Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
89d27de9
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
89d27de9
编写于
11月 16, 2020
作者:
K
Kaipeng Deng
提交者:
GitHub
11月 16, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
DataLoader support not auto collate batch (#28425)
* DataLoader support not auto collate batch. test=develop
上级
c5c273c1
变更
8
显示空白变更内容
内联
并排
Showing
8 changed file
with
327 addition
and
36 deletion
+327
-36
python/paddle/fluid/dataloader/dataloader_iter.py
python/paddle/fluid/dataloader/dataloader_iter.py
+24
-10
python/paddle/fluid/dataloader/fetcher.py
python/paddle/fluid/dataloader/fetcher.py
+31
-18
python/paddle/fluid/reader.py
python/paddle/fluid/reader.py
+32
-4
python/paddle/fluid/tests/unittests/test_multiprocess_dataloader_dynamic.py
...d/tests/unittests/test_multiprocess_dataloader_dynamic.py
+44
-1
python/paddle/fluid/tests/unittests/test_multiprocess_dataloader_exception.py
...tests/unittests/test_multiprocess_dataloader_exception.py
+2
-2
python/paddle/fluid/tests/unittests/test_multiprocess_dataloader_iterable_dataset_dynamic.py
.../test_multiprocess_dataloader_iterable_dataset_dynamic.py
+42
-1
python/paddle/fluid/tests/unittests/test_multiprocess_dataloader_iterable_dataset_static.py
...s/test_multiprocess_dataloader_iterable_dataset_static.py
+75
-0
python/paddle/fluid/tests/unittests/test_multiprocess_dataloader_static.py
...id/tests/unittests/test_multiprocess_dataloader_static.py
+77
-0
未找到文件。
python/paddle/fluid/dataloader/dataloader_iter.py
浏览文件 @
89d27de9
...
...
@@ -36,6 +36,7 @@ from .. import core, layers
from
..framework
import
in_dygraph_mode
from
..multiprocess_utils
import
CleanupFuncRegistrar
,
_cleanup_mmap
,
_set_SIGCHLD_handler
from
.fetcher
import
_IterableDatasetFetcher
,
_MapDatasetFetcher
from
.batch_sampler
import
_InfiniteIterableSampler
__all__
=
[
'get_worker_info'
]
...
...
@@ -100,11 +101,13 @@ class _DatasetKind(object):
ITER
=
1
@
staticmethod
def
create_fetcher
(
kind
,
dataset
,
collate_fn
,
drop_last
):
def
create_fetcher
(
kind
,
dataset
,
auto_collate_batch
,
collate_fn
,
drop_last
):
if
kind
==
_DatasetKind
.
MAP
:
return
_MapDatasetFetcher
(
dataset
,
collate_fn
,
drop_last
)
return
_MapDatasetFetcher
(
dataset
,
auto_collate_batch
,
collate_fn
,
drop_last
)
elif
kind
==
_DatasetKind
.
ITER
:
return
_IterableDatasetFetcher
(
dataset
,
collate_fn
,
drop_last
)
return
_IterableDatasetFetcher
(
dataset
,
auto_collate_batch
,
collate_fn
,
drop_last
)
else
:
raise
NotImplementedError
(
"unknown Dataset kind {}"
.
format
(
kind
))
...
...
@@ -221,8 +224,7 @@ class _DataLoaderIterBase(object):
self
.
_places
=
loader
.
places
self
.
_return_list
=
loader
.
return_list
self
.
_batch_sampler
=
loader
.
batch_sampler
self
.
_sampler_iter
=
iter
(
loader
.
batch_sampler
)
self
.
_collate_fn
=
loader
.
collate_fn
or
default_collate_fn
self
.
_auto_collate_batch
=
loader
.
auto_collate_batch
self
.
_num_workers
=
loader
.
num_workers
self
.
_use_buffer_reader
=
loader
.
use_buffer_reader
self
.
_use_shared_memory
=
loader
.
use_shared_memory
...
...
@@ -231,6 +233,16 @@ class _DataLoaderIterBase(object):
self
.
_dataset_kind
=
loader
.
dataset_kind
self
.
_pin_memory
=
loader
.
pin_memory
if
self
.
_auto_collate_batch
:
self
.
_sampler_iter
=
iter
(
loader
.
batch_sampler
)
self
.
_collate_fn
=
loader
.
collate_fn
or
default_collate_fn
else
:
if
self
.
_dataset_kind
==
_DatasetKind
.
MAP
:
self
.
_sampler_iter
=
iter
(
list
(
range
(
len
(
self
.
