Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
8cc8e411
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
体验新版 GitCode,发现更多精彩内容 >>
未验证
提交
8cc8e411
编写于
10月 19, 2021
作者:
W
WangXi
提交者:
GitHub
10月 19, 2021
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[hybrid] static model parallel dropout support deterministic RandomSeedGenerator (#36228)
上级
d89a759b
变更
13
显示空白变更内容
内联
并排
Showing
13 changed file
with
354 addition
and
32 deletion
+354
-32
paddle/fluid/framework/generator.cc
paddle/fluid/framework/generator.cc
+37
-0
paddle/fluid/framework/generator.h
paddle/fluid/framework/generator.h
+6
-0
paddle/fluid/operators/dropout_impl_util.h
paddle/fluid/operators/dropout_impl_util.h
+3
-7
paddle/fluid/operators/seed_op.cc
paddle/fluid/operators/seed_op.cc
+11
-0
paddle/fluid/operators/seed_op.cu
paddle/fluid/operators/seed_op.cu
+2
-9
paddle/fluid/operators/seed_op.h
paddle/fluid/operators/seed_op.h
+24
-10
paddle/fluid/pybind/generator_py.cc
paddle/fluid/pybind/generator_py.cc
+2
-0
python/paddle/distributed/fleet/meta_parallel/parallel_layers/random.py
...distributed/fleet/meta_parallel/parallel_layers/random.py
+137
-0
python/paddle/fluid/backward.py
python/paddle/fluid/backward.py
+5
-1
python/paddle/fluid/tests/unittests/test_dropout_op.py
python/paddle/fluid/tests/unittests/test_dropout_op.py
+44
-0
python/paddle/fluid/tests/unittests/test_optimizer.py
python/paddle/fluid/tests/unittests/test_optimizer.py
+44
-4
python/paddle/fluid/tests/unittests/test_seed_op.py
python/paddle/fluid/tests/unittests/test_seed_op.py
+31
-1
python/paddle/framework/random.py
python/paddle/framework/random.py
+8
-0
未找到文件。
paddle/fluid/framework/generator.cc
浏览文件 @
8cc8e411
...
...
@@ -63,6 +63,43 @@ const std::shared_ptr<Generator>& DefaultCPUGenerator() {
return
default_cpu_generator
;
}
using
RNGMap
=
std
::
unordered_map
<
std
::
string
,
std
::
shared_ptr
<
Generator
>>
;
static
RNGMap
&
GetRandomSeedGeneratorMap
()
{
static
auto
random_seed_generator_map
=
RNGMap
();
return
random_seed_generator_map
;
}
const
std
::
shared_ptr
<
Generator
>&
SetRandomSeedGenerator
(
const
std
::
string
&
name
,
uint64_t
seed
)
{
auto
&
rng_map
=
GetRandomSeedGeneratorMap
();
auto
iter
=
rng_map
.
find
(
name
);
PADDLE_ENFORCE_EQ
(
iter
==
rng_map
.
end
(),
true
,
platform
::
errors
::
AlreadyExists
(
"%s RandomSeedGenerator is already exist"
,
name
));
auto
generator
=
std
::
make_shared
<
Generator
>
(
seed
);
bool
emplace_success
=
rng_map
.
emplace
(
name
,
generator
).
second
;
PADDLE_ENFORCE_EQ
(
emplace_success
,
true
,
platform
::
errors
::
PermissionDenied
(
"SetRandomSeedGenerator cannot emplace %s RandomSeedGenerator"
,
name
));
return
rng_map
[
name
];
}
const
std
::
shared_ptr
<
Generator
>&
GetRandomSeedGenerator
(
const
std
::
string
&
name
)
{
auto
&
rng_map
=
GetRandomSeedGeneratorMap
();
auto
iter
=
rng_map
.
find
(
name
);
PADDLE_ENFORCE_EQ
(
iter
!=
rng_map
.
end
(),
true
,
platform
::
errors
::
NotFound
(
"%s RandomSeedGenerator is not found, please "
"use `set_random_seed_generator` to set rng first"
,
name
));
return
iter
->
second
;
}
std
::
shared_ptr
<
std
::
mt19937_64
>
OpDefaultCPUEngine
()
{
static
auto
op_default_cpu_engine
=
std
::
make_shared
<
std
::
mt19937_64
>
();
return
op_default_cpu_engine
;
...
