Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
8df46229
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
8df46229
编写于
4月 02, 2022
作者:
L
lilong12
提交者:
GitHub
4月 02, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
wrapper the usage of distributed functions (#39720)
上级
b3270adf
变更
10
显示空白变更内容
内联
并排
Showing
10 changed file
with
436 addition
and
262 deletion
+436
-262
paddle/fluid/distributed/collective/ProcessGroup.h
paddle/fluid/distributed/collective/ProcessGroup.h
+7
-6
python/paddle/distributed/collective.py
python/paddle/distributed/collective.py
+164
-203
python/paddle/distributed/parallel.py
python/paddle/distributed/parallel.py
+81
-18
python/paddle/fluid/dygraph/parallel.py
python/paddle/fluid/dygraph/parallel.py
+4
-3
python/paddle/fluid/tests/unittests/CMakeLists.txt
python/paddle/fluid/tests/unittests/CMakeLists.txt
+3
-0
python/paddle/fluid/tests/unittests/init_process_group.py
python/paddle/fluid/tests/unittests/init_process_group.py
+9
-5
python/paddle/fluid/tests/unittests/process_group_nccl.py
python/paddle/fluid/tests/unittests/process_group_nccl.py
+131
-26
python/paddle/fluid/tests/unittests/test_eager_dist_api.py
python/paddle/fluid/tests/unittests/test_eager_dist_api.py
+33
-0
python/paddle/fluid/tests/unittests/test_fleet_base_single.py
...on/paddle/fluid/tests/unittests/test_fleet_base_single.py
+1
-1
python/paddle/fluid/tests/unittests/test_parallel_dygraph_dataparallel_cpuonly.py
...s/unittests/test_parallel_dygraph_dataparallel_cpuonly.py
+3
-0
未找到文件。
paddle/fluid/distributed/collective/ProcessGroup.h
浏览文件 @
8df46229
...
...
@@ -158,16 +158,17 @@ class ProcessGroupMapFromGid {
}
void
insert
(
int
gid
,
ProcessGroup
*
pg
)
{
PADDLE_ENFORCE_EQ
(
has
(
gid
),
false
,
platform
::
errors
::
PreconditionNotMet
(
"The process group with id %d doesnot
exist."
,
gid
));
//
PADDLE_ENFORCE_EQ(has(gid), false,
//
platform::errors::PreconditionNotMet(
// "The process group with id %d does
exist.", gid));
map_
[
gid
]
=
pg
;
}
ProcessGroup
*
get
(
int
gid
)
{
PADDLE_ENFORCE_EQ
(
has
(
gid
),
false
,
platform
::
errors
::
PreconditionNotMet
(
"The process group with id %d doesnot exist."
,
gid
));
// PADDLE_ENFORCE_EQ(has(gid), true,
// platform::errors::PreconditionNotMet(
// "The process group with id %d doesnot exist.",
// gid));
return
map_
.
find
(
gid
)
->
second
;
}
...
...
python/paddle/distributed/collective.py
浏览文件 @
8df46229
...
...
@@ -16,7 +16,9 @@ import numpy as np
import
os
from
datetime
import
timedelta
from
..fluid.layer_helper
import
LayerHelper
import
paddle.fluid.framework
as
framework
from
..fluid.framework
import
Variable
from
..fluid.framework
import
in_dygraph_mode
from
..fluid.framework
import
OpProtoHolder
from
..fluid.framework
import
_non_static_mode
from
..fluid.framework
import
convert_np_dtype_to_dtype_
...
...
@@ -174,10 +176,6 @@ def _new_ring_id():
return
len
(
_get_group_map
())
+
max
(
_get_global_env
().
nrings
,
9
)
def
_new_group_name_id
():
return
len
(
_get_group_map_by_name
())
+
max
(
_get_global_env
().
nrings
,
9
)
def
get_group
(
id
=
0
):
"""
...
...
@@ -202,194 +200,24 @@ def get_group(id=0):
return
gm
[
id
]
if
id
in
gm
else
None
def
_new_process_group_impl
(
backend
,
store
,
rank
,
world_size
,
group_name
,
pg_options
):
if
backend
==
"gloo"
:
gloo_store
=
core
.
GlooStore
(
store
)
def
_new_process_group_impl
(
backend
,
store
,
rank
,
world_size
,
group_name
,
pg_options
,
group_id
=
0
):
pg
=
None
if
backend
==
"gloo"
:
pg
=
core
.
ProcessGroupGloo
(
gloo_store
,
rank
,
world_size
)
pg
=
core
.
ProcessGroupGloo
(
store
,
rank
,
world_size
,
group_id
)
elif
backend
==
"nccl"
:
pg
=
core
.
ProcessGroupNCCL
(
store
,
rank
,
world_size
)
pg
=
core
.
ProcessGroupNCCL
(
store
,
rank
,
world_size
,
group_id
)
elif
backend
==
"hccl"
:
pg
=
core
.
ProcessGroupHCCL
(
store
,
rank
,
world_size
)
pg
=
core
.
ProcessGroupHCCL
(
store
,
rank
,
world_size
,
group_id
)
return
pg
def
_init_parallel_env
(
rank
=
None
,
world_size
=
None
,
backend
=
"nccl"
,
timeout
=
timedelta
(
0
),
pg_options
=
None
):
"""
Initializes the default distributed environment.
Args:
rank (int, optional): the rank of the current process or device from 0 to world_size (exclusive).
If you launch your training with paddle.distributed.run or
paddle.distributed.launch module, None can be given. Default: None.
world_size (int, optional): total number of processes or devices.
If you launch your training with paddle.distributed.run or
paddle.distributed.launch module, None can be given. Default: None.
backend (str, optional): the name of the backend used to initialize
the distributed environment. The value can be one of 'nccl' for
GPU, 'gloo' for CPU or 'hccl' for NPU. Default: 'nccl'.
timeout (datetime.timedelta, optional): timeout used for operations of
the group. Default: datetime.timedelta(0) which means no timeout.
pg_options (dict, optional): options for the group. Default: None.
Returns:
Group: a group.
Examples:
.. code-block:: python
# filename: train.py
import paddle
paddle.distributed.init_parallel_env(0, 1)
# how to start
# python paddle.distributed.run --gpus="0,1" train.py
"""
global
_group_map_by_name
global
_default_group_name
assert
_default_group_name
not
in
_group_map_by_name
,
(
"The default distributed environment has been initialized."
