Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
8b622d58
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2299
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
8b622d58
编写于
3月 30, 2023
作者:
Z
zhupengyang
提交者:
GitHub
3月 30, 2023
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[XPU] add delete_cast_op_pass (#52305)
上级
3e2d0195
变更
6
隐藏空白更改
内联
并排
Showing
6 changed file
with
999 addition
and
0 deletion
+999
-0
paddle/fluid/framework/ir/CMakeLists.txt
paddle/fluid/framework/ir/CMakeLists.txt
+5
-0
paddle/fluid/framework/ir/xpu/delete_cast_op_pass.cc
paddle/fluid/framework/ir/xpu/delete_cast_op_pass.cc
+614
-0
paddle/fluid/framework/ir/xpu/delete_cast_op_pass.h
paddle/fluid/framework/ir/xpu/delete_cast_op_pass.h
+122
-0
paddle/fluid/framework/ir/xpu/delete_cast_op_pass_test.cc
paddle/fluid/framework/ir/xpu/delete_cast_op_pass_test.cc
+252
-0
paddle/fluid/inference/api/paddle_pass_builder.cc
paddle/fluid/inference/api/paddle_pass_builder.cc
+1
-0
paddle/fluid/operators/lod_reset_op.cc
paddle/fluid/operators/lod_reset_op.cc
+5
-0
未找到文件。
paddle/fluid/framework/ir/CMakeLists.txt
浏览文件 @
8b622d58
...
...
@@ -240,6 +240,7 @@ if(WITH_XPU)
pass_library
(
fused_multi_transformer_xpu_quant_pass inference DIR xpu DEPS
${
XPU_PASS_DEPS
}
)
pass_library
(
stack_fuse_pass inference DIR xpu DEPS
${
XPU_PASS_DEPS
}
)
pass_library
(
delete_cast_op_pass inference DIR xpu DEPS
${
XPU_PASS_DEPS
}
)
endif
()
cc_library
(
...
...
@@ -518,4 +519,8 @@ if(WITH_XPU)
test_stack_fuse_pass
SRCS xpu/stack_fuse_pass_test.cc
DEPS stack_fuse_pass
)
cc_test
(
test_delete_cast_op_pass
SRCS xpu/delete_cast_op_pass_test.cc
DEPS delete_cast_op_pass
)
endif
()
paddle/fluid/framework/ir/xpu/delete_cast_op_pass.cc
0 → 100644
浏览文件 @
8b622d58
// Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/framework/ir/xpu/delete_cast_op_pass.h"
#include <string>
#include "paddle/fluid/framework/ir/graph_pattern_detector.h"
#include "paddle/fluid/framework/ir/xpu/pass_utils.h"
#include "paddle/fluid/framework/op_version_registry.h"
#include "paddle/fluid/platform/enforce.h"
namespace
phi
{
class
DenseTensor
;
}
// namespace phi
namespace
paddle
{
namespace
framework
{
class
Scope
;
}
// namespace framework
}
// namespace paddle
namespace
paddle
{
namespace
framework
{
namespace
ir
{
namespace
patterns
{
struct
CastWritePattern
:
public
PatternBase
{
CastWritePattern
(
PDPattern
*
pattern
,
const
std
::
string
&
name_scope
);
// declare operator node's name
PATTERN_DECL_NODE
(
cast0
);
PATTERN_DECL_NODE
(
write_to_array
);
// declare variable node's name
PATTERN_DECL_NODE
(
cast0_in
);
PATTERN_DECL_NODE
(
cast0_out
);
PATTERN_DECL_NODE
(
write_to_array_out
);
};
CastWritePattern
::
CastWritePattern
(
PDPattern
*
pattern
,
const
std
::
string
&
name_scope
)
:
PatternBase
(
pattern
,
name_scope
,
name_scope
)
{
auto
*
cast0_in
=
pattern
->
NewNode
(
cast0_in_repr
())
->
assert_is_op_input
(
"cast"
,
"X"
);
auto
*
cast0
=
pattern
->
NewNode
(
cast0_repr
())
->
assert_is_op
(
"cast"
)
->
assert_more
([](
Node
*
node
)
{
auto
*
op_desc
=
node
->
Op
();
auto
in_dtype
=
op_desc
->
GetAttrIfExists
<
int
>
(
"in_dtype"
);
auto
out_dtype
=
op_desc
->
GetAttrIfExists
<
int
>
(
"out_dtype"
);
return
in_dtype
==
static_cast
<
int
>
(
proto
::
VarType
::
FP16
)
&&
out_dtype
==
static_cast
<
int
>
(
proto
::
VarType
::
FP32
);
});
auto
*
cast0_out
=
pattern
->
NewNode
(
cast0_out_repr
())
->
assert_is_op_output
(
"cast"
,
"Out"
)
->
assert_is_op_input
(
"write_to_array"
,
"X"
)
->
assert_has_n_outputs
(
1
);
auto
*
write_to_array
=
pattern
->
NewNode
(
write_to_array_repr
())
->
assert_is_op
(
"write_to_array"
);
auto
*
write_to_array_out
=
pattern
->
NewNode
(
write_to_array_out_repr
())
->
assert_is_op_output
(
"write_to_array"
,
"Out"
);
cast0
->
LinksFrom
({
cast0_in
}).
LinksTo
({
cast0_out
});
write_to_array
->
LinksFrom
({
cast0_out
}).
LinksTo
({
write_to_array_out
});
}
}
// namespace patterns
static
std
::
vector
<
Node
*>
FindOpNodeWithInputName
(
ir
::
Graph
*
graph
,
const
std
::
string
&
input_name
)
{
std
::
vector
<
Node
*>
ret
;
for
(
auto
*
node
:
graph
->
Nodes
())
{
if
(
!
node
->
IsOp
())
continue
;
auto
inputs
=
node
->
Op
()
->
Inputs
();
bool
find_input
=
false
;
for
(
auto
input
:
inputs
)
{
auto
input_names
=
input
.
second
;
if
(
std
::
count
(
input_names
.
begin
(),
input_names
.
end
(),
input_name
)
>
0
)
{
find_input
=
true
;
break
;
}
}
if
(
find_input
)
ret
.
push_back
(
node
);
}
return
ret
;
}
static
std
::
vector
<
Node
*>
FindOpNodeWithOutputName
(
ir
::
Graph
*
graph
,
const
std
::
string
&
output_name
)
{
std
::
vector
<
Node
*>
ret
;
for
(
auto
*
node
:
graph
->
Nodes
())
{
if
(
!
node
->
IsOp
())
continue
;
auto
outputs
=
node
->
Op
()
->
Outputs
();
bool
find_output
=
false
;
for
(
auto
output
:
outputs
)
{
auto
output_names
=
output
.
second
;
if
(
std
::
count
(
output_names
.
begin
(),
output_names
.
end
(),
output_name
)
>
0
)
{
find_output
=
true
;
break
;
}
}
if
(
find_output
)
ret
.
push_back
(
node
);
}
return
ret
;
}
int
DeleteCastOpPass
::
ApplyCastWriteReadPass
(
ir
::
Graph
*
graph
)
const
{
if
(
graph
->
SubGraphsSize
()
!=
2
)
{
VLOG
(
3
)
<<
"ApplyCastWriteReadPass only support 2 subgraphs."
