beam per sequnence.
std
::
vector
<
BeamExpansion
>
beamPerSeq_
;
// beamCosts_ is used to propagate error in one sequence.
std
::
vector
<
CostForOneSequence
>
beamCosts_
;
};
}
// namespace paddle
paddle/gserver/tests/test_CrossEntropyOverBeamGrad.cpp
浏览文件 @
8f4ca2d1
...
...
@@ -28,9 +28,17 @@ using namespace paddle; // NOLINT
DECLARE_int32
(
gpu_id
);
DECLARE_bool
(
thread_local_rand_use_global_seed
);
const
size_t
MAX_SEQ_NUM
=
10
;
const
size_t
MAX_SEQ_LEN
=
27
;
const
size_t
MAX_BEAM_SIZE
=
10
;
// const size_t MAX_SEQ_NUM = 5;
// const size_t MAX_SEQ_LEN = 10;
// const size_t MAX_BEAM_SIZE = 3;
const
size_t
MAX_SEQ_NUM
=
23
;
const
size_t
MAX_SEQ_LEN
=
50
;
const
size_t
MAX_BEAM_SIZE
=
27
;
// const size_t SEED = 1503391792;
// const size_t SEED = 1;
const
size_t
SEED
=
(
size_t
)(
time
(
NULL
));
struct
SingleBeamExpansion
{
vector
<
int
>
seqStartPos
;
...
...
@@ -43,11 +51,30 @@ struct SingleBeamExpansion {
vector
<
int
>
groundTruth
;
vector
<
size_t
>
inBeam
;
vector
<
int
>
rowIdxInBeam
;
vector
<
int
>
colIdxInBeam
;
void
resetGroundTruth
(
size_t
n
)
{
groundTruth
.
clear
();
groundTruth
.
resize
(
n
,
-
1
);
inBeam
.
clear
();
inBeam
.
resize
(
n
,
0
);
rowIdxInBeam
.
clear
();
rowIdxInBeam
.
resize
(
n
,
-
1
);
colIdxInBeam
.
clear
();
colIdxInBeam
.
resize
(
n
,
-
1
);
}
};
inline
float
randFloat
()
{
return
static_cast
<
float
>
(
rand
())
/
static_cast
<
float
>
(
RAND_MAX
);
}
void
genRand
(
real
*
numbers
,
size_t
n
)
{
default_random_engine
generator
;
uniform_real_distribution
<
double
>
distribution
(
0.0
,
1.0
);
uniform_real_distribution
<
real
>
distribution
(
0.0
,
1.0
);
for
(
size_t
i
=
0
;
i
<
n
;
++
i
)
numbers
[
i
]
=
distribution
(
generator
);
}
...
...
@@ -72,8 +99,7 @@ void genCandidateScores(bool hasSubseq,
vector
<
int
>&
subSeqStartPos
=
curBeam
.
subSeqStartPos
;
subSeqStartPos
.
resize
(
1
,
0
);
srand
((
size_t
)(
time
(
NULL
)));
// srand(1);
srand
(
SEED
);
if
(
prevBeam
.
selectedIndices
.
size
())
{
if
(
prevBeam
.
subSeqStartPos
.
size
()
>
1
)
{
int
seqIdx
=
1
;
...
...
@@ -81,7 +107,6 @@ void genCandidateScores(bool hasSubseq,
for
(
size_t
i
=
1
;
i
<
prevBeam
.
subSeqStartPos
.
size
();
++
i
)
{
for
(
size_t
j
=
0
;
j
<
beamSize
;
++
j
)
{
if
(
prevBeam
.
selectedIndices
[(
i
-
1
)
*
beamSize
+
j
]
==
-
1.
)
break
;
for
(
size_t
k
=
0
;
k
<
beamSize
;
++
k
)
subSeqStartPos
.
push_back
(
1
+
(
rand
()
%
MAX_SEQ_LEN
)
+
subSeqStartPos
.
back
());
}
...
...
@@ -91,7 +116,6 @@ void genCandidateScores(bool hasSubseq,
}
}
}
else
{
// samples in previous beam are sequences.
for
(
size_t
i
=
0
;
i
<=
prevBeam
.
selectedIndices
.
size
();
++
i
)
{
if
(
i
&&
i
%
beamSize
==
0
)
{
seqStartPos
.
push_back
(
subSeqStartPos
.
back
());
...
...
@@ -141,27 +165,41 @@ void genSelectedIndices(size_t beamSize,
void
genGroundTruth
(
vector
<
SingleBeamExpansion
>&
beamExpansions
,
size_t
beamSize
)
{
size_t
seqNum
=
beamExpansions
[
1
].
seqStartPos
.
size
()
-
1
;
SingleBeamExpansion
&
beam
=
beamExpansions
[
1
];
size_t
seqNum
=
beam
.
seqStartPos
.
size
()
-
1
;
for
(
size_t
i
=
2
;
i
<
beamExpansions
.
size
();
++
i
)
CHECK_EQ
(
seqNum
,
beamExpansions
[
i
-
1
].
seqStartPos
.
size
()
-
1
);
CHECK_EQ
(
seqNum
,
beamExpansions
[
i
].
seqStartPos
.
size
()
-
1
);
// srand(1);
srand
((
size_t
)(
time
(
NULL
)));
srand
(
SEED
);
// initialize the first beam.