_dataset
))))
else
:
self
.
_sampler_iter
=
iter
(
_InfiniteIterableSampler
(
self
.
_dataset
,
1
))
self
.
_collate_fn
=
loader
.
collate_fn
# LoDTensorBlockingQueue instance for create_py_reader and a thread
# to put mini-batch data to self._blocking_queue, mini-batch data
# will be get from:
...
...
@@ -257,7 +269,8 @@ class _DataLoaderIterSingleProcess(_DataLoaderIterBase):
super
(
_DataLoaderIterSingleProcess
,
self
).
__init__
(
loader
)
self
.
_dataset_fetcher
=
_DatasetKind
.
create_fetcher
(
self
.
_dataset_kind
,
self
.
_dataset
,
self
.
_collate_fn
,
True
)
self
.
_dataset_kind
,
self
.
_dataset
,
self
.
_auto_collate_batch
,
self
.
_collate_fn
,
True
)
# NOTE: len(self._places) batch data compose as an output
# iteration, set blocking_queue can cache 2 iteration datas
...
...
@@ -367,7 +380,7 @@ class _DataLoaderIterSingleProcess(_DataLoaderIterBase):
# NOTE(chenweihang): _worker_loop must be top level method to be pickled
def
_worker_loop
(
dataset
,
dataset_kind
,
indices_queue
,
out_queue
,
done_event
,
collate_fn
,
init_fn
,
worker_id
,
num_workers
,
auto_collate_batch
,
collate_fn
,
init_fn
,
worker_id
,
num_workers
,
use_shared_memory
):
try
:
# NOTE: [ mmap files clear ] When the child process exits unexpectedly,
...
...
@@ -388,7 +401,7 @@ def _worker_loop(dataset, dataset_kind, indices_queue, out_queue, done_event,
if
init_fn
is
not
None
:
init_fn
(
worker_id
)
fetcher
=
_DatasetKind
.
create_fetcher
(
dataset_kind
,
dataset
,
collate_fn
,
True
)
auto_collate_batch
,
collate_fn
,
True
)
except
:
init_exception
=
Exception
(
"init_fn failed in worker {}: "
\
"{}"
.
format
(
worker_id
,
sys
.
exc_info
()))
...
...
@@ -511,8 +524,9 @@ class _DataLoaderIterMultiProcess(_DataLoaderIterBase):
target
=
_worker_loop
,
args
=
(
self
.
_dataset
,
self
.
_dataset_kind
,
indices_queue
,
self
.
_data_queue
,
self
.
_workers_done_event
,
self
.
_collate_fn
,
self
.
_worker_init_fn
,
i
,
self
.
_num_workers
,
self
.
_use_shared_memory
))
self
.
_auto_collate_batch
,
self
.
_collate_fn
,
self
.
_worker_init_fn
,
i
,
self
.
_num_workers
,
self
.
_use_shared_memory
))
worker
.
daemon
=
True
worker
.
start
()
self
.
_workers
.
append
(
worker
)
...
...
python/paddle/fluid/dataloader/fetcher.py
浏览文件 @
89d27de9
...
...
@@ -14,8 +14,9 @@
class
_DatasetFetcher
(
object
):
def
__init__
(
self
,
dataset
,
collate_fn
,
drop_last
):
def
__init__
(
self
,
dataset
,
auto_collate_batch
,
collate_fn
,
drop_last
):
self
.
dataset
=
dataset
self
.
auto_collate_batch
=
auto_collate_batch
self
.
collate_fn
=
collate_fn
self
.
drop_last
=
drop_last
...
...
@@ -25,12 +26,14 @@ class _DatasetFetcher(object):
class
_IterableDatasetFetcher
(
_DatasetFetcher
):
def
__init__
(
self
,
dataset
,
collate_fn
,
drop_last
):
super
(
_IterableDatasetFetcher
,
self
).
__init__
(
dataset
,
collate_fn
,
drop_last
)
def
__init__
(
self
,
dataset
,
auto_collate_batch
,
collate_fn
,
drop_last
):
super
(
_IterableDatasetFetcher
,
self
).
__init__
(
dataset
,
auto_collate_batch
,
collate_fn
,
drop_last
)
self
.
dataset_iter
=
iter
(
dataset
)
def
fetch
(
self
,
batch_indices
):
if
self
.
auto_collate_batch
:
data
=
[]
for
_
in
batch_indices
:
try
:
...
...