...
paddle/fluid/framework/generator.h
浏览文件 @
8cc8e411
...
...
@@ -126,5 +126,11 @@ std::shared_ptr<std::mt19937_64> GetCPURandomEngine(uint64_t);
const
std
::
shared_ptr
<
Generator
>&
GetDefaultCUDAGenerator
(
int64_t
device_id
=
-
1
);
const
std
::
shared_ptr
<
Generator
>&
SetRandomSeedGenerator
(
const
std
::
string
&
name
,
uint64_t
seed
);
const
std
::
shared_ptr
<
Generator
>&
GetRandomSeedGenerator
(
const
std
::
string
&
name
);
}
// namespace framework
}
// namespace paddle
paddle/fluid/operators/dropout_impl_util.h
浏览文件 @
8cc8e411
...
...
@@ -29,7 +29,7 @@ inline void GetSeedDataAndIncrement(const platform::CUDADeviceContext& dev_ctx,
BOOST_GET_CONST
(
platform
::
CUDAPlace
,
dev_ctx
.
GetPlace
()).
GetDeviceId
();
auto
gen_cuda
=
framework
::
GetDefaultCUDAGenerator
(
device_id
);
if
(
(
seed
)
&&
platform
::
is_gpu_place
(
seed
->
place
())
)
{
if
(
seed
)
{
framework
::
Tensor
seed_cpu_tensor
;
TensorCopySync
(
*
seed
,
platform
::
CPUPlace
(),
&
seed_cpu_tensor
);
*
seed_data
=
static_cast
<
uint64_t
>
(
seed_cpu_tensor
.
data
<
int
>
()[
0
]);
...
...
@@ -38,13 +38,9 @@ inline void GetSeedDataAndIncrement(const platform::CUDADeviceContext& dev_ctx,
auto
seed_offset
=
gen_cuda
->
IncrementOffset
(
offset
);
*
seed_data
=
seed_offset
.
first
;
*
increment
=
seed_offset
.
second
;
}
else
{
if
(
seed
)
{
*
seed_data
=
*
(
seed
->
data
<
int
>
());
}
else
{
std
::
random_device
rnd
;
*
seed_data
=
is_fix_seed
?
seed_val
:
rnd
();
}
*
increment
=
offset
;
}
}
...
...
paddle/fluid/operators/seed_op.cc
浏览文件 @
8cc8e411
...
...
@@ -39,6 +39,17 @@ class SeedOpMaker : public framework::OpProtoAndCheckerMaker {
void
Make
()
override
{
AddOutput
(
"Out"
,
"The output of seed op."
);
AddAttr
<
int
>
(
"seed"
,
"Dropout random seed."
).
SetDefault
(
0
);
AddAttr
<
bool
>
(
"deterministic"
,
"(bool, default false) Whether to use deterministic "
"RandomSeedGenerator which "
"generate by `set_random_seed_generator`"
)
.
SetDefault
(
false
)
.
AsExtra
();
AddAttr
<
std
::
string
>
(
"rng_name"
,
"use deterministic RandomSeedGenerator which name is `rng_name`"
)
.
SetDefault
(
""
)
.
AsExtra
();
AddAttr
<
bool
>
(
"force_cpu"
,
"(bool, default false) Force fill output variable to cpu "
"memory. Otherwise, fill output variable to the running "
...
...
paddle/fluid/operators/seed_op.cu
浏览文件 @
8cc8e411
...
...
@@ -23,16 +23,9 @@ class GPUSeedKernel : public framework::OpKernel<T> {
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
auto
*
out
=
context
.
Output
<
Tensor
>
(
"Out"
);
int
user_seed
=
context
.
Attr
<
int
>
(
"seed"
);
auto
force_cpu
=
context
.
Attr
<
bool
>
(
"force_cpu"
);
std
::
random_device
rnd
;
int
seed
;
if
(
user_seed
!=
0
)
{
seed
=
user_seed
;
}
else
{
seed
=
rnd
();
}
int
seed
=
get_seed
(
context
);
auto
force_cpu
=
context
.