;
return
0
;
}
auto
*
graph0
=
graph
->
GetSubGraph
(
0
);
auto
*
graph1
=
graph
->
GetSubGraph
(
1
);
GraphPatternDetector
gpd
;
patterns
::
CastWritePattern
pattern
(
gpd
.
mutable_pattern
(),
name_scope_
);
int
found_subgraph_count
=
0
;
auto
handler
=
[
&
](
const
GraphPatternDetector
::
subgraph_t
&
subgraph
,
Graph
*
graph
)
{
VLOG
(
4
)
<<
"handle ApplyCastWriteReadPass fuse"
;
GET_IR_NODE
(
cast0
);
GET_IR_NODE
(
write_to_array
);
GET_IR_NODE
(
cast0_in
);
GET_IR_NODE
(
cast0_out
);
GET_IR_NODE
(
write_to_array_out
);
// write_to_array_out(in graph1) may not link to any op nodes, so we fine
// read_from_array by write_to_array_out name.
auto
write_out_op_nodes
=
FindOpNodeWithInputName
(
graph
,
write_to_array_out
->
Name
());
if
(
write_out_op_nodes
.
size
()
!=
1
||
write_out_op_nodes
[
0
]
->
Op
()
->
Type
()
!=
"read_from_array"
)
return
;
Node
*
read_from_array
=
write_out_op_nodes
[
0
];
Node
*
read_from_array_out
=
read_from_array
->
outputs
[
0
];
auto
read_out_op_nodes
=
FindOpNodeWithInputName
(
graph
,
read_from_array_out
->
Name
());
if
(
read_out_op_nodes
.
size
()
!=
1
||
read_out_op_nodes
[
0
]
->
Op
()
->
Type
()
!=
"cast"
)
return
;
Node
*
cast1
=
read_out_op_nodes
[
0
];
Node
*
cast1_out
=
cast1
->
outputs
[
0
];
// find nodes in graph0
auto
nodes_in_graph0
=
FindOpNodeWithOutputName
(
graph0
,
write_to_array_out
->
Name
());
if
(
nodes_in_graph0
.
size
()
!=
2
)
return
;
Node
*
write_to_array_0
=
nullptr
;
Node
*
while_op
=
nullptr
;
for
(
auto
*
node
:
nodes_in_graph0
)
{
if
(
node
->
Name
()
==
"write_to_array"
)
{
write_to_array_0
=
node
;
}
else
if
(
node
->
Name
()
==
"while"
)
{
while_op
=
node
;
}
}
if
(
write_to_array_0
==
nullptr
||
while_op
==
nullptr
)
return
;
// modify graph0
Node
*
write_to_array_0_x
=
nullptr
;
auto
write_to_array_0_x_name
=
write_to_array_0
->
Op
()
->
Input
(
"X"
)[
0
];
for
(
auto
*
node
:
write_to_array_0
->
inputs
)
{
if
(
node
->
Name
()
==
write_to_array_0_x_name
)
{
write_to_array_0_x
=
node
;
break
;
}
}
std
::
string
cast_out_name
=
write_to_array_0_x_name
+
"_fp16"
;
VarDesc
cast_out_desc
(
cast_out_name
);
cast_out_desc
.
SetShape
(
write_to_array_0_x
->
Var
()
->
GetShape
());
cast_out_desc
.
SetDataType
(
proto
::
VarType
::
Type
::
VarType_Type_FP16
);
auto
*
cast_out
=
graph0
->
CreateVarNode
(
&
cast_out_desc
);
auto
*
block
=
write_to_array_0
->
Op
()
->
Block
();
framework
::
OpDesc
cast_op_desc
(
block
);
cast_op_desc
.
SetType
(
"cast"
);
cast_op_desc
.
SetInput
(
"X"
,
{
write_to_array_0_x_name
});
cast_op_desc
.
SetAttr
(
"in_dtype"
,
5
);
cast_op_desc
.
SetAttr
(
"out_dtype"
,
4
);
cast_op_desc
.
SetOutput
(
"Out"
,
{
cast_out_name
});
auto
*
cast
=
graph0
->
CreateOpNode
(
&
cast_op_desc
);
write_to_array_0
->
Op
()
->
RenameInput
(
write_to_array_0_x_name
,
cast_out_name
);
IR_NODE_UNLINK
(
write_to_array_0_x
,
write_to_array_0
);
IR_NODE_LINK_TO
(
write_to_array_0_x
,
cast
);
IR_NODE_LINK_TO
(
cast
,
cast_out
);
IR_NODE_LINK_TO
(
cast_out
,
write_to_array_0
);
// modify graph1
write_to_array
->
Op
()
->
RenameInput
(
cast0_out
->
Name
(),
cast0_in
->
Name
());
read_from_array
->
Op
()
->
RenameOutput
(
read_from_array_out
->
Name
(),
cast1_out
->
Name
());
IR_NODE_LINK_TO
(
cast0
,
write_to_array
);
IR_NODE_LINK_TO
(
read_from_array_out
,
cast1_out
);
std
::
unordered_set
<
const
Node
*>
delete_nodes
{
cast0
,
cast1
,
cast0_out
,
read_from_array_out
};
GraphSafeRemoveNodes
(
graph
,
delete_nodes
);
found_subgraph_count
++
;
};
gpd
(
graph1
,
handler
);
return
found_subgraph_count
;
}
namespace
patterns
{
struct
CastLodResetWritePattern
:
public
PatternBase
{
CastLodResetWritePattern
(
PDPattern
*
pattern
,
const
std
::
string
&
name_scope
);
// declare operator node's name
PATTERN_DECL_NODE
(
cast0
);
PATTERN_DECL_NODE
(
lod_reset
);
PATTERN_DECL_NODE
(
write_to_array
);
// declare variable node's name
PATTERN_DECL_NODE
(
cast0_in
);
PATTERN_DECL_NODE
(
cast0_out
);
PATTERN_DECL_NODE
(
lod_reset_out
);
PATTERN_DECL_NODE
(
write_to_array_out
);
};
CastLodResetWritePattern
::
CastLodResetWritePattern
(
PDPattern
*
pattern
,
const
std
::
string
&
name_scope
)
:
PatternBase
(
pattern
,
name_scope
,
name_scope
)
{
auto
*
cast0_in
=
pattern
->
NewNode
(
cast0_in_repr
())
->
assert_is_op_input
(
"cast"
,
"X"
);
auto
*
cast0
=
pattern
