提交 8edf60ce 编写于 作者: Y Yibing Liu

Merge branch 'develop' of upstream into fix_seq_pad

......@@ -16,7 +16,9 @@ find_library(TENSORRT_LIBRARY NAMES libnvinfer.so libnvinfer.a
DOC "Path to TensorRT library.")
if(TENSORRT_INCLUDE_DIR AND TENSORRT_LIBRARY)
if(WITH_DSO)
set(TENSORRT_FOUND ON)
endif(WITH DSO)
else()
set(TENSORRT_FOUND OFF)
endif()
......
......@@ -429,7 +429,7 @@ struct LSTM : public PatternBase {
struct GRU : public PatternBase {
GRU(PDPattern* pattern, const std::string& name_scope)
: PatternBase(pattern, name_scope, "lstm") {}
: PatternBase(pattern, name_scope, "gru") {}
PDNode* operator()(PDNode* x);
......
......@@ -9,8 +9,8 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <glog/logging.h>
#include "paddle/fluid/inference/api/paddle_inference_api.h"
#include "paddle/fluid/platform/enforce.h"
namespace paddle {
......@@ -64,13 +64,15 @@ PaddleBuf& PaddleBuf::operator=(PaddleBuf&& other) {
void PaddleBuf::Resize(size_t length) {
// Only the owned memory can be reset, the external memory can't be changed.
if (length_ == length) return;
if (length_ >= length) return;
if (memory_owned_) {
Free();
}
data_ = new char[length];
data_ = malloc(length);
length_ = length;
memory_owned_ = true;
} else {
PADDLE_THROW("The memory is allocated externally, can not Resized");
}
}
void PaddleBuf::Reset(void* data, size_t length) {
......@@ -82,8 +84,8 @@ void PaddleBuf::Reset(void* data, size_t length) {
void PaddleBuf::Free() {
if (memory_owned_ && data_) {
assert(length_ > 0);
delete[] static_cast<char*>(data_);
PADDLE_ENFORCE_GT(length_, 0);
free(static_cast<char*>(data_));
data_ = nullptr;
length_ = 0;
}
......
......@@ -53,7 +53,7 @@ set(TEXT_CLASSIFICATION_INSTALL_DIR "${INFERENCE_DEMO_INSTALL_DIR}/text_classifi
download_model_and_data(${TEXT_CLASSIFICATION_INSTALL_DIR} "text-classification-Senta.tar.gz" "text_classification_data.txt.tar.gz")
inference_analysis_test(test_analyzer_text_classification SRCS analyzer_text_classification_tester.cc
EXTRA_DEPS ${INFERENCE_EXTRA_DEPS}
ARGS --infer_model=${TEXT_CLASSIFICATION_INSTALL_DIR}/text-classification-Senta
ARGS --infer_model=${TEXT_CLASSIFICATION_INSTALL_DIR}/model
--infer_data=${TEXT_CLASSIFICATION_INSTALL_DIR}/data.txt)
# ocr
......
......@@ -300,6 +300,7 @@ class ConvMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
std::vector<int> paddings = ctx.Attr<std::vector<int>>("paddings");
std::vector<int> dilations = ctx.Attr<std::vector<int>>("dilations");
bool fuse_relu = ctx.Attr<bool>("fuse_relu");
bool fuse_eltwise = ctx.Attr<bool>("fuse_eltwise");
int groups = ctx.Attr<int>("groups");
// TODO: add support for dilation
......@@ -366,12 +367,13 @@ class ConvMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
bias_tz = paddle::framework::vectorize2int(bias->dims());
auto bias_md = platform::MKLDNNMemDesc(
bias_tz, platform::MKLDNNGetDataType<T>(), memory::format::x);
conv_pd =
ConvFwdPrimitiveDesc(src_md, weights_md, bias_md, dst_md, strides,
paddings, mkldnn_engine, fuse_relu);
conv_pd = ConvFwdPrimitiveDesc(src_md, weights_md, bias_md, dst_md,
strides, paddings, mkldnn_engine,
fuse_relu, fuse_eltwise);
} else {
conv_pd = ConvFwdPrimitiveDesc(src_md, weights_md, dst_md, strides,
paddings, mkldnn_engine, fuse_relu);
conv_pd =
ConvFwdPrimitiveDesc(src_md, weights_md, dst_md, strides, paddings,
mkldnn_engine, fuse_relu, fuse_eltwise);
}
// Save conv_pd/src_memory/weights_memory for backward pass
dev_ctx.SetBlob(key_conv_pd, conv_pd);
......@@ -421,16 +423,26 @@ class ConvMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
}
private:
mkldnn::primitive_attr AddRelu() const {
mkldnn::primitive_attr CreatePostOps(bool fuse_relu,
bool fuse_eltwise) const {
mkldnn::primitive_attr conv_attr;
mkldnn::post_ops post_operations;
// Fusion with Elementwise layer relies on adding a sum post-operation with
// the scale parameter. It is assumed that when fuse_eltwise is true, the
// Output tensor contains the data coming from residual connection. The
// result of this post_op is: Output = scale * Output + Conv_Out.