Attr
<
bool
>
(
"force_cpu"
);
bool
cpu_place
=
force_cpu
||
context
.
GetPlace
()
==
platform
::
CPUPlace
();
if
(
cpu_place
)
{
platform
::
DeviceContextPool
&
pool
=
...
...
paddle/fluid/operators/seed_op.h
浏览文件 @
8cc8e411
...
...
@@ -13,6 +13,7 @@
// limitations under the License.
#pragma once
#include "paddle/fluid/framework/generator.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/op_version_registry.h"
...
...
@@ -20,24 +21,37 @@ namespace paddle {
namespace
operators
{
using
Tensor
=
framework
::
Tensor
;
template
<
typename
DeviceContext
,
typename
T
>
class
CPUSeedKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
auto
*
out
=
context
.
Output
<
Tensor
>
(
"Out"
);
auto
*
out_data
=
out
->
mutable_data
<
T
>
(
context
.
GetPlace
());
static
int
get_seed
(
const
framework
::
ExecutionContext
&
context
)
{
int
user_seed
=
context
.
Attr
<
int
>
(
"seed"
);
bool
deterministic
=
context
.
Attr
<
bool
>
(
"deterministic"
);
int
seed
=
0
;
if
(
!
deterministic
)
{
// NOTE: fixed seed should only be used in unittest or for debug.
// Guarantee to use random seed in training.
std
::
random_device
rnd
;
int
seed
;
if
(
user_seed
!=
0
)
{
seed
=
user_seed
;
}
else
{
std
::
random_device
rnd
;
seed
=
rnd
();
}
out_data
[
0
]
=
seed
;
}
else
{
std
::
string
name
=
context
.
Attr
<
std
::
string
>
(
"rng_name"
);
auto
rng
=
framework
::
GetRandomSeedGenerator
(
name
);
do
{
// NOTE(wangxi): cpu dropout will use random seed if seed == 0
seed
=
static_cast
<
int
>
(
rng
->
Random64
());
}
while
(
seed
==
0
);
}
return
seed
;
}
template
<
typename
DeviceContext
,
typename
T
>
class
CPUSeedKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
auto
*
out
=
context
.
Output
<
Tensor
>
(
"Out"
);
auto
*
out_data
=
out
->
mutable_data
<
T
>
(
context
.
GetPlace
());
out_data
[
0
]
=
get_seed
(
context
);
}
};
...
...
paddle/fluid/pybind/generator_py.cc
浏览文件 @
8cc8e411
...
...
@@ -60,6 +60,8 @@ void BindGenerator(py::module* m_ptr) {
&
framework
::
Generator
::
SetIsInitPy
);
m
.
def
(
"default_cpu_generator"
,
&
framework
::
DefaultCPUGenerator
);
m
.
def
(
"default_cuda_generator"
,
&
framework
::
GetDefaultCUDAGenerator
);
m
.
def
(
"set_random_seed_generator"
,
&
framework
::
SetRandomSeedGenerator
);
m
.
def
(
"get_random_seed_generator"
,
&
framework
::
GetRandomSeedGenerator
);
}
}
// namespace pybind
}
// namespace paddle
python/paddle/distributed/fleet/meta_parallel/parallel_layers/random.py
浏览文件 @
8cc8e411
...
...
@@ -15,6 +15,11 @@
import
paddle
import
contextlib
import
numpy
as
np
from
paddle
import
_C_ops
from
paddle.fluid
import
core
from
paddle.fluid.data_feeder
import
check_variable_and_dtype
from
paddle.fluid.framework
import
in_dygraph_mode
,
default_main_program
from
paddle.fluid.layer_helper
import
LayerHelper
__all__
=
[]
...
...
