提交 8ce0008a 编写于 作者: H Helin Wang 提交者: Yu Yang

update docker install Chinese version

上级 aa39ca8d
...@@ -7,13 +7,23 @@ PaddlePaddle目前唯一官方支持的运行的方式是Docker容器。因为Do ...@@ -7,13 +7,23 @@ PaddlePaddle目前唯一官方支持的运行的方式是Docker容器。因为Do
PaddlePaddle发布的docker镜像使用说明 PaddlePaddle发布的docker镜像使用说明
------------------------------ ------------------------------
对于每一个PaddlePaddle版本,我们都会发布两种Docker镜像:开发镜像、运行镜像。运行镜像包括纯CPU版本和GPU版本以及其对应的非AVX版本。 我们把PaddlePaddle的编译环境打包成一个镜像,称为开发镜像,里面涵盖了
我们会在 `dockerhub.com <https://hub.docker.com/r/paddledev/paddle/>`_ 提供最新的docker镜像,可以在"tags"标签下找到最新的Paddle镜像版本。 PaddlePaddle需要的所有编译工具。把编译出来的PaddlePaddle也打包成一个镜
像,称为生产镜像,里面涵盖了PaddlePaddle运行所需的所有环境。每次
PaddlePaddle发布新版本的时候都会发布对应版本的生产镜像以及开发镜像。运
行镜像包括纯CPU版本和GPU版本以及其对应的非AVX版本。我们会在
`dockerhub.com <https://hub.docker.com/r/paddledev/paddle/>`_ 提供最新
的docker镜像,可以在"tags"标签下找到最新的Paddle镜像版本。为了方便在国
内的开发者下载Docker镜像,我们提供了国内的镜像服务器供大家使用。如果您
在国内,请把文档里命令中的paddlepaddle/paddle替换成
docker.paddlepaddle.org/paddle。
1. 开发镜像::code:`paddlepaddle/paddle:<version>-dev` 1. 开发镜像::code:`paddlepaddle/paddle:<version>-dev`
这个镜像包含了Paddle相关的开发工具以及编译和运行环境。用户可以使用开发镜像代替配置本地环境,完成开发,编译,发布, 这个镜像包含了Paddle相关的开发工具以及编译和运行环境。用户可以使用开发镜像代替配置本地环境,完成开发,编译,发布,
文档编写等工作。由于不同的Paddle的版本可能需要不同的依赖和工具,所以如果需要自行配置开发环境需要考虑版本的因素。 文档编写等工作。由于不同的Paddle的版本可能需要不同的依赖和工具,所以如果需要自行配置开发环境需要考虑版本的因素。
开发镜像包含了以下工具: 开发镜像包含了以下工具:
- gcc/clang - gcc/clang
- nvcc - nvcc
- Python - Python
...@@ -27,7 +37,7 @@ PaddlePaddle发布的docker镜像使用说明 ...@@ -27,7 +37,7 @@ PaddlePaddle发布的docker镜像使用说明
.. code-block:: bash .. code-block:: bash
docker run -it --rm paddledev/paddle:<version>-dev /bin/bash docker run -it --rm paddlepaddle/paddle:<version>-dev /bin/bash
或者,可以以后台进程方式运行容器: 或者,可以以后台进程方式运行容器:
...@@ -43,7 +53,8 @@ PaddlePaddle发布的docker镜像使用说明 ...@@ -43,7 +53,8 @@ PaddlePaddle发布的docker镜像使用说明
SSH方式的一个优点是我们可以从多个终端进入容器。比如,一个终端运行vi,另一个终端运行Python。另一个好处是我们可以把PaddlePaddle容器运行在远程服务器上,并在笔记本上通过SSH与其连接。 SSH方式的一个优点是我们可以从多个终端进入容器。比如,一个终端运行vi,另一个终端运行Python。另一个好处是我们可以把PaddlePaddle容器运行在远程服务器上,并在笔记本上通过SSH与其连接。
2. 运行镜像:根据CPU、GPU和非AVX区分了如下4个镜像: 2. 生产镜像:根据CPU、GPU和非AVX区分了如下4个镜像:
- GPU/AVX::code:`paddlepaddle/paddle:<version>-gpu` - GPU/AVX::code:`paddlepaddle/paddle:<version>-gpu`
- GPU/no-AVX::code:`paddlepaddle/paddle:<version>-gpu-noavx` - GPU/no-AVX::code:`paddlepaddle/paddle:<version>-gpu-noavx`
- CPU/AVX::code:`paddlepaddle/paddle:<version>` - CPU/AVX::code:`paddlepaddle/paddle:<version>`
...@@ -72,13 +83,21 @@ PaddlePaddle发布的docker镜像使用说明 ...@@ -72,13 +83,21 @@ PaddlePaddle发布的docker镜像使用说明
export DEVICES=$(\ls /dev/nvidia* | xargs -I{} echo '--device {}:{}') export DEVICES=$(\ls /dev/nvidia* | xargs -I{} echo '--device {}:{}')
docker run ${CUDA_SO} ${DEVICES} -it paddledev/paddle:<version>-gpu docker run ${CUDA_SO} ${DEVICES} -it paddledev/paddle:<version>-gpu
3. 使用运行镜像发布你的AI程序 3. 运行以及发布您的AI程序
假设您已经完成了一个AI训练的python程序 :code:`a.py`,这个程序是您在开发机上使用开发镜像完成开发。此时您可以运行这个命令在开发机上进行测试运行: 假设您已经完成了一个AI训练的python程序 :code:`a.py`,这个程序是您在开发机上使用开发镜像完成开发。此时您可以运行这个命令在开发机上进行测试运行:
.. code-block:: bash .. code-block:: bash
docker run -it -v $PWD:/work paddle /work/a.py docker run -it -v $PWD:/work paddle /work/a.py
如果要使用GPU,请运行:
.. code-block:: bash
nvidia-docker run -it -v $PWD:/work paddle /work/a.py
这里`a.py`包含的所有依赖假设都可以在Paddle的运行容器中。如果需要包含更多的依赖、或者需要发布您的应用的镜像,可以编写`Dockerfile`使用`FROM paddledev/paddle:<version>` 这里`a.py`包含的所有依赖假设都可以在Paddle的运行容器中。如果需要包含更多的依赖、或者需要发布您的应用的镜像,可以编写`Dockerfile`使用`FROM paddledev/paddle:<version>`
创建和发布自己的AI程序镜像。 创建和发布自己的AI程序镜像。
...@@ -109,53 +128,44 @@ PaddlePaddle书籍是为用户和开发者制作的一个交互式的Jupyter Nod ...@@ -109,53 +128,44 @@ PaddlePaddle书籍是为用户和开发者制作的一个交互式的Jupyter Nod
开发人员可以在Docker开发镜像中开发PaddlePaddle。这样开发人员可以以一致的方式在不同的平台上工作 - Linux,Mac OS X和Windows。 开发人员可以在Docker开发镜像中开发PaddlePaddle。这样开发人员可以以一致的方式在不同的平台上工作 - Linux,Mac OS X和Windows。
1. 构建开发镜像 1. 制作PaddlePaddle开发镜像
PaddlePaddle每次发布新版本都会发布对应的开发镜像供开发者直接使用。这里介绍如生成造这个开发镜像。
生成Docker镜像的方式有两个,一个是直接把一个容器转换成镜像,另一个是创建Dockerfile并运行docker build指令按照Dockerfile生成镜像。第一个方法的好处是简单快捷,适合自己实验,可以快速迭代。第二个方法的好处是Dockerfile可以把整个生成流程描述很清楚,其他人很容易看懂镜像生成过程,持续集成系统也可以简单地复现这个过程。我们采用第二个方法。Dockerfile位于PaddlePaddle repo的根目录。生成生产镜像只需要运行:
.. code-block:: bash .. code-block:: bash
git clone --recursive https://github.com/PaddlePaddle/Paddle git clone https://github.com/PaddlePaddle/Paddle.git
cd Paddle cd Paddle
docker build -t paddle:dev . docker build -t paddle:dev .
docker build这个命令的-t指定了生成的镜像的名字,这里我们用paddle:dev。到此,PaddlePaddle开发镜像就被构建完毕了。
请注意,默认情况下,:code:`docker build` 不会将源码导入到镜像中并编译它。如果我们想这样做,需要构建完开发镜像,然后执行: 2. 制作PaddlePaddle生产镜像
.. code-block:: bash 生产镜像的生成分为两步,第一步是运行:
docker run -v $PWD:/paddle -e "WITH_GPU=OFF" -e "WITH_AVX=ON" -e "TEST=OFF" paddle:dev
2. 运行开发环境
当我们编译好了 :code:`paddle:dev`, 我们可以在docker容器里做开发,源代码可以通过挂载本地文件来被载入Docker的开发环境里面:
.. code-block:: bash .. code-block:: bash
docker run -d -p 2202:22 -v $PWD:/paddle paddle:dev sshd docker run -v $(pwd):/paddle -e "WITH_GPU=OFF" -e "WITH_AVX=OFF" -e "WITH_TEST=ON" paddle:dev
以上代码会启动一个带有PaddlePaddle开发环境的docker容器,源代码会被挂载到 :code:`/paddle` 以上命令会编译PaddlePaddle,生成运行程序,以及生成创建生产镜像的Dockerfile。所有生成的的文件都在build目录下。“WITH_GPU”控制生成的生产镜像是否支持GPU,“WITH_AVX”控制生成的生产镜像是否支持AVX,”WITH_TEST“控制是否生成单元测试
以上的 :code:`docker run` 命令其实会启动一个在2202端口监听的SSHD服务器。这样,我们就能SSH进入我们的开发容器了 第二步是运行
.. code-block:: bash .. code-block:: bash
ssh root@localhost -p 2202 docker build -t paddle:prod -f build/Dockerfile .
3. 在Docker开发环境中编译与安装PaddlPaddle代码 以上命令会按照生成的Dockerfile把生成的程序拷贝到生产镜像中并做相应的配置,最终生成名为paddle:prod的生产镜像。
当在容器里面的时候,可以用脚本 :code:`paddle/scripts/docker/build.sh` 来编译、安装与测试PaddlePaddle: 3. 运行单元测试
.. code-block:: bash 运行以下指令:
/paddle/paddle/scripts/docker/build.sh
以上指令会在 :code:`/paddle/build` 中编译PaddlePaddle。通过以下指令可以运行单元测试:
.. code-block:: bash .. code-block:: bash
cd /paddle/build docker run -it -v $(pwd):/paddle paddle:dev bash -c "cd /paddle/build && ctest"
ctest
文档 文档
---- ----
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册