)
assert
backend
in
_valid_backend_list
,
(
"Backend must be one of {}, but the given one is: {}"
.
format
(
_valid_backend_list
,
backend
))
_default_backend
=
backend
assert
isinstance
(
timeout
,
timedelta
),
(
"timeout must be of the type datetime.timedelta."
)
if
rank
is
None
or
world_size
is
None
:
assert
rank
is
None
and
world_size
is
None
,
(
"rank and world_size should be unset at the same time."
)
trainer_id
=
os
.
getenv
(
"PADDLE_TRAINER_ID"
,
None
)
trainer_num
=
os
.
getenv
(
"PADDLE_TRAINERS_NUM"
,
None
)
if
trainer_id
is
None
or
trainer_num
is
None
:
warnings
.
warn
(
"If rank and world_size are both None, please start "
"your training with paddle.distributed.run or "
"paddle.distributed.launch module. Otherwise, "
"init_parallel_env will do nothing."
)
return
None
rank
=
int
(
trainer_id
)
world_size
=
int
(
trainer_num
)
assert
rank
>=
0
and
world_size
>
rank
and
world_size
>
1
,
(
"rank must be non-negative and world_size must be the "
"maximum rank plus one. Moreover, at least two processes are "
"required to create a process group."
)
master_addr
=
os
.
getenv
(
"MASTER_ADDR"
,
None
)
master_port
=
os
.
getenv
(
"MASTER_PORT"
,
None
)
if
not
master_addr
or
not
master_port
:
endpoints
=
os
.
getenv
(
"PADDLE_MASTER"
,
None
)
if
endpoints
is
None
:
endpoints
=
os
.
getenv
(
"PADDLE_TRAINER_ENDPOINTS"
,
None
)
if
not
endpoints
:
raise
ValueError
(
"The environment variable 'MASTER_ADDR' and 'MASTER_PORT' "
"must be specified, for example 'export MASTER_ADDR=127.0.0.1' "
"and 'export MASTER_ADDR=54612'. Or you can start your training"
"with paddle.distributed.run or "
"paddle.distributed.luanch module."
)
if
','
in
endpoints
:
endpoints
=
endpoints
.
split
(
','
)[
0
]
master_addr
,
master_port
=
endpoints
.
split
(
":"
)
master_port
=
int
(
master_port
)
is_master
=
rank
==
0
global
_default_store
_default_store
=
core
.
TCPStore
(
master_addr
,
master_port
,
is_master
,
world_size
,
timeout
)
pg
=
_new_process_group_impl
(
backend
,
_default_store
,
rank
,
world_size
,
_default_group_name
,
pg_options
)
ranks
=
list
(
range
(
world_size
))
group
=
Group
(
rank
,
world_size
,
id
=
0
,
ranks
=
ranks
,
pg
=
pg
,
name
=
_default_group_name
)
paddle
.
fluid
.
dygraph
.
parallel_helper
.
_set_parallel_ctx
(
True
)
_group_map_by_name
[
_default_group_name
]
=
group
return
group
def
_new_group
(
ranks
=
None
,
backend
=
None
,
group_name
=
None
,
timeout
=
timedelta
(
0
),
pg_options
=
None
):
"""
Create a new process group.
Args:
ranks (list, optional): list of ranks for the new group. If None is given,
all processes is used. Default: None.
backend (str, optional): the name of the backend used to initialize
the distributed environment. Default: the one for init_parallel_env.
timeout (datetime.timedelta, optional): timeout used for operations of
the group. Default: datetime.timedelta(0).
pg_options (dict, optional): options for the group. Default: None.
Examples:
.. code-block:: python
import paddle
paddle.distributed.init_parallel_env(0, 1)
paddle.distributed.new_group([0, 1])
# how to start
# python paddle.distributed.run --gpus="0,1" train.py
"""
global
_default_group_name
if
group_name
is
None
:
group_name
=
_default_group_name
+
str
(
_new_group_name_id
())
if
group_name
==
_default_group_name
:
raise
ValueError
(
"group_name must be specified and it cannot be '{}' "
"which is used for the default process group created "
"by init_parallel_env."
.
format
(
_default_group_name
))
global_group
=
_get_default_group
()
global_rank
=
global_group
.
rank
global_ranks
=
global_group
.
ranks
if
ranks
is
None
:
ranks
=
global_ranks
assert
len
(
ranks
)
<=
len
(
global_ranks
),
(
"Size of new group must be less than or "
"equal to that of the default global group."
)
size
=
len
(
ranks
)
assert
size
>
1
,
"A group must have at least two memebers."
ranks
=
sorted
(
ranks
)
if
global_rank
in
ranks
:
rank
=
ranks
.
index
(
global_rank
)
pg
=
_new_process_group_impl
(
backend
,
_default_store
,
rank
,
size
,
group_name
,
pg_options
)
else
:
rank
=
-
1
pg
=
None
group
=
Group
(
rank
,
size
,
id
=
_new_group_name_id
(),
ranks
=
ranks
,
pg
=
pg
,
name
=
group_name
)
_group_map_by_name
[
group_name
]
=
group
return
group
def
barrier
(
group
=
None
):
"""
...
...
@@ -414,6 +242,12 @@ def barrier(group=None):
if
group
is
not
None
and
not
group
.
is_member
():
return
if
framework
.
_in_eager_mode_
and
in_dygraph_mode
():
group
=
_get_default_group
()
if
group
is
None
else
group
task
=
group
.
process_group
.
barrier
()
task
.
wait
()
return
ring_id
=
0
if
group
is
None
else
group
.
id
temp
=
fill_constant
([
1
],
dtype
=
"int32"
,
value
=
"1"
)
...
...
@@ -455,6 +289,40 @@ def new_group(ranks=None, backend=None):
paddle.distributed.all_reduce(tindata, group=gp, use_calc_stream=False)
"""
global
_group_map
if
framework
.
_in_eager_mode_
:
global
_default_group_name
gid
=
_new_ring_id
()
group_name
=
_default_group_name
+
str
(
gid
)
global_group
=
_get_default_group
()
global_rank
=
global_group
.
rank
global_ranks
=
global_group
.
ranks
if
ranks
is
None
:
ranks
=
global_ranks
assert
len
(
ranks
)
<=
len
(
global_ranks
),
(
"Size of new group must be less than or "
"equal to that of the default global group."