if (fuse_eltwise) {
post_operations.append_sum(1.0f);
}
// Fusion with ReLU layer is executed through the PostOps feature. Create a
// PostOps object and configure it to execute an eltwise relu operation.
mkldnn::primitive_attr conv_attr;
if (fuse_relu) {
constexpr float scale = 1.0f;
constexpr float negative_slope = 0.0f;
constexpr float placeholder = 0.0f;
mkldnn::post_ops post_operations;
post_operations.append_eltwise(scale, mkldnn::algorithm::eltwise_relu,
negative_slope, placeholder);
}
conv_attr.set_post_ops(post_operations);
return conv_attr;
}
......@@ -439,8 +451,8 @@ class ConvMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
ConvFwdPrimitiveDesc(const memory::desc& src, const memory::desc& weights,
const memory::desc& dst, const std::vector<int>& strides,
const std::vector<int>& paddings,
const mkldnn::engine& engine,
const bool fuse_relu) const {
const mkldnn::engine& engine, const bool fuse_relu,
const bool fuse_eltwise) const {
memory::dims stride_dims = {strides[0], strides[1]};
memory::dims padding_dims = {paddings[0], paddings[1]};
......@@ -449,10 +461,7 @@ class ConvMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
dst, stride_dims, padding_dims, padding_dims,
mkldnn::padding_kind::zero);
mkldnn::primitive_attr conv_attr;
if (fuse_relu) {
conv_attr = AddRelu();
}
mkldnn::primitive_attr conv_attr = CreatePostOps(fuse_relu, fuse_eltwise);
auto p_conv_pd = new mkldnn::convolution_forward::primitive_desc(
conv_desc, conv_attr, engine);
......@@ -466,8 +475,8 @@ class ConvMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
const memory::desc& bias, const memory::desc& dst,
const std::vector<int>& strides,
const std::vector<int>& paddings,
const mkldnn::engine& engine,
const bool fuse_relu) const {
const mkldnn::engine& engine, const bool fuse_relu,
const bool fuse_eltwise) const {
memory::dims stride_dims = {strides[0], strides[1]};
memory::dims padding_dims = {paddings[0], paddings[1]};
......@@ -476,10 +485,7 @@ class ConvMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
bias, dst, stride_dims, padding_dims, padding_dims,
mkldnn::padding_kind::zero);
mkldnn::primitive_attr conv_attr;
if (fuse_relu) {
conv_attr = AddRelu();
}
mkldnn::primitive_attr conv_attr = CreatePostOps(fuse_relu, fuse_eltwise);
auto p_conv_pd = new mkldnn::convolution_forward::primitive_desc(
conv_desc, conv_attr, engine);
......
......@@ -164,6 +164,11 @@ void Conv2DOpMaker::Make() {
.SetDefault(false);
AddAttr<bool>("fuse_relu", "(bool, default false) Only used in mkldnn kernel")
.SetDefault(false);
AddAttr<bool>("fuse_eltwise",
"(bool, default false) Only used in mkldnn kernel. Used "
"whenever convolution output is connected via skip connection "
"to a previous layer.")
.SetDefault(false);
AddAttr<std::string>(
"data_format",
"(string, default NCHW) Only used in "
......