->
NewNode
(
cast0_repr
())
->
assert_is_op
(
"cast"
)
->
assert_more
([](
Node
*
node
)
{
auto
*
op_desc
=
node
->
Op
();
auto
in_dtype
=
op_desc
->
GetAttrIfExists
<
int
>
(
"in_dtype"
);
auto
out_dtype
=
op_desc
->
GetAttrIfExists
<
int
>
(
"out_dtype"
);
return
in_dtype
==
static_cast
<
int
>
(
proto
::
VarType
::
FP16
)
&&
out_dtype
==
static_cast
<
int
>
(
proto
::
VarType
::
FP32
);
});
auto
*
cast0_out
=
pattern
->
NewNode
(
cast0_out_repr
())
->
assert_is_op_output
(
"cast"
,
"Out"
)
->
assert_is_op_input
(
"lod_reset"
,
"X"
)
->
assert_has_n_outputs
(
1
);
auto
*
lod_reset
=
pattern
->
NewNode
(
lod_reset_repr
())
->
assert_is_op
(
"lod_reset"
);
auto
*
lod_reset_out
=
pattern
->
NewNode
(
lod_reset_out_repr
())
->
assert_is_op_output
(
"lod_reset"
,
"Out"
)
->
assert_is_op_input
(
"write_to_array"
,
"X"
)
->
assert_has_n_outputs
(
1
);
auto
*
write_to_array
=
pattern
->
NewNode
(
write_to_array_repr
())
->
assert_is_op
(
"write_to_array"
);
auto
*
write_to_array_out
=
pattern
->
NewNode
(
write_to_array_out_repr
())
->
assert_is_op_output
(
"write_to_array"
,
"Out"
);
cast0
->
LinksFrom
({
cast0_in
}).
LinksTo
({
cast0_out
});
lod_reset
->
LinksFrom
({
cast0_out
}).
LinksTo
({
lod_reset_out
});
write_to_array
->
LinksFrom
({
lod_reset_out
}).
LinksTo
({
write_to_array_out
});
}
}
// namespace patterns
int
DeleteCastOpPass
::
ApplyCastLodResetWriteReadPass
(
ir
::
Graph
*
graph
)
const
{
if
(
graph
->
SubGraphsSize
()
!=
2
)
{
VLOG
(
3
)
<<
"ApplyCastLodResetWriteReadPass only support 2 subgraphs."
;
return
0
;
}
auto
*
graph0
=
graph
->
GetSubGraph
(
0
);
auto
*
graph1
=
graph
->
GetSubGraph
(
1
);
GraphPatternDetector
gpd
;
patterns
::
CastLodResetWritePattern
pattern
(
gpd
.
mutable_pattern
(),
name_scope_
);
int
found_subgraph_count
=
0
;
auto
handler
=
[
&
](
const
GraphPatternDetector
::
subgraph_t
&
subgraph
,
Graph
*
graph
)
{
VLOG
(
4
)
<<
"handle ApplyCastLodResetWriteReadPass fuse"
;
GET_IR_NODE
(
cast0
);
GET_IR_NODE
(
lod_reset
);
GET_IR_NODE
(
write_to_array
);
GET_IR_NODE
(
cast0_in
);
GET_IR_NODE
(
cast0_out
);
GET_IR_NODE
(
lod_reset_out
);
GET_IR_NODE
(
write_to_array_out
);
// write_to_array_out(in graph1) may not link to any op nodes, so we fine
// read_from_array by write_to_array_out name.
auto
write_out_op_nodes
=
FindOpNodeWithInputName
(
graph
,
write_to_array_out
->
Name
());
if
(
write_out_op_nodes
.
size
()
!=
1
||
write_out_op_nodes
[
0
]
->
Op
()
->
Type
()
!=
"read_from_array"
)
return
;
Node
*
read_from_array
=
write_out_op_nodes
[
0
];
Node
*
read_from_array_out
=
read_from_array
->
outputs
[
0
];
auto
read_out_op_nodes
=
FindOpNodeWithInputName
(
graph
,
read_from_array_out
->
Name
());
if
(
read_out_op_nodes
.
size
()
!=
1
||
read_out_op_nodes
[
0
]
->
Op
()
->
Type
()
!=
"cast"
)
return
;
Node
*
cast1
=
read_out_op_nodes
[
0
];
Node
*
cast1_out
=
cast1
->
outputs
[
0
];
// find nodes in graph0
auto
nodes_in_graph0
=
FindOpNodeWithOutputName
(
graph0
,
write_to_array_out
->
Name
());
if
(
nodes_in_graph0
.
size
()
!=
2
)
return
;
Node
*
write_to_array_0
=
nullptr
;
Node
*
while_op
=
nullptr
;
for
(
auto
*
node
:
nodes_in_graph0
)
{
if
(
node
->
Name
()
==
"write_to_array"
)
{
write_to_array_0
=
node
;
}
else
if
(
node
->
Name
()
==
"while"
)
{
while_op
=
node
;
}
}
if
(
write_to_array_0
==
nullptr
||
while_op
==
nullptr
)
return
;
nodes_in_graph0
=
FindOpNodeWithInputName
(
graph0
,
write_to_array_out
->
Name
());
if
(
nodes_in_graph0
.
size
()
!=
2
)
return
;
Node
*
beam_search_decode
=
nullptr
;
while_op
=
nullptr
;
for
(
auto
*
node
:
nodes_in_graph0
)
{
if
(
node
->
Name
()
==
"beam_search_decode"
)
{
beam_search_decode
=
node
;
}
else
if
(
node
->
Name
()
==
"while"
)
{
while_op
=
node
;
}
}
if
(
beam_search_decode
==
nullptr
||
while_op
==
nullptr
)
return
;
// modify graph0: 1. insert cast before write_to_array_0
Node
*
write_to_array_0_x
=
nullptr
;
auto
write_to_array_0_x_name
=
write_to_array_0
->
Op
()
->
Input
(
"X"
)[
0
];
for
(
auto
*
node
:
write_to_array_0
->
inputs
)
{
if
(
node
->
Name
()
==
write_to_array_0_x_name
)
{
write_to_array_0_x
=
node
;
break
;
}
}
std
::
string
cast_out_name
=
write_to_array_0_x_name
+
"_fp16"
;
VarDesc
cast_out_desc
(
cast_out_name
);
cast_out_desc
.
SetShape
(
write_to_array_0_x
->
Var
()
->
GetShape
());
cast_out_desc
.