)
size
=
len
(
ranks
)
assert
size
>
1
,
"A group must have at least two memebers."
ranks
=
sorted
(
ranks
)
if
global_rank
in
ranks
:
rank
=
ranks
.
index
(
global_rank
)
pg
=
_new_process_group_impl
(
backend
,
_default_store
,
rank
,
size
,
group_name
,
pg_options
=
None
,
group_id
=
gid
)
else
:
rank
=
-
1
pg
=
None
group
=
Group
(
rank
,
size
,
id
=
gid
,
ranks
=
ranks
,
pg
=
pg
,
name
=
group_name
)
_group_map_by_name
[
group_name
]
=
group
_group_map
[
gid
]
=
group
return
group
if
not
backend
:
backend
=
'nccl'
...
...
@@ -465,7 +333,6 @@ def new_group(ranks=None, backend=None):
ring_id
=
_new_ring_id
()
global
_group_map
if
global_rank
not
in
ranks
:
gp
=
Group
(
-
1
,
-
1
,
ring_id
,
ranks
)
_group_map
[
ring_id
]
=
gp
...
...
@@ -628,7 +495,18 @@ def broadcast(tensor, src, group=None, use_calc_stream=True):
if
not
isinstance
(
src
,
int
):
raise
ValueError
(
"src should be int."
)
ring_id
=
0
if
group
is
None
else
group
.
id
if
framework
.
_in_eager_mode_
and
in_dygraph_mode
():
group
=
_get_default_group
()
if
group
is
None
else
group
gsrc
=
group
.
get_group_rank
(
src
)
assert
gsrc
>=
0
,
(
"src rank out of group, need global rank"
)
task
=
group
.
process_group
.
broadcast
(
tensor
,
gsrc
)
if
use_calc_stream
:
task
.
wait
()
return
None
else
:
return
task
ring_id
=
ring_id
=
0
if
group
is
None
else
group
.
id
gsrc
=
src
if
group
is
None
else
group
.
get_group_rank
(
src
)
assert
gsrc
>=
0
,
(
"src rank out of group, need global rank"
)
...
...
@@ -701,6 +579,23 @@ def all_reduce(tensor, op=ReduceOp.SUM, group=None, use_calc_stream=True):
if
group
is
not
None
and
not
group
.
is_member
():
return
if
framework
.
_in_eager_mode_
and
in_dygraph_mode
():
if
op
==
ReduceOp
.
SUM
:
op_type
=
core
.
ReduceOp
.
SUM
elif
op
==
ReduceOp
.
MAX
:
op_type
=
core
.
ReduceOp
.
MAX
elif
op
==
ReduceOp
.
MIN
:
op_type
=
core
.
ReduceOp
.
MIN
else
:
raise
ValueError
(
"Unknown reduce_op type for allreduce."
)
group
=
_get_default_group
()
if
group
is
None
else
group
task
=
group
.
process_group
.
allreduce
(
tensor
,
op_type
)
if
use_calc_stream
:
task
.
wait
()
return
None
else
:
return
task
ring_id
=
0
if
group
is
None
else
group
.
id
if
_non_static_mode
():
if
op
==
ReduceOp
.
SUM
:
...
...
@@ -721,9 +616,6 @@ def all_reduce(tensor, op=ReduceOp.SUM, group=None, use_calc_stream=True):
check_variable_and_dtype
(
tensor
,
'tensor'
,
[
'float16'
,
'float32'
,
'float64'
,
'int32'
,
'int64'
],
'all_reduce'
)
if
not
op
in
[
ReduceOp
.
SUM
,
ReduceOp
.
MAX
,
ReduceOp
.
MIN
,
ReduceOp
.
PROD
]:
raise
ValueError
(
"The op for all_reduce must be one of educeOp.PROD, "
"ReduceOp.SUM, ReduceOp.MAX, ReduceOp.MIN."
)
if
op
==
ReduceOp
.
SUM
:
op_type
=
'c_allreduce_sum'
elif
op
==
ReduceOp
.
MAX
:
...
...
@@ -789,8 +681,24 @@ def reduce(tensor, dst, op=ReduceOp.SUM, group=None, use_calc_stream=True):
if
group
is
not
None
and
not
group
.
is_member
():
return
if
not
isinstance
(
dst
,
int
):
raise
ValueError
(
"dst should be int."
)
if
framework
.
_in_eager_mode_
and
in_dygraph_mode
():
if
op
==
ReduceOp
.
SUM
:
op_type
=
core
.
ReduceOp
.
SUM
elif
op
==
ReduceOp
.
MAX
:
op_type
=
core
.
ReduceOp
.
MAX
elif
op
==
ReduceOp
.
MIN
:
op_type
=
core
.
ReduceOp
.
MIN
else
:
raise
ValueError
(
"Unknown reduce_op type for reduce."
)
group
=
_get_default_group
()
if
group
is
None
else
group
gdst
=
group
.
get_group_rank
(
dst
)
assert
gdst
>=
0
,
(
"dst rank out of group, need global rank"
)
task
=
group
.
process_group
.
reduce
(
tensor
,
gdst
,
op_type
)
if
use_calc_stream
:
task
.
wait
()
return
None
else
:
return
task
ring_id
=
0
if
group
is
None
else
group
.
id
gdst
=
dst
if
group
is
None
else
group
.
get_group_rank
(
dst
)
...
...
@@ -820,9 +728,6 @@ def reduce(tensor, dst, op=ReduceOp.SUM, group=None, use_calc_stream=True):
check_variable_and_dtype
(
tensor
,
'tensor'
,
[
'float16'
,
'float32'
,
'float64'
,
'int32'
,
'int64'
],
'all_reduce'
)
if
not
op
in
[
ReduceOp
.
SUM
,
ReduceOp
.
MAX
,
ReduceOp
.
MIN
,
ReduceOp
.
PROD
]:
raise
ValueError
(
"The op for reduce must be one of educeOp.PROD, "
"ReduceOp.SUM, ReduceOp.MAX, ReduceOp.MIN."
)
if
op
==
ReduceOp
.
SUM
:
op_type
=
'c_reduce_sum'
...
...
@@ -897,6 +802,15 @@ def all_gather(tensor_list, tensor, group=None, use_calc_stream=True):
if
group
is
not
None
and
not
group
.
is_member
():
return
if
framework
.