SingleBeamExpansion
&
beam
=
beamExpansions
[
1
];
beam
.
groundTruth
.
resize
(
seqNum
,
0
);
beam
.
inBeam
.
resize
(
seqNum
,
0
);
beam
.
rowIdxInBeam
.
resize
(
seqNum
,
-
1
);
auto
begPos
=
beam
.
selectedIndices
.
begin
();
beam
.
resetGroundTruth
(
seqNum
);
for
(
size_t
i
=
0
;
i
<
seqNum
;
++
i
)
{
int
seqLen
=
beam
.
seqStartPos
[
i
+
1
]
-
beam
.
seqStartPos
[
i
];
int
label
=
rand
()
%
seqLen
;
auto
endPos
=
begPos
+
beamSize
;
if
(
randFloat
()
>
0.5
)
{
// force the randomly generated label falls in the beam by chance 0.5.
// otherwise, when sequence length is relatively long and beam size is
// relatively small, the gold sequences falls off the beam at in
// the first search.
real
*
begPos
=
beam
.
selectedIndices
.
data
()
+
i
*
beamSize
;
beam
.
colIdxInBeam
[
i
]
=
rand
()
%
count_if
(
begPos
,
begPos
+
beamSize
,
[](
const
real
&
val
)
{
return
val
!=
-
1.
;
});
beam
.
groundTruth
[
i
]
=
beam
.
selectedIndices
[
i
*
beamSize
+
beam
.
colIdxInBeam
[
i
]];
beam
.
inBeam
[
i
]
=
1
;
}
else
{
int
label
=
rand
()
%
(
beam
.
seqStartPos
[
i
+
1
]
-
beam
.
seqStartPos
[
i
]);
beam
.
groundTruth
[
i
]
=
label
;
if
(
find
(
begPos
,
endPos
,
real
(
label
))
!=
endPos
)
beam
.
inBeam
[
i
]
=
1
;
begPos
=
endPos
;
real
*
begPos
=
beam
.
selectedIndices
.
data
()
+
i
*
beamSize
;
real
*
endPos
=
begPos
+
beamSize
;
real
*
lblPos
=
find
(
begPos
,
endPos
,
real
(
label
));
if
(
lblPos
!=
endPos
)
{
beam
.
inBeam
[
i
]
=
1
;
beam
.
colIdxInBeam
[
i
]
=
lblPos
-
begPos
;
}
}
beam
.
rowIdxInBeam
[
i
]
=
i
;
}
...
...
@@ -169,22 +207,33 @@ void genGroundTruth(vector<SingleBeamExpansion>& beamExpansions,
for
(
size_t
i
=
2
;
i
<
beamExpansions
.
size
();
++
i
)
{
SingleBeamExpansion
&
curBeam
=
beamExpansions
[
i
];
SingleBeamExpansion
&
prevBeam
=
beamExpansions
[
i
-
1
];
curBeam
.
groundTruth
.
resize
(
seqNum
,
0
);
curBeam
.
inBeam
.
resize
(
seqNum
,
0
);
curBeam
.
rowIdxInBeam
.
resize
(
seqNum
,
-
1
);
curBeam
.
resetGroundTruth
(
seqNum
);
// iterate over each sequence
for
(
size_t
j
=
0
;
j
<
seqNum
;
++
j
)
{
if
(
prevBeam
.
inBeam
[
j
])
{
// gold sequence falls in the beam in previous search.
auto
begPos
=
prevBeam
.
selectedIndices
.
begin
();
auto
endPos
=
begPos
+
prevBeam
.
rowIdxInBeam
[
j
]
*
beamSize
;
size_t
totalExpansion
=
prevBeam
.
rowIdxInBeam
[
j
]
*
beamSize
-
count
(
begPos
,
endPos
,
-
1.
);
curBeam
.
rowIdxInBeam
[
j
]
=
totalExpansion
+
prevBeam
.
groundTruth
[
j
];
if
(
!
prevBeam
.
inBeam
[
j
])
continue
;
// gold sequence falls in the beam in previous search.
real
*
begPos
=
prevBeam
.
selectedIndices
.
data
();
int
offset
=
prevBeam
.
rowIdxInBeam
[
j
]
*
beamSize
+
prevBeam
.
colIdxInBeam
[
j
];
curBeam
.
rowIdxInBeam
[
j
]
=
count_if
(
begPos
,
begPos
+
offset
,
[](
const
real
&
val
)
{
return
val
!=
-
1.