SetDataType
(
proto
::
VarType
::
Type
::
VarType_Type_FP16
);
auto
*
cast_out
=
graph0
->
CreateVarNode
(
&
cast_out_desc
);
auto
*
block
=
write_to_array_0
->
Op
()
->
Block
();
framework
::
OpDesc
cast_op_desc
(
block
);
cast_op_desc
.
SetType
(
"cast"
);
cast_op_desc
.
SetInput
(
"X"
,
{
write_to_array_0_x_name
});
cast_op_desc
.
SetAttr
(
"in_dtype"
,
5
);
cast_op_desc
.
SetAttr
(
"out_dtype"
,
4
);
cast_op_desc
.
SetOutput
(
"Out"
,
{
cast_out_name
});
auto
*
cast
=
graph0
->
CreateOpNode
(
&
cast_op_desc
);
write_to_array_0
->
Op
()
->
RenameInput
(
write_to_array_0_x_name
,
cast_out_name
);
IR_NODE_UNLINK
(
write_to_array_0_x
,
write_to_array_0
);
IR_NODE_LINK_TO
(
write_to_array_0_x
,
cast
);
IR_NODE_LINK_TO
(
cast
,
cast_out
);
IR_NODE_LINK_TO
(
cast_out
,
write_to_array_0
);
// modify graph0: 2. insert cast after beam_search_decode
Node
*
beam_search_decode_out_score
=
nullptr
;
for
(
auto
*
node
:
beam_search_decode
->
outputs
)
{
if
(
node
->
Name
()
==
beam_search_decode
->
Op
()
->
Output
(
"SentenceScores"
)[
0
])
{
beam_search_decode_out_score
=
node
;
break
;
}
}
std
::
string
cast_in_name
=
beam_search_decode_out_score
->
Name
()
+
"_fp16"
;
VarDesc
cast_in_desc
(
cast_in_name
);
cast_in_desc
.
SetShape
(
beam_search_decode_out_score
->
Var
()
->
GetShape
());
cast_in_desc
.
SetDataType
(
proto
::
VarType
::
Type
::
VarType_Type_FP16
);
auto
*
cast_in
=
graph0
->
CreateVarNode
(
&
cast_in_desc
);
cast_op_desc
=
framework
::
OpDesc
(
block
);
cast_op_desc
.
SetType
(
"cast"
);
cast_op_desc
.
SetInput
(
"X"
,
{
cast_in_name
});
cast_op_desc
.
SetAttr
(
"in_dtype"
,
4
);
cast_op_desc
.
SetAttr
(
"out_dtype"
,
5
);
cast_op_desc
.
SetOutput
(
"Out"
,
{
beam_search_decode_out_score
->
Name
()});
cast
=
graph0
->
CreateOpNode
(
&
cast_op_desc
);
beam_search_decode
->
Op
()
->
RenameOutput
(
beam_search_decode_out_score
->
Name
(),
cast_in_name
);
IR_NODE_UNLINK
(
beam_search_decode
,
beam_search_decode_out_score
);
IR_NODE_LINK_TO
(
beam_search_decode
,
cast_in
);
IR_NODE_LINK_TO
(
cast_in
,
cast
);
IR_NODE_LINK_TO
(
cast
,
beam_search_decode_out_score
);
// modify graph1
lod_reset
->
Op
()
->
RenameInput
(
cast0_out
->
Name
(),
cast0_in
->
Name
());
read_from_array
->
Op
()
->
RenameOutput
(
read_from_array_out
->
Name
(),
cast1_out
->
Name
());
IR_NODE_LINK_TO
(
cast0
,
lod_reset
);
IR_NODE_LINK_TO
(
read_from_array_out
,
cast1_out
);
std
::
unordered_set
<
const
Node
*>
delete_nodes
{
cast0
,
cast1
,
cast0_out
,
read_from_array_out
};
GraphSafeRemoveNodes
(
graph
,
delete_nodes
);
found_subgraph_count
++
;
};
gpd
(
graph1
,
handler
);
return
found_subgraph_count
;
}
namespace
patterns
{
struct
CastIndexSamplePattern
:
public
PatternBase
{
CastIndexSamplePattern
(
PDPattern
*
pattern
,
const
std
::
string
&
name_scope
);
// declare operator node's name
PATTERN_DECL_NODE
(
cast0
);
PATTERN_DECL_NODE
(
index_sample
);
PATTERN_DECL_NODE
(
cast1
);
// declare variable node's name
PATTERN_DECL_NODE
(
cast0_in
);
PATTERN_DECL_NODE
(
cast0_out
);
PATTERN_DECL_NODE
(
index_sample_out
);
PATTERN_DECL_NODE
(
cast1_out
);
};
CastIndexSamplePattern
::
CastIndexSamplePattern
(
PDPattern
*
pattern
,
const
std
::
string
&
name_scope
)
:
PatternBase
(
pattern
,
name_scope
,
name_scope
)
{
auto
*
cast0_in
=
pattern
->
NewNode
(
cast0_in_repr
())
->
assert_is_op_input
(
"cast"
,
"X"
);
auto
*
cast0
=
pattern
->
NewNode
(
cast0_repr
())
->
assert_is_op
(
"cast"
)
->
assert_more
([](
Node
*
node
)
{
auto
*
op_desc
=
node
->
Op
();
auto
in_dtype
=
op_desc
->
GetAttrIfExists
<
int
>
(
"in_dtype"
);
auto
out_dtype
=
op_desc
->
GetAttrIfExists
<
int
>
(
"out_dtype"
);
return
in_dtype
==
static_cast
<
int
>
(
proto
::
VarType
::
FP16
)
&&
out_dtype
==
static_cast
<
int
>
(
proto
::
VarType
::
FP32
);
});
auto
*
cast0_out
=
pattern
->
NewNode
(
cast0_out_repr
())
->
assert_is_op_output
(
"cast"
,
"Out"
)
->
assert_is_op_input
(
"index_sample"
,
"X"
)
->
assert_has_n_outputs
(
1
);
auto
*
index_sample
=
pattern
->
NewNode
(
index_sample_repr
())
->
assert_is_op
(
"index_sample"
);
auto
*
index_sample_out
=
pattern
->
NewNode
(
index_sample_out_repr
())
->
assert_is_op_output
(
"index_sample"
,
"Out"
)
->
assert_is_op_input
(
"cast"
,
"X"
)
->
assert_has_n_outputs
(
1
);
auto
*
cast1
=
pattern
->
NewNode
(
cast1_repr
())
->
assert_is_op
(
"cast"
)
->
assert_more
([](
Node
*
node
)
{
auto
*
op_desc
=
node
->
Op
();
auto
in_dtype
=
op_desc
->
GetAttrIfExists
<
int
>
(
"in_dtype"
);
auto
out_dtype
=
op_desc
->
GetAttrIfExists
<
int
>
(
"out_dtype"
);
return
in_dtype
==
static_cast
<
int
>
(
proto
::
VarType
::
FP32
)
&&
out_dtype
==
static_cast
<
int
>
(
proto
::
VarType
::
FP16
);
});
auto
*
cast1_out
=
pattern
->
NewNode
(
cast1_out_repr
())
->
assert_is_op_output
(
"cast"
,
"Out"
);
cast0
->
LinksFrom
({
cast0_in
}).