_in_eager_mode_
and
in_dygraph_mode
():
group
=
_get_default_group
()
if
group
is
None
else
group
out
=
paddle
.
concat
(
tensor_list
)
task
=
group
.
process_group
.
all_gather
(
tensor
,
out
)
task
.
wait
()
tensor_list
.
clear
()
tensor_list
.
extend
(
paddle
.
split
(
out
,
group
.
nranks
,
0
))
return
ring_id
=
0
if
group
is
None
else
group
.
id
nranks
=
_get_global_group
().
nranks
if
group
is
None
else
group
.
nranks
...
...
@@ -985,18 +899,32 @@ def scatter(tensor, tensor_list=None, src=0, group=None, use_calc_stream=True):
if
not
isinstance
(
src
,
int
):
raise
ValueError
(
"src should be int."
)
if
framework
.
_in_eager_mode_
and
in_dygraph_mode
():
group
=
_get_default_group
()
if
group
is
None
else
group
gsrc
=
group
.
get_group_rank
(
src
)
rank
=
group
.
rank
nranks
=
group
.
nranks
else
:
ring_id
=
0
if
group
is
None
else
group
.
id
gsrc
=
src
if
group
is
None
else
group
.
get_group_rank
(
src
)
assert
gsrc
>=
0
,
(
"src rank out of group, need global rank"
)
rank
=
_get_global_group
().
rank
if
group
is
None
else
group
.
rank
nranks
=
_get_global_group
().
nranks
if
group
is
None
else
group
.
nranks
assert
gsrc
>=
0
,
(
"src rank out of group, need global rank"
)
if
rank
!=
gsrc
:
tensor_list
=
[]
for
_
in
range
(
nranks
):
tensor_list
.
append
(
tensor
)
temp
=
paddle
.
concat
(
tensor_list
,
axis
=
0
)
if
_non_static_mode
():
if
framework
.
_in_eager_mode_
and
in_dygraph_mode
():
task
=
group
.
process_group
.
scatter
(
temp
,
tensor
,
gsrc
)
if
use_calc_stream
:
task
.
wait
()
return
None
else
:
return
task
if
in_dygraph_mode
():
return
_C_ops
.
c_scatter
(
temp
,
tensor
,
'use_calc_stream'
,
use_calc_stream
,
'ring_id'
,
ring_id
,
'nranks'
,
nranks
,
'root'
,
gsrc
)
...
...
@@ -1070,11 +998,12 @@ def _c_concat(tensor, group=None):
"""
if
group
is
not
None
and
not
group
.
is_member
():
return
ring_id
=
0
if
group
is
None
else
group
.
id
group
=
_get_default_group
()
if
group
is
None
else
group
ring_id
=
group
.
id
global_rank
=
_get_global_env
().
rank
rank
=
g
lobal_rank
if
group
is
None
else
group
.
get_group_rank
(
global_rank
)
nranks
=
_get_global_env
().
world_size
if
group
is
None
else
group
.
nranks
rank
=
g
roup
.
rank
nranks
=
group
.
nranks
if
_non_static_mode
():
return
_C_ops
.
c_concat
(
tensor
,
'ring_id'
,
ring_id
,
'use_calc_stream'
,
...
...
@@ -1765,9 +1694,21 @@ def alltoall(in_tensor_list, out_tensor_list, group=None, use_calc_stream=True):
if
group
is
not
None
and
not
group
.
is_member
():
return
if
framework
.
_in_eager_mode_
and
in_dygraph_mode
():
group
=
_get_default_group
()
if
group
is
None
else
group
else
:
ring_id
=
0
if
group
is
None
else
group
.
id
temp
=
paddle
.
concat
(
in_tensor_list
,
axis
=
0
)
nranks
=
len
(
in_tensor_list
)
if
framework
.
_in_eager_mode_
and
in_dygraph_mode
():
out
=
paddle
.
concat
(
out_tensor_list
,
axis
=
0
)
task
=
group
.
process_group
.
alltoall
(
temp
,
out
)
task
.
wait
()
out_tensor_list
.
clear
()
out_tensor_list
.
extend
(
paddle
.
split
(
out
,
nranks
,
0
))
return
if
_non_static_mode
():
out
=
_C_ops
.
alltoall
(
temp
,
'use_calc_stream'
,
use_calc_stream
,
'ring_id'
,
ring_id
)
...
...
@@ -1834,6 +1775,16 @@ def send(tensor, dst=0, group=None, use_calc_stream=True):
"""
if
group
is
not
None
and
not
group
.
is_member
():
return
if
framework
.
_in_eager_mode_
and
in_dygraph_mode
():
group
=
_get_default_group
()
if
group
is
None
else
group
task
=
group
.
process_group
.
send
(
tensor
,
dst
)
if
use_calc_stream
:
task
.
wait
()
return
None
else
:
return
task
ring_id
=
0
if
group
is
None
else
group
.
id
if
_non_static_mode
():
...
...
@@ -1887,6 +1838,16 @@ def recv(tensor, src=0, group=None, use_calc_stream=True):
"""
if
group
is
not
None
and
not
group
.
is_member
():
return
if
framework
.
_in_eager_mode_
and
in_dygraph_mode
():
group
=
_get_default_group
()
if
group
is
None
else
group
task
=
group
.
process_group
.
recv
(
tensor
,
src
)
if
use_calc_stream
:
task
.
wait
()
return
None
else
:
return
task
ring_id
=
0
if
group
is
None
else
group
.
id
if
_non_static_mode
():
...
...
python/paddle/distributed/parallel.py
浏览文件 @
8df46229
...
...
@@ -24,11 +24,21 @@ from paddle import compat as cpt
# deprecated module import
from
paddle.fluid
import
core
import
paddle.fluid.framework
as
framework
from
paddle.fluid.framework
import
_set_expected_place
from
paddle.fluid.dygraph
import
parallel_helper
from
paddle.distributed.fleet.launch_utils
import
check_backend
from
paddle.fluid.dygraph.parallel
import
ParallelEnv
from
paddle.distributed.fleet.base.private_helper_function
import
wait_server_ready
# noqa: F401
import
paddle.distributed.collective
as
collective
from
paddle.distributed.collective
import
_group_map_by_name
from
paddle.distributed.collective
import
_group_map
from
paddle.distributed.collective
import
_default_group_name
from
paddle.distributed.collective
import
_valid_backend_list
from
paddle.distributed.collective
import
_default_backend
from
paddle.distributed.collective
import
_default_store
from
paddle.distributed.collective
import
_new_process_group_impl
from
paddle.distributed.collective
import
Group
__all__
=
[]
...
...