......@@ -125,7 +125,7 @@ VarHandlePtr GRPCClient::AsyncGetVar(const std::string& ep,
VarHandlePtr h(new VarHandle(ep, "Get", var_name_val, p_ctx, p_scope));
s->Prepare(h, time_out);
framework::AsyncIO([var_name_val, p_scope, p_ctx, s, this] {
framework::AsyncIO([var_name_val, s, this] {
// prepare input
sendrecv::VariableMessage req;
req.set_varname(var_name_val);
......@@ -166,7 +166,7 @@ VarHandlePtr GRPCClient::AsyncPrefetchVar(const std::string& ep,
s->Prepare(h, time_out);
framework::AsyncIO([in_var_name_val, out_var_name_val, ep_val, p_scope, p_ctx,
time_out, s, this] {
s, this] {
auto* var = p_scope->FindVar(in_var_name_val);
::grpc::ByteBuffer req;
......
......@@ -82,8 +82,10 @@ class ProtoEncodeHelper {
: base_(buf), p_(buf), limit_(base_ + max_size) {}
~ProtoEncodeHelper() {
#define REPLACE_ENFORCE_GLOG 1
// Make sure callers didn't do operations that went over max_size promised
PADDLE_ENFORCE_LE(p_, limit_);
paddle::platform::throw_on_error(p_ <= limit_);
#undef REPLACE_ENFORCE_GLOG
}
const char* data() const { return base_; }
......
......@@ -59,8 +59,7 @@ static void ParallelExecuteBlocks(
framework::ProgramDesc *program, framework::Scope *scope) {
std::vector<std::future<void>> fs;
for (size_t idx : parallel_blkids) {
fs.push_back(
framework::Async([&executor, &prepared, &program, &scope, idx]() {
fs.push_back(framework::Async([&executor, &prepared, &scope, idx]() {
int run_block = idx; // thread local
try {
VLOG(3) << "running server block: " << run_block
......
......@@ -103,6 +103,58 @@ class MaxSeqPoolGradFunctor {
}
};
template <typename T>
class LastSeqPoolFunctor {
public:
void operator()(const platform::CPUDeviceContext& context,
const framework::LoDTensor& input,
framework::Tensor* output) {
// Create pointers to input and output data
auto* in_data = input.data<T>();
auto* out_data = output->data<T>();
// Calculate the size of each item in sequence
int64_t item_size = input.numel() / input.dims()[0];
auto lod = input.lod()[0];
int seq_num = static_cast<int>(lod.size()) - 1;
for (int i = 0; i < seq_num; ++i) {
// Calculate the length of each sequence
int64_t seq_len = static_cast<int64_t>(lod[i + 1] - lod[i]);
// Point to the begin of next sequence
in_data += seq_len * item_size;
// Copy the last item of sequence to output
std::memcpy(out_data, (in_data - item_size), item_size * sizeof(T));
out_data += item_size;
}
}
};
template <typename T>
class FirstSeqPoolFunctor {
public:
void operator()(const platform::CPUDeviceContext& context,
const framework::LoDTensor& input,
framework::Tensor* output) {
// Create pointers to input and output data
auto* in_data = input.data<T>();
auto* out_data = output->data<T>();
// Calculate the size of each item in sequence
int64_t item_size = input.numel() / input.dims()[0];
auto lod = input.lod()[0];
int seq_num = static_cast<int>(lod.size()) - 1;
for (int i = 0; i < seq_num; ++i) {
// Calculate the length of each sequence
int64_t seq_len = static_cast<int64_t>(lod[i + 1] - lod[i]);
// Copy the first item of sequence to output
std::memcpy(out_data, in_data, item_size * sizeof(T));
// Point to the next sequence
in_data += seq_len * item_size;
out_data += item_size;
}
}
};
template <typename T>
class SequencePoolFunctor<platform::CPUDeviceContext, T> {
public:
......@@ -116,6 +168,16 @@ class SequencePoolFunctor<platform::CPUDeviceContext, T> {
max_pool(context, input, output, index);
return;
}
if (pooltype == "LAST") {
math::LastSeqPoolFunctor<T> last_pool;
last_pool(context, input, output);
return;
}
if (pooltype == "FIRST") {
math::FirstSeqPoolFunctor<T> first_pool;
first_pool(context, input, output);
return;
}
auto lod = input.lod()[0];
auto& place = *context.eigen_device();
for (int i = 0; i < static_cast<int>(lod.size()) - 1; ++i) {
......@@ -133,10 +195,6 @@ class SequencePoolFunctor<platform::CPUDeviceContext, T> {
} else if (pooltype == "SQRT") {
out_e.device(place) = in_e.sum(Eigen::array<int, 1>({{0}})) /
std::sqrt(static_cast<T>(h));
} else if (pooltype == "LAST") {
out_e.device(place) = in_e.chip(h - 1, 0);
} else if (pooltype == "FIRST") {
out_e.device(place) = in_e.chip(0, 0);
} else {
PADDLE_THROW("unsupported pooling pooltype");
}
......
