diff --git a/doc/design/reader/README.md b/doc/design/reader/README.md new file mode 100644 index 0000000000000000000000000000000000000000..8f7abf12f733542734efe91111f365a34aa4b15b --- /dev/null +++ b/doc/design/reader/README.md @@ -0,0 +1,144 @@ +# Python Data Reader Design Doc + +Paddle reads data from data reader during training. It will be passed into `paddle.train` as a parameter. + +## Data Reader Interface + +Data reader is a function with no parameter that creates a iterable (anything can be used in `for x in iterable`): + +``` +iterable = data_reader() +``` + +Element produced for the iterable should be a **single** entry of data, **not** a mini batch. That entry of data could be a single item, or a tuple of items. Item should be of [supported type](http://www.paddlepaddle.org/doc/ui/data_provider/pydataprovider2.html?highlight=dense_vector#input-types) (e.g., numpy 1d array of float32, int, list of int) + +An example implementation for single item data reader: + +```python +def data_reader_fake_image(): + while True: + yield numpy.random.uniform(-1, 1, size=20*20) +``` + +An example implementation for multiple item data reader: +```python +def data_reader_fake_image_and_label(): + while True: + yield numpy.random.uniform(-1, 1, size=20*20), False +``` + +## Usage + +data reader, mapping from item(s) read to data layer, batch size and number of total pass will be passed into `paddle.train`: + +```python +# two data layer is created: +image_layer = paddle.layer.data("image", ...) +label_layer = paddle.layer.data("label", ...) + +# ... + +paddle.train(paddle.dataset.mnist, {"image":0, "label":1}, 128, 10, ...) +``` + +## Data Reader Decorators + +Data reader decorators takes a single or multiple data reader, returns a new data reader. It is similar to a [python decorator](https://wiki.python.org/moin/PythonDecorators), but it does not use `@` syntax. + +Since we have a strict interface for data readers (no parameter, return a single data item). Data reader can be used flexiable via data reader decorators. Following are a few examples: + +### Prefetch Data + +Since reading data may take time and training can not proceed without data. It is generally a good idea to prefetch data. + +Use `paddle.reader.buffered` to prefetch data: + +```python +buffered_reader = paddle.reader.buffered(paddle.dataset.mnist, 100) +``` + +`buffered_reader` will try to buffer (prefetch) `100` data entries. + +### Compose Multiple Data Readers + +For example, we want to use a source of real images (reusing mnist dataset), and a source of fake images as input for [Generative Adversarial Networks](https://arxiv.org/abs/1406.2661). + +We can do: + +```python +def data_reader_fake_image(): + while True: + yield numpy.random.uniform(-1, 1, size=20*20) + +def data_reader_bool(t): + while True: + yield t + +true_reader = lambda : data_reader_bool(True) +false_reader = lambda : data_reader_bool(False) + +reader = paddle.reader.combine(paddle.dataset.mnist, data_reader_fake_image, true_reader, false_reader) +# Skipped 1 because paddle.dataset.mnist produces two items per data entry. +# And we don't care second item at this time. +paddle.train(reader, {"true_image":0, "fake_image": 2, "true_label": 3, "false_label": 4}, ...) +``` + +### Shuffle + +Given shuffle buffer size `n`, `paddle.reader.shuffle` will return a data reader that buffers `n` data entries and shuffle them before a data entry is read. + +Example: +```python +reader = paddle.reader.shuffle(paddle.dataset.mnist, 512) +``` + +## Q & A + +### Why return only a single entry, but not a mini batch? + +If a mini batch is returned, data reader need to take care of batch size. But batch size is a concept for training, it makes more sense for user to specify batch size as a parameter for `train`. + +Practically, always return a single entry make reusing existing data reader much easier (e.g., if existing data reader return not a single entry but 3 entries, training code will be more complex because it need to handle cases like batch size 2). + +### Why use a dictionary but not a list to provide mapping? + +We decided to use dictionary (`{"image":0, "label":1}`) instead of list (`["image", "label"]`) is because that user can easily resue item (e.g., using `{"image_a":0, "image_b":0, "label":1}`) or skip item (e.g., using `{"image_a":0, "label":2}`). + +### How to create custom data reader + +```python +def image_reader(image_path, label_path): + f = open(image_path) + l = open(label_path) + images = numpy.fromfile( + f, 'ubyte', count=n * 28 * 28).reshape((n, 28 * 28)).astype('float32') + images = images / 255.0 * 2.0 - 1.0 + labels = numpy.fromfile(l, 'ubyte', count=n).astype("int") + for i in xrange(n): + yield images[i, :], labels[i] # a single entry of data is created each time + f.close() + +# use python lambda to change image_reader into a function with no parameters. +reader = lambda : image_reader("/path/to/image_file", "/path/to/label_file") +paddle.train(reader, {"image":0, "label":1}, ...) +``` + +### How is `paddle.train` implemented + +An example implementation of paddle.train could be: + +```python +def minibatch_decorater(reader, minibatch_size): + def ret(): + r = reader() + buf = [r.next() for x in xrange(minibatch_size)] + while len(buf) > 0: + yield buf + buf = [r.next() for x in xrange(minibatch_size)] + return ret + +def train(reader, mapping, batch_size, total_pass): + for pass_idx in range(total_pass): + for mini_batch in minibatch_decorater(reader): # this loop will never end in online learning. + do_forward_backward(mini_batch, mapping) +```