LinksTo
({
cast0_out
});
index_sample
->
LinksFrom
({
cast0_out
}).
LinksTo
({
index_sample_out
});
cast1
->
LinksFrom
({
index_sample_out
}).
LinksTo
({
cast1_out
});
}
}
// namespace patterns
int
DeleteCastOpPass
::
ApplyCastIndexSamplePass
(
ir
::
Graph
*
graph
)
const
{
GraphPatternDetector
gpd
;
patterns
::
CastIndexSamplePattern
pattern
(
gpd
.
mutable_pattern
(),
name_scope_
);
int
found_subgraph_count
=
0
;
auto
handler
=
[
&
](
const
GraphPatternDetector
::
subgraph_t
&
subgraph
,
Graph
*
graph
)
{
VLOG
(
4
)
<<
"handle ApplyCastIndexSamplePass fuse"
;
GET_IR_NODE
(
cast0
);
GET_IR_NODE
(
index_sample
);
GET_IR_NODE
(
cast1
);
GET_IR_NODE
(
cast0_in
);
GET_IR_NODE
(
cast0_out
);
GET_IR_NODE
(
index_sample_out
);
GET_IR_NODE
(
cast1_out
);
index_sample
->
Op
()
->
RenameInput
(
cast0_out
->
Name
(),
cast0_in
->
Name
());
index_sample
->
Op
()
->
RenameOutput
(
index_sample_out
->
Name
(),
cast1_out
->
Name
());
IR_NODE_LINK_TO
(
cast0_in
,
index_sample
);
IR_NODE_LINK_TO
(
index_sample
,
cast1_out
);
std
::
unordered_set
<
const
Node
*>
delete_nodes
{
cast0
,
cast1
,
cast0_out
,
index_sample_out
};
GraphSafeRemoveNodes
(
graph
,
delete_nodes
);
found_subgraph_count
++
;
};
gpd
(
graph
,
handler
);
return
found_subgraph_count
;
}
namespace
patterns
{
struct
CastPattern
:
public
PatternBase
{
CastPattern
(
PDPattern
*
pattern
,
const
std
::
string
&
name_scope
);
// declare operator node's name
PATTERN_DECL_NODE
(
cast
);
// declare variable node's name
PATTERN_DECL_NODE
(
cast_in
);
PATTERN_DECL_NODE
(
cast_out
);
};
CastPattern
::
CastPattern
(
PDPattern
*
pattern
,
const
std
::
string
&
name_scope
)
:
PatternBase
(
pattern
,
name_scope
,
name_scope
)
{
auto
*
cast_in
=
pattern
->
NewNode
(
cast_in_repr
())
->
assert_is_op_input
(
"cast"
,
"X"
);
auto
*
cast
=
pattern
->
NewNode
(
cast_repr
())
->
assert_is_op
(
"cast"
)
->
assert_more
([](
Node
*
node
)
{
auto
*
op_desc
=
node
->
Op
();
auto
in_dtype
=
op_desc
->
GetAttrIfExists
<
int
>
(
"in_dtype"
);
auto
out_dtype
=
op_desc
->
GetAttrIfExists
<
int
>
(
"out_dtype"
);
return
in_dtype
==
out_dtype
;
});
auto
*
cast_out
=
pattern
->
NewNode
(
cast_out_repr
())
->
assert_is_op_output
(
"cast"
,
"Out"
);
cast
->
LinksFrom
({
cast_in
}).
LinksTo
({
cast_out
});
}
}
// namespace patterns
int
DeleteCastOpPass
::
ApplyCastPass
(
ir
::
Graph
*
graph
)
const
{
GraphPatternDetector
gpd
;
patterns
::
CastPattern
pattern
(
gpd
.
mutable_pattern
(),
name_scope_
);
int
found_subgraph_count
=
0
;
auto
handler
=
[
&
](
const
GraphPatternDetector
::
subgraph_t
&
subgraph
,
Graph
*
graph
)
{
VLOG
(
4
)
<<
"handle ApplyCastPass fuse"
;
GET_IR_NODE
(
cast
);
GET_IR_NODE
(
cast_in
);
GET_IR_NODE
(
cast_out
);
for
(
auto
*
out_op_node
:
cast_out
->
outputs
)
{
out_op_node
->
Op
()
->
RenameInput
(
cast_out
->
Name
(),
cast_in
->
Name
());
IR_NODE_LINK_TO
(
cast_in
,
out_op_node
);
}
std
::
unordered_set
<
const
Node
*>
delete_nodes
{
cast
,
cast_out
};
GraphSafeRemoveNodes
(
graph
,
delete_nodes
);
found_subgraph_count
++
;
};
gpd
(
graph
,
handler
);
return
found_subgraph_count
;
}
void
DeleteCastOpPass
::
ApplyImpl
(
ir
::
Graph
*
graph
)
const
{
PADDLE_ENFORCE_NOT_NULL
(
graph
,
platform
::
errors
::
PreconditionNotMet
(
"graph should not be null."
));
if
(
!
graph
->
IsMainGraph
())
{
VLOG
(
3
)
<<
"'delete_cast_op_pass' needs info in all graphs, so it "
"should be applied in the main graph."
;
return
;
}
Init
(
name_scope_
,
graph
);
int
found_subgraph_count
=
ApplyCastWriteReadPass
(
graph
);
if
(
found_subgraph_count
>
0
)
{
LOG
(
INFO
)
<<
"--- delete "
<<
found_subgraph_count
<<
" cast_write_read_cast subgraph"
;
}
found_subgraph_count
=
ApplyCastLodResetWriteReadPass
(
graph
);
if
(
found_subgraph_count
>
0
)
{
LOG
(
INFO
)
<<
"--- delete "
<<
found_subgraph_count
<<
" cast_lod_reset_write_read_cast subgraph"
;
}
found_subgraph_count
=
0
;
for
(
size_t
i
=
0
;
i
<
graph
->
SubGraphsSize
();
i
++
)
{
found_subgraph_count
+=
ApplyCastIndexSamplePass
(
graph
->
GetSubGraph
(
i
));
}
if
(
found_subgraph_count
>
0
)
{
LOG
(
INFO
)
<<
"--- delete "
<<
found_subgraph_count
<<
" cast_index_sample_cast subgraph"
;
}
found_subgraph_count
=
0
;
for
(
size_t
i
=
0
;
i
<
graph
->
SubGraphsSize
();
i
++
)
{
found_subgraph_count
+=
ApplyCastPass
(
graph
->
GetSubGraph
(
i
));
}
if
(
found_subgraph_count
>
0
)
{
LOG
(
INFO
)
<<
"--- delete "
<<
found_subgraph_count
<<
" cast(with same in/out dtype) subgraph"
;
}
}
}
// namespace ir
}
// namespace framework
}
// namespace paddle
REGISTER_PASS
(
delete_cast_op_pass
,
paddle
::
framework
::
ir
::
DeleteCastOpPass
);
REGISTER_PASS_CAPABILITY
(
delete_cast_op_pass
)
.