@@ -93,3 +98,135 @@ def model_parallel_random_seed(seed=None):
RNG_STATE_TRACKER
.
reset
()
RNG_STATE_TRACKER
.
add
(
MODEL_PARALLEL_RNG
,
local_seed
)
paddle
.
seed
(
global_seed
)
def
determinate_seed
(
rng_name
):
assert
rng_name
is
not
None
and
rng_name
!=
""
helper
=
LayerHelper
(
'seed'
,
**
locals
())
out
=
helper
.
create_variable_for_type_inference
(
dtype
=
paddle
.
int32
)
# set force_cpu to reduce sync copy from CPU->GPU->CPU, and reduce pipeline hang
helper
.
append_op
(
type
=
'seed'
,
outputs
=
{
'Out'
:
out
},
attrs
=
{
'deterministic'
:
True
,
'rng_name'
:
rng_name
,
'force_cpu'
:
True
})
return
out
def
dropout
(
x
,
p
=
0.5
,
axis
=
None
,
rng_name
=
None
,
training
=
True
,
mode
=
"upscale_in_train"
,
name
=
None
):
"""
Dropout is a regularization technique for reducing overfitting by preventing
neuron co-adaption during training. The dropout operator randomly sets the
outputs of some units to zero, while upscale others according to the given
dropout probability.
Args:
x (Tensor): The input tensor. The data type is float32 or float64.
p (float|int): Probability of setting units to zero. Default 0.5.
axis (int|list|tuple): The axis along which the dropout is performed. Default None.
rng_name (str): The random seed generator name, which used to obtain deterministic results.
training (bool): A flag indicating whether it is in train phrase or not. Default True.
mode(str): ['upscale_in_train'(default) | 'downscale_in_infer'].
1. upscale_in_train(default), upscale the output at training time
- train: out = input * mask / ( 1.0 - dropout_prob )
- inference: out = input
2. downscale_in_infer, downscale the output at inference
- train: out = input * mask
- inference: out = input * (1.0 - dropout_prob)
name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
Returns:
A Tensor representing the dropout, has same shape and data type as `x` .
Examples:
We use ``p=0.5`` in the following description for simplicity.
1. When ``axis=None`` , this is commonly used dropout, which dropout each element of x randomly.
.. code-block:: text
Let's see a simple case when x is a 2d tensor with shape 2*3:
[[1 2 3]
[4 5 6]]
we generate mask with the same shape as x, which is 2*3. The value of mask is
sampled from a Bernoulli distribution randomly. For example, we may get such mask:
[[0 1 0]
[1 0 1]]
So the output is obtained from elementwise multiply of x and mask:
[[0 2 0]
[4 0 6]]
Using default setting, i.e. ``mode='upscale_in_train'`` ,
if in training phase, the final upscale output is:
[[0 4 0 ]
[8 0 12]]
if in test phase, the output is the same as input:
[[1 2 3]
[4 5 6]]
we can also set ``mode='downscale_in_infer'`` , then
if in training phase, the final output is:
[[0 2 0]
[4 0 6]]
if in test phase, the scale output is:
[[0.5 1. 1.5]
[2. 2.5 3. ]]
"""
if
rng_name
is
None
:
return
paddle
.
nn
.
functional
.
dropout
(
x
,
p
,
axis
,
training
,
mode
,
name
)
# fast return for p == 0
if
p
==
0
:
return
x
assert
isinstance
(
p
,
(
float
,
int
)),
\
TypeError
(
"p argument should be a number"
)
assert
0
<=
p
<=
1
,
ValueError
(
"p argument should between 0 and 1"
)
assert
mode
in
(
'downscale_in_infer'
,
'upscale_in_train'
),
\
ValueError
(
"mode argument should be 'downscale_in_infer' or 'upscale_in_train'"
)
assert
axis
is
None
,
\
TypeError
(
"unsupport axis when using random seed generator"
)
mode
=
'downgrade_in_infer'
if
mode
==
'downscale_in_infer'
else
mode
#semantic transfer
# dygraph using tracker, doesn't need determinate seed
if
in_dygraph_mode
():
out
,
mask
=
_C_ops
.
dropout
(
x
,
'dropout_prob'
,
p
,
'is_test'
,
not
training
,
'fix_seed'
,
False
,
'seed'
,
0
,
'dropout_implementation'
,
mode
)
return
out
seed
=
determinate_seed
(
rng_name
)
helper
=
LayerHelper
(
'dropout'
,
**
locals
())
check_variable_and_dtype
(
x
,
'x'
,
[
'float16'
,
'float32'
,
'float64'
],
'dropout'
)
out
=
helper
.
create_variable_for_type_inference
(
dtype
=
x
.
dtype
)
mask
=
helper
.
create_variable_for_type_inference
(
dtype
=
core
.
