Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
8da2b16d
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
8da2b16d
编写于
9月 29, 2020
作者:
L
littletomatodonkey
提交者:
GitHub
9月 29, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
fix reg (#27647)
* fix reg * fix code example and doc * remove disable_static * fix doc * fix l2decay
上级
cc780b19
变更
1
显示空白变更内容
内联
并排
Showing
1 changed file
with
8 addition
and
12 deletion
+8
-12
python/paddle/regularizer.py
python/paddle/regularizer.py
+8
-12
未找到文件。
python/paddle/regularizer.py
浏览文件 @
8da2b16d
...
...
@@ -21,18 +21,18 @@ class L1Decay(fluid.regularizer.L1Decay):
"""
Implement the L1 Weight Decay Regularization, which encourages the weights to be sparse.
It can be set in :ref:`api_
fluid
_ParamAttr` or ``optimizer`` (such as :ref:`api_paddle_optimizer_Momentum` ).
It can be set in :ref:`api_
paddle
_ParamAttr` or ``optimizer`` (such as :ref:`api_paddle_optimizer_Momentum` ).
When set in ``ParamAttr`` , it only takes effect for trainable parameters in this layer. When set in
``optimizer`` , it takes effect for all trainable parameters. When set together, ``ParamAttr`` has
higher priority than ``optimizer`` , which means that for a trainable parameter, if regularizer is defined
in its ParamAttr, then the regularizer in Optimizer will be ignored. Otherwise the regularizer
in Optimizer will be used.
In the implementation, the
formula
of L1 Weight Decay Regularization is as follows:
In the implementation, the
loss function
of L1 Weight Decay Regularization is as follows:
.. math::
L1WeightDecay = reg\_coeff * sign(parameter
)
loss = coeff * reduce\_sum(abs(x)
)
Args:
coeff(float, optional): regularization coeff. Default:0.0.
...
...
@@ -44,10 +44,8 @@ class L1Decay(fluid.regularizer.L1Decay):
import paddle
from paddle.regularizer import L1Decay
import numpy as np
paddle.disable_static()
inp = np.random.uniform(-0.1, 0.1, [10, 10]).astype("float32")
linear = paddle.nn.Linear(10, 10)
inp = paddle.
to_tensor(inp
)
inp = paddle.
rand(shape=[10, 10], dtype="float32"
)
out = linear(inp)
loss = paddle.mean(out)
beta1 = paddle.to_tensor([0.9], dtype="float32")
...
...
@@ -85,18 +83,18 @@ class L2Decay(fluid.regularizer.L2Decay):
"""
Implement the L2 Weight Decay Regularization, which helps to prevent the model over-fitting.
It can be set in :ref:`api_
fluid
_ParamAttr` or ``optimizer`` (such as :ref:`api_paddle_optimizer_Momentum` ).
It can be set in :ref:`api_
paddle
_ParamAttr` or ``optimizer`` (such as :ref:`api_paddle_optimizer_Momentum` ).
When set in ``ParamAttr`` , it only takes effect for trainable parameters in this layer. When set in
``optimizer`` , it takes effect for all trainable parameters. When set together, ``ParamAttr`` has
higher priority than ``optimizer`` , which means that for a trainable parameter, if regularizer is defined
in its ParamAttr, then the regularizer in Optimizer will be ignored. Otherwise the regularizer
in Optimizer will be used.
In the implementation, the
formula
of L2 Weight Decay Regularization is as follows:
In the implementation, the
loss function
of L2 Weight Decay Regularization is as follows:
.. math::
L2WeightDecay = reg\_coeff * parameter
loss = 0.5 * coeff * reduce\_sum(square(x))
Args:
regularization_coeff(float, optional): regularization coeff. Default:0.0
...
...
@@ -108,10 +106,8 @@ class L2Decay(fluid.regularizer.L2Decay):
import paddle
from paddle.regularizer import L2Decay
import numpy as np
paddle.disable_static()
inp = np.random.uniform(-0.1, 0.1, [10, 10]).astype("float32")
linear = paddle.nn.Linear(10, 10)
inp = paddle.
to_tensor(inp
)
inp = paddle.
rand(shape=[10, 10], dtype="float32"
)
out = linear(inp)
loss = paddle.mean(out)
beta1 = paddle.to_tensor([0.9], dtype="float32")
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录