AddCombination
(
paddle
::
framework
::
compatible
::
OpVersionComparatorCombination
().
EQ
(
"cast"
,
0
));
paddle/fluid/framework/ir/xpu/delete_cast_op_pass.h
0 → 100644
浏览文件 @
8b622d58
// Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <string>
#include "paddle/fluid/framework/ir/fuse_pass_base.h"
#include "paddle/fluid/framework/ir/pass.h"
namespace
phi
{
class
DenseTensor
;
}
// namespace phi
namespace
paddle
{
namespace
framework
{
class
Scope
;
}
// namespace framework
}
// namespace paddle
namespace
paddle
{
namespace
framework
{
namespace
ir
{
class
DeleteCastOpPass
:
public
FusePassBase
{
protected:
void
ApplyImpl
(
ir
::
Graph
*
graph
)
const
override
;
private:
/*
Origin subgraph:
main_graph: while subgraph:
write_to_array cast(fp16->fp32)
| |
(write_var:fp32) write_to_array
|
(write_var:fp32)
|
read_from_array
|
cast(fp32->fp16)
Optimized subgraph:
main_graph: while subgraph:
cast write_to_array
| |
write_to_array (write_var:fp16)
| |
(write_var:fp16) read_from_array
*/
int
ApplyCastWriteReadPass
(
ir
::
Graph
*
graph
)
const
;
/*
Origin subgraph:
main_graph: while subgraph:
write_to_array cast(fp16->fp32)
| |
(write_var:fp32) lod_reset
| |
while write_to_array
| |
(write_var:fp32) (write_var:fp32)
| |
beam_search_decode read_from_array
| |
(out_score:fp32) cast(fp32->fp16)
Optimized subgraph:
main_graph: while subgraph:
cast lod_reset
| |
write_to_array write_to_array
| |
(write_var:fp16) (write_var:fp16)
| |
while read_from_array
|
(write_var:fp16)
|
beam_search_decode
|
cast(fp16->fp32)
|
(out_score:fp32)
*/
int
ApplyCastLodResetWriteReadPass
(
ir
::
Graph
*
graph
)
const
;
/*
Origin subgraph:
cast(fp16->fp32)
|
index_sample
|
cast(fp32->fp16)
Optimized subgraph:
index_sample
*/
int
ApplyCastIndexSamplePass
(
ir
::
Graph
*
graph
)
const
;
// Delete cast if its "in_dtype" is the same with "out_dtype"
int
ApplyCastPass
(
ir
::
Graph
*
graph
)
const
;
const
std
::
string
name_scope_
{
"delete_cast_op_pass"
};
};
}
// namespace ir
}
// namespace framework
}
// namespace paddle
paddle/fluid/framework/ir/xpu/delete_cast_op_pass_test.cc
0 → 100644
浏览文件 @
8b622d58
// Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <gtest/gtest.h>
#include "paddle/fluid/framework/ir/pass.h"
#include "paddle/fluid/framework/ir/pass_tester_helper.h"
namespace
paddle
{
namespace
framework
{
namespace
ir
{
VarDesc
*
Data
(
paddle
::
framework
::
BlockDesc
*
block
,
std
::
string
name
,
std
::
vector
<
int64_t
>
shape
=
{},
bool
is_persistable
=
false
,
proto
::
VarType
::
Type
data_type
=
proto
::
VarType
::
FP32
)
{
auto
*
var
=
block
->
Var
(
name
);
var
->
SetType
(
proto
::
VarType
::
LOD_TENSOR
);
var
->
SetDataType
(
data_type
);
var
->
SetShape
(
shape
);
var
->
SetPersistable
(
is_persistable
);
return
var
;
}
VarDesc
*
AddWriteToArray
(
BlockDesc
*
block
,
std
::
vector
<
VarDesc
*>
x
,
VarDesc
*
i
,
VarDesc
*
out
=
nullptr
)
{
if
(
out
==
nullptr
)
{
out
=
Data
(
block
,
x
[
0
]
->
Name
()
+
"_out"
);
}
OpDesc
*
op
=
block
->
AppendOp
();
op
->
SetType
(
"write_to_array"
);
std
::
vector
<
std
::
string
>
x_names
;
for
(
auto
k
:
x
)
{
x_names
.