VarDesc
.
VarType
.
UINT8
,
stop_gradient
=
True
)
helper
.
append_op
(
type
=
'dropout'
,
inputs
=
{
'X'
:
[
x
],
'Seed'
:
seed
},
outputs
=
{
'Out'
:
[
out
],
'Mask'
:
[
mask
]},
attrs
=
{
'dropout_prob'
:
p
,
'is_test'
:
not
training
,
'dropout_implementation'
:
mode
,
})
return
out
python/paddle/fluid/backward.py
浏览文件 @
8cc8e411
...
...
@@ -175,11 +175,15 @@ class ProgramStats(object):
return
op_idx
=
0
while
(
op_idx
<
len
(
self
.
ops
)
):
while
op_idx
<
len
(
self
.
ops
):
op
=
self
.
ops
[
op_idx
]
if
op
.
desc
.
type
()
!=
"dropout"
:
op_idx
+=
1
continue
# already insert seed op before dropout
if
op
.
input
(
'Seed'
)
is
not
None
and
len
(
op
.
input
(
'Seed'
))
==
1
:
op_idx
+=
1
continue
# add a seed op so that the two dropout op can generate same output
op_unique_name
=
unique_name
.
generate
(
"seed"
)
var_unique_name
=
unique_name
.
generate_with_ignorable_key
(
"."
.
join
(
...
...
python/paddle/fluid/tests/unittests/test_dropout_op.py
浏览文件 @
8cc8e411
...
...
@@ -19,6 +19,7 @@ import numpy as np
import
paddle.fluid.core
as
core
from
op_test
import
OpTest
,
skip_check_grad_ci
import
paddle
import
paddle.static
as
static
import
paddle.fluid
as
fluid
from
paddle.fluid
import
Program
,
program_guard
...
...
@@ -856,5 +857,48 @@ class TestAlphaDropoutCAPI(unittest.TestCase):
self
.
assertTrue
(
np
.
allclose
(
result
.
numpy
(),
result_np
))
class
TestDropoutWithDeterminateSeedGenerator
(
unittest
.
TestCase
):
def
setUp
(
self
):
paddle
.
framework
.
random
.
set_random_seed_generator
(
'seed0'
,
123
)
paddle
.
framework
.
random
.
set_random_seed_generator
(
'seed1'
,
123
)
rng0
=
paddle
.
framework
.
random
.
get_random_seed_generator
(
'seed0'
)
rng1
=
paddle
.
framework
.
random
.
get_random_seed_generator
(
'seed1'
)
self
.
places
=
[
paddle
.
CPUPlace
()]
if
paddle
.
is_compiled_with_cuda
():
self
.
places
.
append
(
paddle
.
CUDAPlace
(
0
))
def
check_static_result
(
self
,
place
):
from
paddle.distributed.fleet.meta_parallel.parallel_layers.random
import
dropout
with
static
.
program_guard
(
static
.
Program
(),
static
.
Program
()):
input
=
static
.
data
(
name
=
"input"
,
shape
=
[
40
,
40
],
dtype
=
"float32"
)
res1
=
dropout
(
input
,
p
=
0.3
,
training
=
True
,
mode
=
'upscale_in_train'
,
rng_name
=
'seed0'
)
res2
=
dropout
(
input
,
p
=
0.3
,
training
=
True
,
mode
=
'upscale_in_train'
,
rng_name
=
'seed1'
)
res3
=
dropout
(
input
,
p
=
0.3
)
in_np
=
np
.
random
.
random
([
40
,
40
]).
astype
(
"float32"
)
exe
=
static
.