@@ -159,18 +169,88 @@ def init_parallel_env():
if
not
is_cpu_only
and
core
.
is_compiled_with_cuda
():
_check_var_exists
(
"FLAGS_selected_gpus"
)
backend
=
"nccl"
if
backend
==
"auto"
else
backend
elif
not
is_cpu_only
and
core
.
is_compiled_with_xpu
():
_check_var_exists
(
'FLAGS_selected_xpus'
)
backend
=
"bkcl"
if
backend
==
"auto"
else
backend
elif
not
is_cpu_only
and
core
.
is_compiled_with_npu
():
_check_var_exists
(
'FLAGS_selected_npus'
)
backend
=
"hccl"
if
backend
==
"auto"
else
backend
elif
not
is_cpu_only
and
core
.
is_compiled_with_mlu
():
_check_var_exists
(
'FLAGS_selected_mlus'
)
backend
=
"cncl"
if
backend
==
"auto"
else
backend
_check_var_exists
(
"PADDLE_TRAINER_ID"
)
_check_var_exists
(
"PADDLE_CURRENT_ENDPOINT"
)
_check_var_exists
(
"PADDLE_TRAINERS_NUM"
)
_check_var_exists
(
"PADDLE_TRAINER_ENDPOINTS"
)
# NOTE(chenweihang): [ why config global place here? ]
# the dygraph mode will be set to default mode,
# users will not call `dygraph.guard` or `enable_dygraph`
# directly, if they want to switch default place,
# they need to call a function to change default place,
# here just set correctly place to users
if
is_cpu_only
:
place
=
core
.
CPUPlace
()
elif
core
.
is_compiled_with_cuda
():
place
=
core
.
CUDAPlace
(
parallel_env
.
device_id
)
elif
core
.
is_compiled_with_xpu
():
place
=
core
.
XPUPlace
(
parallel_env
.
device_id
)
elif
core
.
is_compiled_with_npu
():
place
=
core
.
NPUPlace
(
parallel_env
.
device_id
)
elif
core
.
is_compiled_with_mlu
():
place
=
core
.
MLUPlace
(
parallel_env
.
device_id
)
_set_expected_place
(
place
)
group
=
None
if
backend
in
_valid_backend_list
and
framework
.
_in_eager_mode_
:
if
_default_group_name
in
collective
.
_group_map_by_name
:
return
collective
.
_group_map_by_name
[
_default_group_name
]
_default_backend
=
backend
rank
=
int
(
os
.
getenv
(
"PADDLE_TRAINER_ID"
))
world_size
=
int
(
os
.
getenv
(
"PADDLE_TRAINERS_NUM"
))
assert
rank
>=
0
and
world_size
>
rank
and
world_size
>
1
,
(
"rank must be non-negative and world_size must be the "
"maximum rank plus one. Moreover, at least two processes are "
"required to create a process group."
)
master_addr
=
os
.
getenv
(
"MASTER_ADDR"
,
None
)
master_port
=
os
.
getenv
(
"MASTER_PORT"
,
None
)
if
not
master_addr
or
not
master_port
:
endpoints
=
os
.
getenv
(
"PADDLE_MASTER"
,
None
)
if
endpoints
is
None
:
endpoints
=
os
.
getenv
(
"PADDLE_TRAINER_ENDPOINTS"
).
split
(
','
)[
0
]
assert
endpoints
,
(
"The environment variable 'MASTER_ADDR' and 'MASTER_PORT' "
"must be specified, for example 'export MASTER_ADDR=127.0.0.1' "
"and 'export MASTER_ADDR=54612'. Or you can start your training"
"with paddle.distributed.run module."
)
master_addr
,
master_port
=
endpoints
.
split
(
":"
)
master_port
=
int
(
master_port
)
is_master
=
rank
==
0
_default_store
=
core
.
TCPStore
(
master_addr
,
master_port
,
is_master
,
world_size
)
pg
=
_new_process_group_impl
(
backend
,
_default_store
,
rank
,
world_size
,
_default_group_name
,
pg_options
=
None
)
ranks
=
list
(
range
(
world_size
))
group
=
Group
(
rank
,
world_size
,
id
=
0
,
ranks
=
ranks
,
pg
=
pg
,
name
=
_default_group_name
)
collective
.
_group_map_by_name
[
_default_group_name
]
=
group
_group_map
[
0
]
=
group
parallel_helper
.
_set_parallel_ctx
(
True
)
return
group
node_num
=
set
([
i
.
split
(
":"
)[
0
]
for
i
in
parallel_env
.
trainer_endpoints
])
# 3: init gloo context (step 1: httpsever start)
init_gloo
=
int
(
os
.
getenv
(
"PADDLE_WITH_GLOO"
,
"0"
))
...
...
@@ -202,24 +282,6 @@ def init_parallel_env():
strategy
.
current_endpoint
=
parallel_env
.
current_endpoint
strategy
.
nrings
=
parallel_env
.
nrings
# NOTE(chenweihang): [ why config global place here? ]
# the dygraph mode will be set to default mode,
# users will not call `dygraph.guard` or `enable_dygraph`
# directly, if they want to switch default place,
# they need to call a function to change default place,
# here just set correctly place to users
if
is_cpu_only
:
place
=
core
.
CPUPlace
()
elif
core
.
is_compiled_with_cuda
():
place
=
core
.
CUDAPlace
(
parallel_env
.
device_id
)
elif
core
.
is_compiled_with_xpu
():
place
=
core
.
XPUPlace
(
parallel_env
.
device_id
)
elif
core
.
is_compiled_with_npu
():
place
=
core
.
NPUPlace
(
parallel_env
.
device_id
)
elif
core
.
is_compiled_with_mlu
():
place
=
core
.
MLUPlace
(
parallel_env
.
device_id
)
_set_expected_place
(
place
)
# init nccl or hccl or bkcl or heter context
if
is_cpu_only
:
parallel_helper
.
_set_parallel_ctx
(
...
...
@@ -274,6 +336,7 @@ def init_parallel_env():
if
parallel_env
.
rank
==
0
:
http_server_d
[
"running"
]
=
False
http_server
.
join
()
return
group
def
get_rank
():
...
...
python/paddle/fluid/dygraph/parallel.py
浏览文件 @
8df46229
...
...
@@ -360,8 +360,9 @@ def sync_params_buffers(model,
is_model_parallel
=
False
):
model_vars
=
[]
for
_
,
param
in
model
.