......@@ -26,10 +26,13 @@ class PReluOp : public framework::OperatorWithKernel {
std::string mode = ctx->Attrs().Get<std::string>("mode");
auto x_dim = ctx->GetInputDim("X");
PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) should not be null");
PADDLE_ENFORCE(ctx->HasInput("Alpha"), "Input(Alpha) should not be null");
PADDLE_ENFORCE(ctx->HasInput("X"),
"Input(X) of PreluOp should not be null");
PADDLE_ENFORCE(ctx->HasInput("Alpha"),
"Input(Alpha) of PreluOp should not be null");
PADDLE_ENFORCE(ctx->HasOutput("Out"), "Output(Out) should not be null");
PADDLE_ENFORCE(ctx->HasOutput("Out"),
"Output(Out) of PreluOp should not be null");
if (mode == "all") {
PADDLE_ENFORCE(product(ctx->GetInputDim("Alpha")) == 1,
"For mode 'all', size of weight Alpha must be one.");
......
......@@ -33,6 +33,7 @@ function print_usage() {
${BLUE}single_test${NONE}: run a single unit test
${BLUE}bind_test${NONE}: parallel tests bind to different GPU
${BLUE}doc${NONE}: generate paddle documents
${BLUE}gen_doc_lib${NONE}: generate paddle documents library
${BLUE}html${NONE}: convert C++ source code into HTML
${BLUE}dockerfile${NONE}: generate paddle release dockerfile
${BLUE}capi${NONE}: generate paddle CAPI package
......@@ -431,24 +432,60 @@ EOF
linkchecker doc/v2/cn/html/index.html
linkchecker doc/v2/api/en/html/index.html
if [[ "$TRAVIS_PULL_REQUEST" != "false" ]]; then exit 0; fi;
# if [[ "$TRAVIS_PULL_REQUEST" != "false" ]]; then exit 0; fi;
#
# # Deploy to the the content server if its a "develop" or "release/version" branch
# # The "develop_doc" branch is reserved to test full deploy process without impacting the real content.
# if [ "$TRAVIS_BRANCH" == "develop_doc" ]; then
# PPO_SCRIPT_BRANCH=develop
# elif [[ "$TRAVIS_BRANCH" == "develop" || "$TRAVIS_BRANCH" =~ ^v|release/[[:digit:]]+\.[[:digit:]]+(\.[[:digit:]]+)?(-\S*)?$ ]]; then
# PPO_SCRIPT_BRANCH=master
# else
# # Early exit, this branch doesn't require documentation build
# return 0;
# fi
# # Fetch the paddlepaddle.org deploy_docs.sh from the appopriate branch
# export DEPLOY_DOCS_SH=https://raw.githubusercontent.com/PaddlePaddle/PaddlePaddle.org/$PPO_SCRIPT_BRANCH/scripts/deploy/deploy_docs.sh
# export PYTHONPATH=$PYTHONPATH:${PADDLE_ROOT}/build/python:/paddle/build/python
# cd ..
# curl $DEPLOY_DOCS_SH | bash -s $CONTENT_DEC_PASSWD $TRAVIS_BRANCH ${PADDLE_ROOT} ${PADDLE_ROOT}/build/doc/ ${PPO_SCRIPT_BRANCH}
# cd -
}
# Deploy to the the content server if its a "develop" or "release/version" branch
# The "develop_doc" branch is reserved to test full deploy process without impacting the real content.
if [ "$TRAVIS_BRANCH" == "develop_doc" ]; then
PPO_SCRIPT_BRANCH=develop
elif [[ "$TRAVIS_BRANCH" == "develop" || "$TRAVIS_BRANCH" =~ ^v|release/[[:digit:]]+\.[[:digit:]]+(\.[[:digit:]]+)?(-\S*)?$ ]]; then
PPO_SCRIPT_BRANCH=master
else
# Early exit, this branch doesn't require documentation build
return 0;
fi
# Fetch the paddlepaddle.org deploy_docs.sh from the appopriate branch
export DEPLOY_DOCS_SH=https://raw.githubusercontent.com/PaddlePaddle/PaddlePaddle.org/$PPO_SCRIPT_BRANCH/scripts/deploy/deploy_docs.sh
export PYTHONPATH=$PYTHONPATH:${PADDLE_ROOT}/build/python:/paddle/build/python
cd ..
curl $DEPLOY_DOCS_SH | bash -s $CONTENT_DEC_PASSWD $TRAVIS_BRANCH ${PADDLE_ROOT} ${PADDLE_ROOT}/build/doc/ ${PPO_SCRIPT_BRANCH}
cd -
function gen_doc_lib() {
mkdir -p ${PADDLE_ROOT}/build
cd ${PADDLE_ROOT}/build
cat <<EOF
========================================
Building documentation library ...