Executor
(
place
)
res_list
=
[
res1
,
res2
]
for
i
in
range
(
2
):
out1
,
out2
=
exe
.
run
(
static
.
default_main_program
(),
feed
=
{
"input"
:
in_np
},
fetch_list
=
res_list
)
self
.
assertTrue
(
np
.
allclose
(
out1
,
out2
))
def
test_static
(
self
):
for
place
in
self
.
places
:
self
.
check_static_result
(
place
=
place
)
if
__name__
==
'__main__'
:
unittest
.
main
()
python/paddle/fluid/tests/unittests/test_optimizer.py
浏览文件 @
8cc8e411
...
...
@@ -619,7 +619,7 @@ class TestLookaheadOptimizer(unittest.TestCase):
class
TestRecomputeOptimizer
(
unittest
.
TestCase
):
def
net
(
self
,
return_input
=
False
,
with_dropout
=
False
):
def
net
(
self
,
return_input
=
False
,
with_dropout
=
False
,
with_seed
=
False
):
program
=
framework
.
Program
()
block
=
program
.
global_block
()
mul_x
=
block
.
create_parameter
(
...
...
@@ -628,7 +628,8 @@ class TestRecomputeOptimizer(unittest.TestCase):
dtype
=
"float32"
,
shape
=
[
10
,
8
],
lod_level
=
0
,
name
=
"mul.y"
)
mul_out
=
block
.
create_var
(
dtype
=
"float32"
,
shape
=
[
5
,
8
],
lod_level
=
0
,
name
=
"mul.out"
)
if
with_dropout
==
True
:
if
with_dropout
is
True
:
mul_out_drop
=
block
.
create_var
(
dtype
=
"float32"
,
shape
=
[
5
,
8
],
...
...
@@ -636,6 +637,10 @@ class TestRecomputeOptimizer(unittest.TestCase):
name
=
"mul.out.dropout"
)
mul_out_mask
=
block
.
create_var
(
dtype
=
"uint8"
,
shape
=
[
5
,
8
],
lod_level
=
0
,
name
=
"mul.out.mask"
)
if
with_seed
is
True
:
seed_out
=
block
.
create_var
(
dtype
=
"int32"
,
shape
=
[
1
],
name
=
"seed.out"
)
b1
=
block
.
create_parameter
(
dtype
=
"float32"
,
shape
=
[
5
,
8
],
lod_level
=
0
,
name
=
"b1"
)
b1_out
=
block
.
create_var
(
...
...
@@ -652,10 +657,23 @@ class TestRecomputeOptimizer(unittest.TestCase):
"Y"
:
mul_y
},
outputs
=
{
"Out"
:
mul_out
},
attrs
=
{
"x_num_col_dims"
:
1
})
if
with_dropout
==
True
:
if
with_dropout
is
True
:
dropout_inputs
=
{
'X'
:
[
mul_out
]}
if
with_seed
is
True
:
block
.
append_op
(
type
=
'seed'
,
outputs
=
{
'Out'
:
seed_out
},
attrs
=
{
'deterministic'
:
True
,
'rng_name'
:
'rng0'
,
'force_cpu'
:
True
})
dropout_inputs
=
{
'X'
:
[
mul_out
],
'Seed'
:
[
seed_out
]}
block
.
append_op
(
type
=
'dropout'
,
inputs
=
{
'X'
:
[
mul_out
]}
,
inputs
=
dropout_inputs
,
outputs
=
{
'Out'
:
[
mul_out_drop
],
'Mask'
:
[
mul_out_mask
]},
attrs
=
{
'dropout_prob'
:
0.5
,
})
...
...
@@ -670,6 +688,7 @@ class TestRecomputeOptimizer(unittest.TestCase):
inputs
=
{
"X"
:
mul_out
,
"Y"
:
b1
},
outputs
=
{
"Out"
:
b1_out
})
block
.
append_op
(
type
=
"elementwise_add"
,
inputs
=
{
"X"
:
b1_out
,
...
...