_obtain_parameters_buffers
().
items
():
if
not
isinstance
(
param
,
core
.
VarBase
):
raise
TypeError
(
"The data type of '%s' must be Varbase"
%
if
not
isinstance
(
param
,
(
core
.
VarBase
,
core
.
eager
.
Tensor
)):
raise
TypeError
(
"The data type of '%s' must be Varbase or eager.Tensor"
%
param
.
name
)
# is_distributed param not need to sync when in mp mode
...
...
python/paddle/fluid/tests/unittests/CMakeLists.txt
浏览文件 @
8df46229
...
...
@@ -60,6 +60,7 @@ list(APPEND DIST_TEST_OPS test_auto_parallel_data_unshard)
list
(
APPEND DIST_TEST_OPS test_auto_parallel_save_load
)
list
(
APPEND DIST_TEST_OPS test_auto_parallel_autoconvert
)
list
(
APPEND DIST_TEST_OPS test_collective_process_group
)
list
(
APPEND DIST_TEST_OPS test_eager_dist_api
)
set
(
MIXED_DIST_TEST_OPS
${
DIST_TEST_OPS
}
)
#remove distribute unittests.
list
(
APPEND MIXED_DIST_TEST_OPS test_dgc_op
)
...
...
@@ -311,6 +312,7 @@ if ((NOT WITH_GPU) AND (NOT WITH_ROCM))
LIST
(
REMOVE_ITEM TEST_OPS test_auto_parallel_save_load
)
LIST
(
REMOVE_ITEM TEST_OPS test_auto_parallel_autoconvert
)
LIST
(
REMOVE_ITEM TEST_OPS test_collective_process_group
)
LIST
(
REMOVE_ITEM TEST_OPS test_eager_dist_api
)
elseif
(
WITH_GPU
)
if
(
${
CUDNN_VERSION
}
VERSION_LESS 7100
)
LIST
(
REMOVE_ITEM TEST_OPS test_conv2d_fusion_op
)
...
...
@@ -1147,6 +1149,7 @@ if(WITH_DISTRIBUTE AND WITH_GPU AND WITH_NCCL)
set_tests_properties
(
test_auto_parallel_save_load PROPERTIES TIMEOUT 120
)
set_tests_properties
(
test_auto_parallel_autoconvert PROPERTIES TIMEOUT 120
)
set_tests_properties
(
test_collective_process_group PROPERTIES TIMEOUT 120
)
set_tests_properties
(
test_eager_dist_api PROPERTIES TIMEOUT 300
)
if
(
${
NCCL_VERSION
}
VERSION_GREATER_EQUAL 2212
)
set_tests_properties
(
test_parallel_dygraph_sparse_embedding PROPERTIES TIMEOUT 120
)
...
...
python/paddle/fluid/tests/unittests/init_process_group.py
浏览文件 @
8df46229
...
...
@@ -37,11 +37,15 @@ class TestProcessGroupFp32(unittest.TestCase):
pass
def
test_init_process_group
(
self
):
paddle
.
distributed
.
collective
.
_init_parallel_env
()
paddle
.
distributed
.
collective
.
_new_group
()
with
self
.
assertRaises
(
ValueError
):
paddle
.
distributed
.
collective
.
_new_group
(
backend
=
"gloo"
,
group_name
=
"_default_pg"
)
with
_test_eager_guard
():
paddle
.
distributed
.
init_parallel_env
()
paddle
.
distributed
.
new_group
()
group
=
paddle
.
distributed
.
new_group
([
-
1
,
-
2
])
assert
group
.
process_group
==
None
group
=
paddle
.
distributed
.
collective
.
Group
(
-
1
,
2
,
0
,
[
-
1
,
-
2
])
ret
=
paddle
.
distributed
.
barrier
(
group
)
assert
ret
==
None
print
(
"test ok
\n
"
)
...
...
python/paddle/fluid/tests/unittests/process_group_nccl.py
浏览文件 @
8df46229
...
...
@@ -26,16 +26,16 @@ from datetime import timedelta
import
paddle.fluid.core
as
core
from
paddle.fluid.framework
import
_test_eager_guard
from
paddle.fluid.dygraph.parallel
import
ParallelEnv
import
paddle.distributed
as
dist
def
init_process_group
(
strategy
=
None
):
nranks
=
ParallelEnv
().
nranks
rank
=
ParallelEnv
().
local_rank
is_master
=
True
if
rank
==
0
else
False
store
=
paddle
.
fluid
.
core
.
TCPStore
(
"127.0.0.1"
,
6173
,
is_master
,
nranks
)
pg_group
=
core
.
ProcessGroupNCCL
(
store
,
rank
,
nranks
)
pg_group
=
dist
.
init_parallel_env
()
return
pg_group
return
pg_group
.
process_group
class
TestProcessGroupFp32
(
unittest
.
TestCase
):
...
...
@@ -68,12 +68,10 @@ class TestProcessGroupFp32(unittest.TestCase):
sum_result
=
tensor_x
+
tensor_y
if
pg
.
rank
()
==
0
:
task
=
pg
.
allreduce
(
tensor_x
)
task
.
wait
()
task
=
dist
.
all_reduce
(
tensor_x
)
assert
np
.
array_equal
(
tensor_x
,
sum_result
)
else
:
task
=
pg
.
allreduce
(
tensor_y
)
task
.
wait
()
task
=
dist
.
all_reduce
(
tensor_y
)
assert
np
.
array_equal
(
tensor_y
,
sum_result
)
print
(
"test allreduce sum api ok"
)
...
...
@@ -89,16 +87,41 @@ class TestProcessGroupFp32(unittest.TestCase):
max_result
=
paddle
.
maximum
(
tensor_x
,
tensor_y
)
if
pg
.
rank
()
==
0
:
task
=
pg
.
allreduce
(
tensor_x
,
core
.
ReduceOp
.
MAX
)
task
=
dist
.
all_reduce
(
tensor_x
,
dist
.
ReduceOp
.
MAX
,
use_calc_stream
=
False
)
task
.
wait
()
assert
np
.
array_equal
(
tensor_x
,
max_result
)
else
:
task
=
pg
.
allreduce
(
tensor_y
,
core
.
ReduceOp
.
MAX
)
task
=
dist
.
all_reduce
(
tensor_y
,
dist
.
ReduceOp
.