In /paddle/build
========================================
EOF
cmake .. \
-DCMAKE_BUILD_TYPE=Release \
-DWITH_DOC=ON \
-DWITH_GPU=OFF \
-DWITH_MKL=OFF \
-DWITH_FLUID_ONLY=ON
local LIB_TYPE=$1
case $LIB_TYPE in
full)
# Build full Paddle Python module. Will timeout without caching 'copy_paddle_pybind' first
make -j `nproc` gen_proto_py framework_py_proto copy_paddle_pybind paddle_python
;;
pybind)
# Build paddle pybind library. Takes 49 minutes to build. Might timeout
make -j `nproc` copy_paddle_pybind
;;
proto)
# Even smaller library.
make -j `nproc` framework_py_proto
;;
*)
exit 0
;;
esac
}
function gen_html() {
......@@ -608,6 +645,9 @@ function main() {
doc)
gen_docs
;;
gen_doc_lib)
gen_doc_lib $2
;;
html)
gen_html
;;
......
......@@ -92,7 +92,7 @@ class TrainTaskConfig(object):
src_vocab_fpath = data_path + "vocab.bpe.32000"
trg_vocab_fpath = data_path + "vocab.bpe.32000"
train_file_pattern = data_path + "train.tok.clean.bpe.32000.en-de"
val_file_pattern = data_path + "newstest2013.tok.bpe.32000.en-de"
val_file_pattern = data_path + "newstest2013.tok.bpe.32000.en-de.cut"
pool_size = 2000
sort_type = None
local = True
......@@ -624,6 +624,7 @@ def train_loop(exe, train_progm, dev_count, sum_cost, avg_cost, lr_scheduler,
init = True
# Validate and save the model for inference.
if batch_id == 0 or batch_id == 4:
if TrainTaskConfig.val_file_pattern is not None:
val_avg_cost, val_ppl = test()
print("[%f]" % val_avg_cost)
......@@ -1701,8 +1702,9 @@ class DistTransformer2x2(TestDistRunnerBase):
exe.run(startup_prog)
exe.run(pserver_prog)
def run_trainer(self, place, args):
def run_trainer(self, use_cuda, args):
place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
TrainTaskConfig.use_gpu = use_cuda
sum_cost, avg_cost, predict, token_num, local_lr_scheduler = get_model(
args.is_dist, not args.sync_mode)
......
......@@ -61,9 +61,10 @@ class TestDistRunnerBase(object):
exe.run(startup_prog)
exe.run(pserver_prog)
def run_trainer(self, place, args):
def run_trainer(self, use_cuda, args):
import paddle
import paddle.fluid as fluid
place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
test_program, avg_cost, train_reader, test_reader, batch_acc, predict = \
self.get_model(batch_size=2)
if args.mem_opt:
......@@ -91,7 +92,7 @@ class TestDistRunnerBase(object):
build_stra.reduce_strategy = fluid.BuildStrategy.ReduceStrategy.AllReduce
exe = fluid.ParallelExecutor(
True,
use_cuda,
loss_name=avg_cost.name,
exec_strategy=strategy,
build_strategy=build_stra)
......@@ -142,9 +143,8 @@ def runtime_main(test_class):
if args.role == "pserver" and args.is_dist:
model.run_pserver(args)
else:
p = fluid.CUDAPlace(0) if core.is_compiled_with_cuda(
) else fluid.CPUPlace()
model.run_trainer(p, args)
use_cuda = True if core.is_compiled_with_cuda() else False
model.run_trainer(use_cuda, args)
import paddle.compat as cpt
......@@ -225,11 +225,12 @@ class TestDistBase(unittest.TestCase):
def check_with_place(self, model_file, delta=1e-3, check_error_log=False):
