Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
8ef3c02e
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2299
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
8ef3c02e
编写于
5月 14, 2020
作者:
L
lidanqing
提交者:
GitHub
5月 14, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Update DNNL QAT document 2.0-alpha (#24494)
Update DNNL QAT document 2.0-alpha
上级
db2b6b65
变更
1
显示空白变更内容
内联
并排
Showing
1 changed file
with
10 addition
and
45 deletion
+10
-45
python/paddle/fluid/contrib/slim/tests/QAT_mkldnn_int8_readme.md
...paddle/fluid/contrib/slim/tests/QAT_mkldnn_int8_readme.md
+10
-45
未找到文件。
python/paddle/fluid/contrib/slim/tests/QAT_mkldnn_int8_readme.md
浏览文件 @
8ef3c02e
...
@@ -109,10 +109,9 @@ The code snipped shows how the `Qat2Int8MkldnnPass` can be applied to a model gr
...
@@ -109,10 +109,9 @@ The code snipped shows how the `Qat2Int8MkldnnPass` can be applied to a model gr
## 5. Accuracy and Performance benchmark
## 5. Accuracy and Performance benchmark
This section contain QAT2 MKL-DNN accuracy and performance benchmark results measured on t
wo servers
:
This section contain QAT2 MKL-DNN accuracy and performance benchmark results measured on t
he following server
:
* Intel(R) Xeon(R) Gold 6271 (with AVX512 VNNI support),
* Intel(R) Xeon(R) Gold 6271 (with AVX512 VNNI support),
* Intel(R) Xeon(R) Gold 6148.
Performance benchmarks were run with the following environment settings:
Performance benchmarks were run with the following environment settings:
...
@@ -144,17 +143,6 @@ Performance benchmarks were run with the following environment settings:
...
@@ -144,17 +143,6 @@ Performance benchmarks were run with the following environment settings:
| VGG16 | 72.08% | 71.73% | -0.35% | 90.63% | 89.71% | -0.92% |
| VGG16 | 72.08% | 71.73% | -0.35% | 90.63% | 89.71% | -0.92% |
| VGG19 | 72.57% | 72.12% | -0.45% | 90.84% | 90.15% | -0.69% |
| VGG19 | 72.57% | 72.12% | -0.45% | 90.84% | 90.15% | -0.69% |
>**Intel(R) Xeon(R) Gold 6148**
| Model | FP32 Top1 Accuracy | INT8 QAT Top1 Accuracy | Top1 Diff | FP32 Top5 Accuracy | INT8 QAT Top5 Accuracy | Top5 Diff |
| :----------: | :----------------: | :--------------------: | :-------: | :----------------: | :--------------------: | :-------: |
| MobileNet-V1 | 70.78% | 70.85% | 0.07% | 89.69% | 89.41% | -0.28% |
| MobileNet-V2 | 71.90% | 72.08% | 0.18% | 90.56% | 90.66% | +0.10% |
| ResNet101 | 77.50% | 77.51% | 0.01% | 93.58% | 93.50% | -0.08% |
| ResNet50 | 76.63% | 76.55% | -0.08% | 93.10% | 92.96% | -0.14% |
| VGG16 | 72.08% | 71.72% | -0.36% | 90.63% | 89.75% | -0.88% |
| VGG19 | 72.57% | 72.08% | -0.49% | 90.84% | 90.11% | -0.73% |
#### Performance
#### Performance
Image classification models performance was measured using a single thread. The setting is included in the benchmark reproduction commands below.
Image classification models performance was measured using a single thread. The setting is included in the benchmark reproduction commands below.
...
@@ -164,23 +152,12 @@ Image classification models performance was measured using a single thread. The
...