push_back
(
k
->
Name
());
}
op
->
SetInput
(
"X"
,
x_names
);
op
->
SetInput
(
"I"
,
{
i
->
Name
()});
op
->
SetOutput
(
"Out"
,
{
out
->
Name
()});
return
out
;
}
VarDesc
*
AddReadFromArray
(
BlockDesc
*
block
,
VarDesc
*
x
,
VarDesc
*
i
)
{
auto
*
out
=
Data
(
block
,
x
->
Name
()
+
"_out"
);
OpDesc
*
op
=
block
->
AppendOp
();
op
->
SetType
(
"read_from_array"
);
op
->
SetInput
(
"X"
,
{
x
->
Name
()});
op
->
SetInput
(
"I"
,
{
i
->
Name
()});
op
->
SetOutput
(
"Out"
,
{
out
->
Name
()});
return
out
;
}
VarDesc
*
AddCast
(
BlockDesc
*
block
,
VarDesc
*
input
,
int
in_dtype
=
5
,
int
out_dtype
=
5
)
{
VarDesc
*
out
=
Data
(
block
,
input
->
Name
()
+
"_out"
);
OpDesc
*
op
=
block
->
AppendOp
();
op
->
SetType
(
"cast"
);
op
->
SetInput
(
"X"
,
{
input
->
Name
()});
op
->
SetOutput
(
"Out"
,
{
out
->
Name
()});
op
->
SetAttr
(
"in_dtype"
,
in_dtype
);
op
->
SetAttr
(
"out_dtype"
,
out_dtype
);
return
out
;
}
VarDesc
*
AddLodReset
(
BlockDesc
*
block
,
VarDesc
*
input
)
{
VarDesc
*
out
=
Data
(
block
,
input
->
Name
()
+
"_out"
);
OpDesc
*
op
=
block
->
AppendOp
();
op
->
SetType
(
"lod_reset"
);
op
->
SetInput
(
"X"
,
{
input
->
Name
()});
op
->
SetOutput
(
"Out"
,
{
out
->
Name
()});
return
out
;
}
std
::
vector
<
VarDesc
*>
AddBeamSearchDecode
(
BlockDesc
*
block
,
VarDesc
*
ids
,
VarDesc
*
scores
)
{
VarDesc
*
out_ids
=
Data
(
block
,
ids
->
Name
()
+
"_out"
);
VarDesc
*
out_scores
=
Data
(
block
,
scores
->
Name
()
+
"_out"
);
OpDesc
*
op
=
block
->
AppendOp
();
op
->
SetType
(
"beam_search_decode"
);
op
->
SetInput
(
"Ids"
,
{
ids
->
Name
()});
op
->
SetInput
(
"Scores"
,
{
scores
->
Name
()});
op
->
SetOutput
(
"SentenceIds"
,
{
out_ids
->
Name
()});
op
->
SetOutput
(
"SentenceScores"
,
{
out_scores
->
Name
()});
return
{
out_ids
,
out_scores
};
}
int
GetOpNum
(
Graph
*
graph
,
std
::
string
op_type
=
""
)
{
int
num_nodes
=
0
;
for
(
auto
*
node
:
graph
->
Nodes
())
{
if
(
node
->
IsOp
()
&&
node
->
Op
()
&&
(
node
->
Op
()
->
Type
()
==
op_type
||
op_type
.
empty
()))
{
num_nodes
++
;
}
}
return
num_nodes
;
}
TEST
(
ApplyCastWriteReadPass
,
basic
)
{
paddle
::
framework
::
ProgramDesc
program
;
auto
*
block0
=
program
.
MutableBlock
(
0
);
auto
*
block1
=
program
.
AppendBlock
(
*
block0
);
auto
*
write_0_x
=
Data
(
block0
,
"write_0_x"
,
{
1
});
auto
*
write_0_i
=
Data
(
block0
,
"write_0_i"
,
{
1
});
auto
*
write_0_out
=
AddWriteToArray
(
block0
,
{
write_0_x
},
write_0_i
);
OpDesc
*
while_loop
=
block0
->
AppendOp
();
while_loop
->
SetType
(
"while"
);
while_loop
->
SetInput
(
"X"
,
{
write_0_out
->
Name
()});
while_loop
->
SetOutput
(
"Out"
,
{
write_0_out
->
Name
()});
auto
*
cast_1_0_in
=
Data
(
block1
,
"cast_1_0"
,
{
1
});
auto
*
cast_1_0_out
=
AddCast
(
block1
,
cast_1_0_in
,
4
,
5
);
auto
*
write_1_i
=
Data
(
block1
,
"write_1_i"
,
{
1
});
auto
*
write_1_out
=
Data
(
block1
,
write_0_out
->
Name
(),
{
1
});
AddWriteToArray
(
block1
,
{
cast_1_0_out
},
write_1_i
,
write_1_out
);
auto
*
read_1_i
=
Data
(
block1
,
"read_1_i"
,
{
1
});
auto
*
read_1_out
=
AddReadFromArray
(
block1
,
write_1_out
,
read_1_i
);
AddCast
(
block1
,
read_1_out
,
5
,
4
);
std
::
unique_ptr
<
ir
::
Graph
>
graph
(
new
ir
::
Graph
(
program
));
auto
scope
=
new
Scope
();
graph
->
Set
(
"__param_scope__"
,
scope
);
auto
pass
=
PassRegistry
::
Instance
().
Get
(
"delete_cast_op_pass"
);
pass
->
Apply
(
graph
.
get
());
int
cast_num_in_graph1
=
GetOpNum
(
graph
->
GetSubGraph
(
1
),
"cast"
);
PADDLE_ENFORCE_EQ
(
cast_num_in_graph1
,
0
,
platform
::
errors
::
PreconditionNotMet
(
"graph1 should have 0 cast after delete_cast_op_pass, "
"but actually has %d."
,
cast_num_in_graph1
));
int
cast_num_in_graph0
=
GetOpNum
(
graph
.
get
(),
"cast"
);
PADDLE_ENFORCE_EQ
(
cast_num_in_graph0
,
1
,
platform
::
errors
::
PreconditionNotMet
(
"graph0 should have 1 cast after delete_cast_op_pass, "
"but actually has %d."
,
cast_num_in_graph0
));
}
TEST
(
ApplyCastLodResetWriteReadPass
,
basic
)
{
paddle
::
framework
::
ProgramDesc
program
;
auto
*
block0
=
program
.
MutableBlock
(
0
);
auto
*
block1
=
program
.
AppendBlock
(
*
block0
);
auto
*
write_0_x
=
Data
(
block0
,
"write_0_x"
,
{
1
});
auto
*
write_0_i
=
Data
(
block0
,
"write_0_i"
,
{
1
});
auto
*
write_0_out
=
AddWriteToArray
(
block0
,
{
write_0_x
},
write_0_i
);
OpDesc
*
while_loop
=
block0
->
AppendOp
();
while_loop
->
SetType
(
"while"
);
while_loop
->
SetInput
(
"X"
,
{
write_0_out
->
Name
()});
while_loop
->
SetOutput
(
"Out"
,
{
write_0_out
->
Name
()});
auto
*
ids
=
Data
(
block0
,
"ids"
,
{
1
});
AddBeamSearchDecode
(
block0
,
ids
,
write_0_out
);
auto
*
cast_1_0_in
=
Data
(
block1
,
"cast_1_0"
,
{
1
});
auto
*
cast_1_0_out
=
AddCast
(
block1
,
cast_1_0_in
,
4
,
5
);
auto
*
lod_reset_out
=
AddLodReset
(
block1
,
cast_1_0_out
);
auto
*
write_1_i
=
Data
(
block1
,
"write_1_i"
,
{
1
});
auto
*
write_1_out
=
Data
(
block1
,
write_0_out
->
Name
(),
{
1
});
AddWriteToArray
(
block1
,
{
lod_reset_out
},
write_1_i
,
write_1_out
);
auto
*
read_1_i
=
Data
(
block1
,
"read_1_i"
,
{
1
});
auto
*
read_1_out
=
AddReadFromArray
(
block1
,
write_1_out
,
read_1_i
);
AddCast
(
block1
,
read_1_out
,
5
,
4
);
std
::
unique_ptr
<
ir
::
Graph
>
graph
(
new
ir
::
Graph
(
program
));
auto
scope
=
new
Scope
();
graph
->
Set
(
"__param_scope__"
,
scope
);
auto
pass
=
PassRegistry
::
Instance
().