# TODO(typhoonzero): should auto adapt GPU count on the machine.
required_envs = {
"PATH": os.getenv("PATH"),
"PYTHONPATH": os.getenv("PYTHONPATH"),
"LD_LIBRARY_PATH": os.getenv("LD_LIBRARY_PATH"),
"PATH": os.getenv("PATH", ""),
"PYTHONPATH": os.getenv("PYTHONPATH", ""),
"LD_LIBRARY_PATH": os.getenv("LD_LIBRARY_PATH", ""),
"FLAGS_fraction_of_gpu_memory_to_use": "0.15",
"FLAGS_cudnn_deterministic": "1"
"FLAGS_cudnn_deterministic": "1",
"CPU_NUM": "1"
}
if check_error_log:
......
......@@ -14,6 +14,7 @@
from __future__ import print_function
import os
import unittest
import paddle
from test_dist_base import TestDistBase
......@@ -44,6 +45,14 @@ def download_files():
test_url = url_prefix + 'newstest2013.tok.bpe.32000.en-de'
test_md5 = '9dd74a266dbdb25314183899f269b4a2'
paddle.dataset.common.download(test_url, 'test_dist_transformer', test_md5)
# cut test data for faster CI
orig_path = os.path.join(paddle.dataset.common.DATA_HOME,
"test_dist_transformer",
"newstest2013.tok.bpe.32000.en-de")
head_path = os.path.join(paddle.dataset.common.DATA_HOME,
"test_dist_transformer",
"newstest2013.tok.bpe.32000.en-de.cut")
os.system("head -n10 %s > %s" % (orig_path, head_path))
class TestDistTransformer2x2Sync(TestDistBase):
......
......@@ -65,8 +65,43 @@ class InferenceTranspiler(object):
if use_mkldnn:
self._fuse_conv_bias_mkldnn(program)
self._fuse_conv_relu_mkldnn(program)
self._fuse_conv_eltwise_mkldnn(program)
self._fuse_conv_relu_mkldnn(
program) # ResNet residual block merging
self._fuse_bn_relu_mkldnn(program)
def _fuse_conv_eltwise_mkldnn(self, program):
'''
Transpile the program fusing elementwise_add into conv for MKLDNN
program. Elementwise add following convolution OP can be fused by adding
'fuse_eltwise' attribute to convolution OP and replacing its output
Tensor with second parameter of elementwise_add.
The result of fuse is:
- before:
- conv->elementwise_add->any_other_op
- after:
- conv->any_other_op
:param program: program to transpile
:type program: Program
'''
self.block = program.block(0)
i = 0
while i < len(self.block.ops):
current_op = self.block.ops[i]
if current_op.type in ['conv2d']:
next_op = self.block.ops[i + 1]
if next_op.type == 'elementwise_add':
self._fuse_conv_eltwise(current_op, next_op)
self.block._remove_op(i + 1) # Remove elementwise_add
i = i + 1
self._adjust_input()
self._remove_unused_var()
# TODO(luotao): use clone() method to flush the program.desc in force,
# since some large program.desc will not be flushed immediately.
# And a better solution will be considered later.
program = program.clone()
def _fuse_conv_relu_mkldnn(self, program):
'''
Transpile the program by fused relu activation for MKLDNN program.
......@@ -88,9 +123,9 @@ class InferenceTranspiler(object):
if current_op.type in ['conv2d']:
next_op = self.block.ops[i + 1]
if next_op.type == 'relu':
# modify conv OP to include relu
# modify bnorm OP to include relu
current_op.set_attr("fuse_relu", True)
# remove conv OP
# remove relu OP
self.block._remove_op(i + 1)
i = i + 1
......@@ -409,6 +444,20 @@ class InferenceTranspiler(object):
outputs={"Output": out_var},
attrs=attrs)
def _fuse_conv_eltwise(self, conv_op, eltwise_op):
'''
fuse the conv op with elementwise_add
:param conv_op: convolution operator
:type conv_op: Operator
:param eltwise_op: operator adding data from skip connection
:type eltwise_op: Operator
'''
conv_op.set_attr("fuse_eltwise", True)
self.input_map[conv_op.output("Output")[0]] = eltwise_op.input("Y")[0]
self.input_map[eltwise_op.output("Out")[0]] = eltwise_op.input("Y")[0]
def _adjust_input(self):
for i in range(len(self.block.ops)):
current_op = self.block.ops[i]
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册