@@ -164,23 +152,12 @@ Image classification models performance was measured using a single thread. The
| Model | FP32 (images/s) | INT8 QAT (images/s) | Ratio (INT8/FP32) |
| Model | FP32 (images/s) | INT8 QAT (images/s) | Ratio (INT8/FP32) |
| :----------: | :-------------: | :-----------------: | :---------------: |
| :----------: | :-------------: | :-----------------: | :---------------: |
| MobileNet-V1 | 77.00 | 210.76 | 2.74 |
| MobileNet-V1 | 74.05 | 196.98 | 2.66 |
| MobileNet-V2 | 88.43 | 182.47 | 2.06 |
| MobileNet-V2 | 88.60 | 187.67 | 2.12 |
| ResNet101 | 7.20 | 25.88 | 3.60 |
| ResNet101 | 7.20 | 26.43 | 3.67 |
| ResNet50 | 13.26 | 47.44 | 3.58 |
| ResNet50 | 13.23 | 47.44 | 3.59 |
| VGG16 | 3.48 | 10.11 | 2.90 |
| VGG16 | 3.47 | 10.20 | 2.94 |
| VGG19 | 2.83 | 8.77 | 3.10 |
| VGG19 | 2.83 | 8.67 | 3.06 |
>**Intel(R) Xeon(R) Gold 6148**
| Model | FP32 (images/s) | INT8 QAT (images/s) | Ratio (INT8/FP32) |
| :----------: | :-------------: | :-----------------: | :---------------: |
| MobileNet-V1 | 75.23 | 103.63 | 1.38 |
| MobileNet-V2 | 86.65 | 128.14 | 1.48 |
| ResNet101 | 6.61 | 10.79 | 1.63 |
| ResNet50 | 12.42 | 19.65 | 1.58 |
| VGG16 | 3.31 | 4.74 | 1.43 |
| VGG19 | 2.68 | 3.91 | 1.46 |
Notes:
Notes:
...
@@ -194,13 +171,8 @@ Notes:
...
@@ -194,13 +171,8 @@ Notes:
| Model | FP32 Accuracy | QAT INT8 Accuracy | Accuracy Diff |
| Model | FP32 Accuracy | QAT INT8 Accuracy | Accuracy Diff |
|:------------:|:----------------------:|:----------------------:|:---------:|
|:------------:|:----------------------:|:----------------------:|:---------:|
| Ernie | 80.20% | 79.88% | -0.32% |
| Ernie | 80.20% | 79.44% | -0.76% |
>**Intel(R) Xeon(R) Gold 6148**
| Model | FP32 Accuracy | QAT INT8 Accuracy | Accuracy Diff |
| :---: | :-----------: | :---------------: | :-----------: |
| Ernie | 80.20% | 79.64% | -0.56% |
#### Performance
#### Performance
...
@@ -209,17 +181,10 @@ Notes:
...
@@ -209,17 +181,10 @@ Notes:
| Model | Threads | FP32 Latency (ms) | QAT INT8 Latency (ms) | Ratio (FP32/INT8) |
| Model | Threads | FP32 Latency (ms) | QAT INT8 Latency (ms) | Ratio (FP32/INT8) |
|:------------:|:----------------------:|:-------------------:|:---------:|:---------:|
|:------------:|:----------------------:|:-------------------:|:---------:|:---------:|
| Ernie | 1 thread | 23
6.72 | 83.70 | 2.82x
|
| Ernie | 1 thread | 23
7.21 | 79.26 | 2.99x
|
| Ernie | 20 threads | 2
7.40 | 15.01 | 1.83x
|
| Ernie | 20 threads | 2
2.08 | 12.57 | 1.76x
|
>**Intel(R) Xeon(R) Gold 6148**
| Model | Threads | FP32 Latency (ms) | QAT INT8 Latency (ms) | Ratio (FP32/INT8) |
| :---: | :--------: | :---------------: | :-------------------: | :---------------: |
| Ernie | 1 thread | 248.42 | 169.30 | 1.46 |
| Ernie | 20 threads | 28.92 | 20.83 | 1.39 |
## 6. How to reproduce the results
## 6. How to reproduce the results
The steps below show, taking ResNet50 as an example, how to reproduce the above accuracy and performance results for Image Classification models.
The steps below show, taking ResNet50 as an example, how to reproduce the above accuracy and performance results for Image Classification models.
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录