diff --git a/python/paddle/fluid/layers/nn.py b/python/paddle/fluid/layers/nn.py index e3e42244dc61e6f866a46b2841e00482d51b58d1..150fef7948303849e4eb7b6964cb72f5e11c6278 100644 --- a/python/paddle/fluid/layers/nn.py +++ b/python/paddle/fluid/layers/nn.py @@ -140,7 +140,6 @@ __all__ = [ 'flatten', 'stack', 'pad2d', - 'unstack', 'unique', 'unique_with_counts', 'expand', @@ -10510,68 +10509,6 @@ def filter_by_instag(ins, ins_tag, filter_tag, is_lod, out_val_if_empty=0): return [out, loss_weight] -def unstack(x, axis=0, num=None): - """ - :alias_main: paddle.unstack - :alias: paddle.unstack,paddle.tensor.unstack,paddle.tensor.manipulation.unstack - :old_api: paddle.fluid.layers.unstack - - **UnStack Layer** - - This layer unstacks input Tensor :code:`x` into several Tensors along :code:`axis`. - - If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x)`. - If :code:`num` is None, it would be inferred from :code:`x.shape[axis]`, - and if :code:`x.shape[axis]` <= 0 or is unknown, :code:`ValueError` is - raised. - - Args: - x (Tensor): Input Tensor. It is a N-D Tensors of data types float32, float64, int32, int64. - axis (int): The axis along which the input is unstacked. - num (int|None): The number of output variables. - - Returns: - list(Tensor): The unstacked Tensors list. The list elements are N-D Tensors of data types float32, float64, int32, int64. - - Raises: - ValueError: If x.shape[axis] <= 0 or axis is not in range [-D, D). - - Examples: - .. code-block:: python - - import paddle - x = paddle.ones(name='x', shape=[2, 3, 5], dtype='float32') # create a tensor with shape=[2, 3, 5] - y = paddle.unstack(x, axis=1) # unstack with second axis, which results 3 tensors with shape=[2, 5] - - """ - - if _non_static_mode(): - if num is None: - num = x.shape[axis] - if num == 0: - return [] - return _legacy_C_ops.unstack(x, num, 'axis', int(axis), 'num', num) - - helper = LayerHelper('unstack', **locals()) - if num is None: - if axis is None or x.shape[axis] <= 0: - raise ValueError('unknown unstack number') - else: - num = x.shape[axis] - - outs = [] - for _ in range(num): - outs.append(helper.create_variable_for_type_inference(x.dtype)) - - helper.append_op( - type='unstack', - inputs={'X': [x]}, - outputs={'Y': outs}, - attrs={'axis': axis, 'num': num}, - ) - return outs - - @deprecated(since='2.0.0', update_to="paddle.expand") def expand(x, expand_times, name=None): """