Get
(
"delete_cast_op_pass"
);
pass
->
Apply
(
graph
.
get
());
int
cast_num_in_graph1
=
GetOpNum
(
graph
->
GetSubGraph
(
1
),
"cast"
);
PADDLE_ENFORCE_EQ
(
cast_num_in_graph1
,
0
,
platform
::
errors
::
PreconditionNotMet
(
"graph1 should have 0 cast after delete_cast_op_pass, "
"but actually has %d."
,
cast_num_in_graph1
));
int
cast_num_in_graph0
=
GetOpNum
(
graph
.
get
(),
"cast"
);
PADDLE_ENFORCE_EQ
(
cast_num_in_graph0
,
2
,
platform
::
errors
::
PreconditionNotMet
(
"graph0 should have 2 cast after delete_cast_op_pass, "
"but actually has %d."
,
cast_num_in_graph0
));
}
TEST
(
ApplyCastIndexSamplePass
,
basic
)
{
paddle
::
framework
::
ProgramDesc
program
;
auto
*
block
=
program
.
MutableBlock
(
0
);
auto
*
cast0_in
=
Data
(
block
,
"cast0_in"
,
{
1
});
auto
*
cast0_out
=
AddCast
(
block
,
cast0_in
,
4
,
5
);
auto
*
index_sample_out
=
Data
(
block
,
"index_sample_out"
,
{
1
});
OpDesc
*
index_sample
=
block
->
AppendOp
();
index_sample
->
SetType
(
"index_sample"
);
index_sample
->
SetInput
(
"X"
,
{
cast0_out
->
Name
()});
index_sample
->
SetOutput
(
"Out"
,
{
index_sample_out
->
Name
()});
AddCast
(
block
,
index_sample_out
,
5
,
4
);
std
::
unique_ptr
<
ir
::
Graph
>
graph
(
new
ir
::
Graph
(
program
));
auto
scope
=
new
Scope
();
graph
->
Set
(
"__param_scope__"
,
scope
);
auto
pass
=
PassRegistry
::
Instance
().
Get
(
"delete_cast_op_pass"
);
pass
->
Apply
(
graph
.
get
());
int
cast_num_in_graph
=
GetOpNum
(
graph
->
GetSubGraph
(
0
),
"cast"
);
PADDLE_ENFORCE_EQ
(
GetOpNum
(
graph
->
GetSubGraph
(
0
),
"cast"
),
0
,
platform
::
errors
::
PreconditionNotMet
(
"graph should have 0 cast after delete_cast_op_pass, "
"but actually has %d."
,
cast_num_in_graph
));
}
TEST
(
ApplyCastPass
,
basic
)
{
paddle
::
framework
::
ProgramDesc
program
;
auto
*
block
=
program
.
MutableBlock
(
0
);
auto
*
cast0_in
=
Data
(
block
,
"cast0_in"
,
{
1
});
AddCast
(
block
,
cast0_in
,
3
,
3
);
std
::
unique_ptr
<
ir
::
Graph
>
graph
(
new
ir
::
Graph
(
program
));
auto
scope
=
new
Scope
();
graph
->
Set
(
"__param_scope__"
,
scope
);
auto
pass
=
PassRegistry
::
Instance
().
Get
(
"delete_cast_op_pass"
);
pass
->
Apply
(
graph
.
get
());
int
cast_num_in_graph
=
GetOpNum
(
graph
->
GetSubGraph
(
0
),
"cast"
);
PADDLE_ENFORCE_EQ
(
GetOpNum
(
graph
->
GetSubGraph
(
0
),
"cast"
),
0
,
platform
::
errors
::
PreconditionNotMet
(
"graph should have 0 cast after delete_cast_op_pass, "
"but actually has %d."
,
cast_num_in_graph
));
}
}
// namespace ir
}
// namespace framework
}
// namespace paddle
USE_PASS
(
delete_cast_op_pass
);
paddle/fluid/inference/api/paddle_pass_builder.cc
浏览文件 @
8b622d58
...
...
@@ -528,6 +528,7 @@ XpuPassStrategy::XpuPassStrategy() : PassStrategy({}) {
"multi_encoder_xpu_fuse_pass"
,
"multi_encoder_xpu_slice_fuse_pass"
,
"one_beam_size_fuse_pass"
,
"delete_cast_op_pass"
,
"stack_fuse_pass"
,
"fused_multi_transformer_xpu_quant_pass"
,
"fc_xpu_fuse_pass"
,
...
...
paddle/fluid/operators/lod_reset_op.cc
浏览文件 @
8b622d58
...
...
@@ -249,6 +249,7 @@ REGISTER_OPERATOR(lod_reset_grad,
REGISTER_OP_CPU_KERNEL
(
lod_reset
,
ops
::
LoDResetKernel
<
paddle
::
platform
::
CPUPlace
,
paddle
::
platform
::
float16
>
,
ops
::
LoDResetKernel
<
paddle
::
platform
::
CPUPlace
,
float
>
,
ops
::
LoDResetKernel
<
paddle
::
platform
::
CPUPlace
,
double
>
,
ops
::
LoDResetKernel
<
paddle
::
platform
::
CPUPlace
,
int
>
,
...
...
@@ -257,6 +258,8 @@ REGISTER_OP_CPU_KERNEL(
#ifdef PADDLE_WITH_XPU
REGISTER_OP_XPU_KERNEL
(
lod_reset
,
ops
::
LoDResetKernel
<
paddle
::
platform
::
XPUDeviceContext
,
paddle
::
platform
::
float16
>
,
ops
::
LoDResetKernel
<
paddle
::
platform
::
XPUDeviceContext
,
float
>
,
ops
::
LoDResetKernel
<
paddle
::
platform
::
XPUDeviceContext
,
double
>
,
ops
::
LoDResetKernel
<
paddle
::
platform
::
XPUDeviceContext
,
int
>
,
...
...
@@ -265,6 +268,8 @@ REGISTER_OP_XPU_KERNEL(
REGISTER_OP_CPU_KERNEL
(
lod_reset_grad
,
ops
::
LoDResetGradKernel
<
paddle
::
platform
::
CPUPlace
,
paddle
::
platform
::
float16
>
,
ops
::
LoDResetGradKernel
<
paddle
::
platform
::
CPUPlace
,
float
>
,
ops
::
LoDResetGradKernel
<
paddle
::
platform
::
CPUPlace
,
double
>
,
ops
::
LoDResetGradKernel
<
paddle
::
platform
::
CPUPlace
,
int
>
,
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录