;
});
if
(
randFloat
()
>
0.5
)
{
// force the randomly generated label falls in the beam by chance 0.5.
// otherwise, when sequence length is relatively long and beam size is
// relatively small, the gold sequences falls off the beam at in
// the first search.
real
*
start
=
curBeam
.
selectedIndices
.
data
()
+
curBeam
.
rowIdxInBeam
[
j
]
*
beamSize
;
int
n
=
rand
()
%
count_if
(
start
,
start
+
beamSize
,
[](
const
real
&
val
)
{
return
val
!=
-
1.
;
});
curBeam
.
colIdxInBeam
[
j
]
=
n
;
curBeam
.
groundTruth
[
j
]
=
*
(
start
+
n
);
curBeam
.
inBeam
[
j
]
=
1
;
}
else
{
CHECK_LE
(
curBeam
.
rowIdxInBeam
[
j
]
+
1
,
curBeam
.
subSeqStartPos
.
size
()
-
1
);
int
start
=
curBeam
.
subSeqStartPos
[
curBeam
.
rowIdxInBeam
[
j
]];
...
...
@@ -193,16 +242,14 @@ void genGroundTruth(vector<SingleBeamExpansion>& beamExpansions,
int
label
=
rand
()
%
(
end
-
start
);
curBeam
.
groundTruth
[
j
]
=
label
;
auto
findBeg
=
curBeam
.
selectedIndices
.
begin
()
+
curBeam
.
rowIdxInBeam
[
j
]
*
beamSize
;
auto
findEnd
=
findBeg
+
beamSize
;
if
(
find
(
findBeg
,
findEnd
,
real
(
label
))
!=
findEnd
)
real
*
findBeg
=
curBeam
.
selectedIndices
.
data
()
+
curBeam
.
rowIdxInBeam
[
j
]
*
beamSize
;
real
*
lblPos
=
find
(
findBeg
,
findBeg
+
beamSize
,
static_cast
<
real
>
(
label
));
if
(
lblPos
!=
(
findBeg
+
beamSize
))
{
curBeam
.
inBeam
[
j
]
=
1
;
}
else
{
// in previous search, gold sequence has fallen off the beam,
// the beam search stops, here use -1 as a dummy label.
// It will not used in calculation the cost.
beamExpansions
[
i
].
groundTruth
[
j
]
=
-
1
;
curBeam
.
colIdxInBeam
[
j
]
=
lblPos
-
findBeg
;
}
}
}
}
...
...
@@ -230,15 +277,12 @@ void genRandomBeamExpansion(size_t expansionCount,
genGroundTruth
(
beamExpansions
,
beamSize
);
}
void
testCrossEntropyOverBeam
(
bool
useGpu
)
{
void
testCrossEntropyOverBeam
(
bool
useGpu
,
size_t
beamSize
,
vector
<
SingleBeamExpansion
>&
beams
)
{
TestConfig
config
;
config
.
layerConfig
.
set_type
(
"cross_entropy_over_beam"
);
const
size_t
expansionCount
=
3
;
const
size_t
beamSize
=
MAX_BEAM_SIZE
;
vector
<
SingleBeamExpansion
>
beams
;
genRandomBeamExpansion
(
expansionCount
,
beamSize
,
beams
);
size_t
seqNum
=
0
;
for
(
size_t
i
=
1
;
i
<
beams
.
size
();
++
i
)
{
const
SingleBeamExpansion
&
beam
=
beams
[
i
];
...
...
@@ -291,7 +335,17 @@ void testCrossEntropyOverBeam(bool useGpu) {
}
TEST
(
Layer
,
CrossEntropyOverBeam
)
{
for
(
bool
useGpu
:
{
false
,
true
})
testCrossEntropyOverBeam
(
useGpu
);
LOG
(
INFO
)
<<
"SEED = "
<<
SEED
;
const
size_t
beamSize
=
1
+
rand
()
%
MAX_BEAM_SIZE
;
LOG
(
INFO
)
<<
"beamSize = "
<<
beamSize
;
// TODO(caoying): test with more beam expansions.
const
size_t
expansionCount
=
3
;
vector
<
SingleBeamExpansion
>
beams
;
genRandomBeamExpansion
(
expansionCount
,
beamSize
,
beams
);
for
(
bool
useGpu
:
{
false
,
true
})
testCrossEntropyOverBeam
(
useGpu
,
beamSize
,
beams
);
}
int
main
(
int
argc
,
char
**
argv
)
{
...
...
@@ -299,7 +353,7 @@ int main(int argc, char** argv) {
hl_start
();
hl_init
(
FLAGS_gpu_id
);
FLAGS_thread_local_rand_use_global_seed
=
true
;
srand
(
1
);
srand
(
SEED
);
testing
::
InitGoogleTest
(
&
argc
,
argv
);
return
RUN_ALL_TESTS
();
}
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录