@@ -864,6 +883,27 @@ class TestRecomputeOptimizer(unittest.TestCase):
"sgd"
,
"sgd"
,
"sgd"
])
def
test_dropout_with_determinate_seed
(
self
):
mul_out
,
b1_out
,
b2_out
,
mean_out
=
self
.
net
(
with_dropout
=
True
,
with_seed
=
True
)
self
.
assertEqual
(
len
(
mean_out
.
block
.
ops
),
6
)
self
.
assertEqual
([
op
.
type
for
op
in
mean_out
.
block
.
ops
],
[
"mul"
,
"seed"
,
"dropout"
,
"elementwise_add"
,
"elementwise_add"
,
"mean"
])
sgd_optimizer
=
optimizer
.
SGD
(
learning_rate
=
1.0
)
recompute_optimizer
=
optimizer
.
RecomputeOptimizer
(
sgd_optimizer
)
recompute_optimizer
.
_set_checkpoints
([
b1_out
])
opts
,
params_grads
=
recompute_optimizer
.
minimize
(
mean_out
)
self
.
assertEqual
(
len
(
mean_out
.
block
.
ops
),
17
)
self
.
assertEqual
([
op
.
type
for
op
in
mean_out
.
block
.
ops
],
[
"mul"
,
"seed"
,
"dropout"
,
"elementwise_add"
,
"elementwise_add"
,
"mean"
,
"fill_constant"
,
"mean_grad"
,
"elementwise_add_grad"
,
"mul"
,
"dropout"
,
"elementwise_add_grad"
,
"dropout_grad"
,
"mul_grad"
,
"sgd"
,
"sgd"
,
"sgd"
])
def
test_dropout_with_seed
(
self
):
"""
when we recompute a dropout op, make sure that the recomputed one
...
...
python/paddle/fluid/tests/unittests/test_seed_op.py
浏览文件 @
8cc8e411
...
...
@@ -17,7 +17,10 @@ from __future__ import print_function
import
unittest
import
numpy
as
np
from
op_test
import
OpTest
import
paddle.fluid
as
fluid
import
paddle
import
paddle.static
as
static
paddle
.
enable_static
()
class
TestSeedOpFixSeed
(
OpTest
):
...
...
@@ -42,5 +45,32 @@ class TestSeedOpDiffSeed(OpTest):
self
.
check_output
(
no_check_set
=
[
"Out"
])
class
TestDropoutWithRandomSeedGenerator
(
unittest
.
TestCase
):
def
setUp
(
self
):
paddle
.
framework
.
random
.
set_random_seed_generator
(
'seed0'
,
123
)
paddle
.
framework
.
random
.
set_random_seed_generator
(
'seed1'
,
123
)
self
.
rng0
=
paddle
.
framework
.
random
.
get_random_seed_generator
(
'seed0'
)
self
.
rng1
=
paddle
.
framework
.
random
.
get_random_seed_generator
(
'seed1'
)
self
.
places
=
[
paddle
.
CPUPlace
()]
if
paddle
.
is_compiled_with_cuda
():
self
.
places
.
append
(
paddle
.
CUDAPlace
(
0
))
def
check_static_result
(
self
,
place
):
import
paddle.distributed.fleet.meta_parallel.parallel_layers.random
as
random
with
static
.
program_guard
(
static
.
Program
(),
static
.
Program
()):
res1
=
random
.
determinate_seed
(
'seed0'
)
exe
=
static
.
Executor
(
place
)
res_list
=
[
res1
]
for
i
in
range
(
2
):
out1
,
=
exe
.
run
(
static
.
default_main_program
(),
fetch_list
=
res_list
)
self
.
assertEqual
(
out1
,
np
.
cast
[
'int32'
](
self
.
rng1
.
random
()))
def
test_static
(
self
):
for
place
in
self
.
places
:
self
.
check_static_result
(
place
=
place
)
if
__name__
==
'__main__'
:
unittest
.
main
()
python/paddle/framework/random.py
浏览文件 @
8cc8e411
...
...
@@ -122,3 +122,11 @@ def _manual_program_seed(seed):
fluid
.
default_startup_program
().
random_seed
=
seed
program
=
fluid
.
Program
()
program
.
global_seed
(
seed
)
def
set_random_seed_generator
(
name
,
seed
):
core
.
set_random_seed_generator
(
name
,
seed
)
def
get_random_seed_generator
(
name
):
return
core
.
get_random_seed_generator
(
name
)
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录