MAX
,
use_calc_stream
=
False
)
task
.
wait
()
assert
np
.
array_equal
(
tensor_y
,
max_result
)
print
(
"test allreduce max api ok"
)
# test allreduce min
# rank 0
x
=
np
.
random
.
random
(
self
.
shape
).
astype
(
self
.
dtype
)
tensor_x
=
paddle
.
to_tensor
(
x
)
# rank 1
y
=
np
.
random
.
random
(
self
.
shape
).
astype
(
self
.
dtype
)
tensor_y
=
paddle
.
to_tensor
(
y
)
min_result
=
paddle
.
minimum
(
tensor_x
,
tensor_y
)
if
pg
.
rank
()
==
0
:
task
=
dist
.
all_reduce
(
tensor_x
,
dist
.
ReduceOp
.
MIN
,
use_calc_stream
=
False
)
task
.
wait
()
assert
np
.
array_equal
(
tensor_x
,
min_result
)
else
:
task
=
dist
.
all_reduce
(
tensor_y
,
dist
.
ReduceOp
.
MIN
,
use_calc_stream
=
False
)
task
.
wait
()
assert
np
.
array_equal
(
tensor_y
,
min_result
)
print
(
"test allreduce min api ok"
)
# test broadcast
# rank 0
x
=
np
.
random
.
random
(
self
.
shape
).
astype
(
self
.
dtype
)
...
...
@@ -109,16 +132,14 @@ class TestProcessGroupFp32(unittest.TestCase):
broadcast_result
=
paddle
.
assign
(
tensor_x
)
if
pg
.
rank
()
==
0
:
task
=
pg
.
broadcast
(
tensor_x
,
0
)
task
=
dist
.
broadcast
(
tensor_x
,
0
,
use_calc_stream
=
False
)
task
.
synchronize
()
paddle
.
device
.
cuda
.
synchronize
()
assert
task
.
is_completed
()
assert
np
.
array_equal
(
broadcast_result
,
tensor_x
)
else
:
task
=
pg
.
broadcast
(
tensor_y
,
0
)
task
.
synchronize
()
task
=
dist
.
broadcast
(
tensor_y
,
0
)
paddle
.
device
.
cuda
.
synchronize
()
assert
task
.
is_completed
()
assert
np
.
array_equal
(
broadcast_result
,
tensor_y
)
print
(
"test broadcast api ok"
)
...
...
@@ -126,8 +147,7 @@ class TestProcessGroupFp32(unittest.TestCase):
# test barrier
# rank 0
if
pg
.
rank
()
==
0
:
task
=
pg
.
barrier
()
task
.
wait
()
dist
.
barrier
()
# rank 1
else
:
task
=
pg
.
barrier
()
...
...
@@ -151,9 +171,13 @@ class TestProcessGroupFp32(unittest.TestCase):
paddle
.
device
.
cuda
.
synchronize
()
# rank 1
else
:
task
=
pg
.
all_gather
(
tensor_y
,
tensor_out
)
task
.
wait
()
tensor_out_list
=
[
paddle
.
empty_like
(
tensor_x
),
paddle
.
empty_like
(
tensor_x
)
]
task
=
dist
.
all_gather
(
tensor_out_list
,
tensor_y
,
use_calc_stream
=
False
)
paddle
.
device
.
cuda
.
synchronize
()
tensor_out
=
paddle
.
concat
(
tensor_out_list
)
out_1
=
paddle
.
slice
(
tensor_out
,
[
0
],
[
0
],
[
out_shape
[
0
]
//
2
])
out_2
=
paddle
.
slice
(
tensor_out
,
[
0
],
[
out_shape
[
0
]
//
2
],
[
out_shape
[
0
]])
...
...
@@ -178,12 +202,14 @@ class TestProcessGroupFp32(unittest.TestCase):
if
pg
.
rank
()
==
0
:
task
=
pg
.
alltoall
(
tensor_x
,
tensor_out1
)
task
.
wait
()
paddle
.
device
.
cuda
.
synchronize
()
# rank 1
else
:
task
=
pg
.
alltoall
(
tensor_y
,
tensor_out2
)
task
.
wait
()
in_1
,
in_2
=
paddle
.
split
(
tensor_y
,
2
)
out_1
,
out_2
=
paddle
.
split
(
tensor_out2
,
2
)
out_tensor_list
=
[
out_1
,
out_2
]
task
=
dist
.
alltoall
([
in_1
,
in_2
],
out_tensor_list
)
paddle
.
device
.
cuda
.
synchronize
()
tensor_out2
=
paddle
.
concat
(
out_tensor_list
)
out1_2
=
paddle
.
slice
(
tensor_out1
,
[
0
],
[
self
.
shape
[
0
]
//
2
],
[
self
.
shape
[
0
]])
out2_1
=
paddle
.
slice
(
tensor_out2
,
[
0
],
[
0
],
[
self
.
shape
[
0
]
//
2
])
...
...
@@ -201,18 +227,61 @@ class TestProcessGroupFp32(unittest.TestCase):
tensor_y
=
paddle
.
to_tensor
(
y
)
sum_result
=
tensor_x
+
tensor_y
if
pg
.
rank
()
==
0
:
task
=
pg
.
reduce
(
tensor_x
,
0
)
task
.
wait
()
task
=
dist
.
reduce
(
tensor_x
,
0
,
use_calc_stream
=
True
)
paddle
.
device
.
cuda
.
synchronize
()
# rank 1
else
:
task
=
pg
.
reduce
(
tensor_y
,
0
)
task
=
dist
.
reduce
(
tensor_y
,
0
,
use_calc_stream
=
False
)
task
.
wait
()
paddle
.
device
.
cuda
.
synchronize
()
if
pg
.
rank
()
==
0
:
assert
np
.
array_equal
(
tensor_x
,
sum_result
)
print
(
"test reduce sum api ok
\n
"
)
# test reduce max
# rank 0
x
=
np
.
random
.
random
(
self
.
shape
).
astype
(
self
.
dtype
)
tensor_x
=
paddle
.
to_tensor
(
x
)
# rank 1
y
=
np
.
random
.
random
(
self
.
shape
).
astype
(
self
.
dtype
)
tensor_y
=
paddle
.
to_tensor
(
y
)
max_result
=
paddle
.
maximum
(
tensor_x
,
tensor_y
)
if
pg
.
rank
()
==
0
:
task
=
dist
.
reduce
(
tensor_x
,
0
,
dist
.
ReduceOp
.
MAX
,
use_calc_stream
=
False
)
task
.
wait
()
assert
np
.
array_equal
(
tensor_x
,
max_result
)
else
:
task
=
dist
.
reduce
(
tensor_y
,
0
,
dist
.
ReduceOp
.
MAX
,
use_calc_stream
=
False
)
task
.
wait
()
print
(
"test reduce max api ok"
)
# test reduce min
# rank 0
x
=
np
.
random
.
random
(
self
.
shape
).
astype
(
self
.
dtype
)
tensor_x
=
paddle
.
to_tensor
(
x
)
# rank 1
y
=
np
.
random
.
random
(
self
.
shape
).
astype
(
self
.
dtype
)
tensor_y
=
paddle
.
to_tensor
(
y
)
min_result
=
paddle
.
minimum
(
tensor_x
,
tensor_y
)
if
pg
.
rank
()
==
0
:
task
=
dist
.
reduce
(
tensor_x
,
0
,
dist
.
ReduceOp
.
MIN
,
use_calc_stream
=
False
)
task
.
wait
()
assert
np
.
array_equal
(
tensor_x
,
min_result
)
else
:
task
=
dist
.
reduce
(
tensor_y
,
0
,
dist
.
ReduceOp
.
MIN
,
use_calc_stream
=
False
)
task
.
wait
()
print
(
"test reduce min api ok"
)
# test Scatter
# rank 0
in_shape
=
list
(
self
.
shape
)
...
...
@@ -222,12 +291,14 @@ class TestProcessGroupFp32(unittest.TestCase):
tensor_x
=
paddle
.
to_tensor
(
x
)
tensor_y
=
paddle
.
to_tensor
(
y
)
if
pg
.
rank
()
==
0
:
task
=
pg
.
scatter
(
tensor_x
,
tensor_y
,
0
)
task
.
wait
()
in_1
,
in_2
=
paddle
.
split
(
tensor_x
,
2
)
task
=
dist
.
scatter
(
tensor_y
,
[
in_1
,
in_2
],
0
,
use_calc_stream
=
True
)
#task.wait()
paddle
.
device
.
cuda
.
synchronize
()
# rank 1
else
:
task
=
pg
.
scatter
(
tensor_x
,
tensor_y
,
0
)
task
=
dist
.
scatter
(
tensor_y
,
[],
0
,
use_calc_stream
=
False
)
task
.
wait
()
paddle
.
device
.
cuda
.
synchronize
()
out1
=
paddle
.
slice
(
tensor_x
,
[
0
],
[
0
],
[
self
.
shape
[
0
]])
...
...
@@ -239,6 +310,40 @@ class TestProcessGroupFp32(unittest.TestCase):
assert
np
.
array_equal
(
tensor_y
,
out2
)
print
(
"test scatter api ok
\n
"
)
# test send min
# rank 0
x
=
np
.
random
.
random
(
self
.
shape
).
astype
(
self
.
dtype
)
tensor_x
=
paddle
.
to_tensor
(
x
)
# rank 1
y
=
np
.
random
.
random
(
self
.
shape
).
astype
(
self
.
dtype
)
tensor_y
=
paddle
.
to_tensor
(
y
)
if
pg
.
rank
()
==
0
:
task
=
dist
.
send
(
tensor_x
,
1
,
use_calc_stream
=
False
)
task
.
wait
()
else
:
task
=
dist
.
recv
(
tensor_y
,
0
,
use_calc_stream
=
False
)
task
.
wait
()
assert
np
.
array_equal
(
tensor_y
,
tensor_x
)
print
(
"test send api ok"
)
# test send min
# rank 0
x
=
np
.
random
.
random
(
self
.
shape
).
astype
(
self
.
dtype
)
tensor_x
=
paddle
.
to_tensor
(
x
)
# rank 1
y
=
np
.
random
.
random
(
self
.
shape
).
astype
(
self
.
dtype
)
tensor_y
=
paddle
.
to_tensor
(
y
)
if
pg
.
rank
()
==
0
:
task
=
dist
.
send
(
tensor_x
,
1
,
use_calc_stream
=
True
)
else
:
task
=
dist
.
recv
(
tensor_y
,
0
,
use_calc_stream
=
True
)
assert
np
.
array_equal
(
tensor_y
,
tensor_x
)
print
(
"test send api ok"
)
class
TestProcessGroupFp16
(
TestProcessGroupFp32
):
def
setUp
(
self
):
...
...
python/paddle/fluid/tests/unittests/test_eager_dist_api.py
0 → 100644
浏览文件 @
8df46229
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
unittest
from
test_parallel_dygraph_dataparallel
import
TestMultipleGpus
class
TestProcessGroup
(
TestMultipleGpus
):
def
test_process_group_nccl
(
self
):
self
.
run_mnist_2gpu
(
'process_group_nccl.py'
)
def
test_process_group_gloo
(
self
):
self
.
run_mnist_2gpu
(
'process_group_gloo.py'
)
def
test_init_process_group
(
self
):
self
.
run_mnist_2gpu
(
'init_process_group.py'
)
if
__name__
==
"__main__"
:
unittest
.
main
()
python/paddle/fluid/tests/unittests/test_fleet_base_single.py
浏览文件 @
8df46229
...
...
@@ -46,7 +46,7 @@ class TestFleetDygraphSingle(unittest.TestCase):
def
test_dygraph_single
(
self
):
paddle
.
disable_static
()
fleet
.
init
(
is_collective
=
True
)
paddle
.
distributed
.
init_parallel_env
(
)
layer
=
LinearNet
()
loss_fn
=
nn
.
MSELoss
()
...
...
python/paddle/fluid/tests/unittests/test_parallel_dygraph_dataparallel_cpuonly.py
浏览文件 @
8df46229
...
...
@@ -70,6 +70,9 @@ def start_local_trainers(cluster,
"PADDLE_CURRENT_ENDPOINT"
:
"%s"
%
t
.
endpoint
,
"PADDLE_TRAINERS_NUM"
:
"%d"
%
cluster
.
trainers_nranks
(),
"PADDLE_TRAINER_ENDPOINTS"
:
","
.
join
(
cluster
.
trainers_endpoints
()),
"MASTER_ADDR"
:
"127.0.0.1"
,
"MASTER_PORT"
:
"6170"
,
"NCCL_DEBUG"
:
"INFO"
,
"PADDLE_DISTRI_BACKEND"
:
"gloo"
,
# make init_parallel_env get 'gloo' argument.
}
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录