@@ -40,14 +43,24 @@ class _IterableDatasetFetcher(_DatasetFetcher):
if
len
(
data
)
==
0
or
(
self
.
drop_last
and
len
(
data
)
<
len
(
batch_indices
)):
raise
StopIteration
else
:
data
=
next
(
self
.
dataset_iter
)
return
self
.
collate_fn
(
data
)
if
self
.
collate_fn
:
data
=
self
.
collate_fn
(
data
)
return
data
class
_MapDatasetFetcher
(
_DatasetFetcher
):
def
__init__
(
self
,
dataset
,
collate_fn
,
drop_last
):
super
(
_MapDatasetFetcher
,
self
).
__init__
(
dataset
,
collate_fn
,
drop_last
)
def
__init__
(
self
,
dataset
,
auto_collate_batch
,
collate_fn
,
drop_last
):
super
(
_MapDatasetFetcher
,
self
).
__init__
(
dataset
,
auto_collate_batch
,
collate_fn
,
drop_last
)
def
fetch
(
self
,
batch_indices
):
if
self
.
auto_collate_batch
:
data
=
[
self
.
dataset
[
idx
]
for
idx
in
batch_indices
]
return
self
.
collate_fn
(
data
)
else
:
data
=
self
.
dataset
[
batch_indices
]
if
self
.
collate_fn
:
data
=
self
.
collate_fn
(
data
)
return
data
python/paddle/fluid/reader.py
浏览文件 @
89d27de9
...
...
@@ -163,6 +163,21 @@ class DataLoader(object):
For :code:`batch_sampler` please see :code:`paddle.io.BatchSampler`
**Disable automatic batching**
In certain cases such as some NLP tasks, instead of automatic batching,
handling batching manually in dataset is needed by users. For these
cases, automatic batching is disabled if both :attr:`batch_size` and
:attr:`batch_sampler` is set as None, each data got from :attr:`dataset`
should be batched data and will be processed with function define by
:attr:`collate_fn` or :attr:`default_collate_fn`.
.. note::
When automatic batching is disabled, :attr:`default_collate_fn` will
do nothing to data from dataset.
Args:
dataset(Dataset): the dataset to load data from, should be an
instance of subclass of :code:`paddle.io.Dataset` or
...
...
@@ -185,7 +200,7 @@ class DataLoader(object):
batch_sampler(BatchSampler): an instance of `paddle.io.BatchSampler`
to generate batch indices to draw samples from :attr:`dataset`
and combine a batch. Default None.
batch_size(int): sample number in a mini-batch, a substitution
batch_size(int
|None
): sample number in a mini-batch, a substitution
parameter for :attr:`batch_sampler`, if :attr:`batch_sampler`
is not set, a default `paddle.io.BatchSampler` will be used
and initialize by :attr:`batch_size`, :attr:`shuffle` and
...
...
@@ -358,10 +373,15 @@ class DataLoader(object):
"batch_size/shuffle/drop_last should not be set when "
\
"batch_sampler is given"
self
.
batch_sampler
=
batch_sampler
self
.
batch_size
=
None
elif
batch_size
is
None
:
self
.
batch_sampler
=
None
self
.
batch_size
=
None
else
:
assert
batch_size
is
not
None
and
batch_size
>
0
,
\
"batch_size should be a positive value when "
\
assert
batch_size
>
0
,
\
"batch_size should be
None or
a positive value when "
\
"batch_sampler is not given"
self
.
batch_size
=
batch_size
if
isinstance
(
dataset
,
IterableDataset
):
self
.
batch_sampler
=
_InfiniteIterableSampler
(
dataset
,
batch_size
)
...
...
@@ -372,12 +392,20 @@ class DataLoader(object):
shuffle
=
shuffle
,
drop_last
=
drop_last
)
self
.
auto_collate_batch
=
self
.
batch_sampler
is
not
None
self
.
pin_memory
=
False
if
in_dygraph_mode
():
self
.
pin_memory
=
True
if
use_pinned_memory
(
)
is
None
else
use_pinned_memory
()
def
__len__
(
self
):
if
self
.
dataset_kind
==
_DatasetKind
.
ITER
:
raise
ValueError
(
"length of IterableDataset not supported"
)
else
:
if
self
.
batch_size
is
None
:
return
len
(
self
.
dataset
)
else
:
return
len
(
self
.
batch_sampler
)
def
__iter__
(
self
):
...
...
python/paddle/fluid/tests/unittests/test_multiprocess_dataloader_dynamic.py
浏览文件 @
89d27de9
...
...
@@ -27,7 +27,7 @@ from paddle.io import Dataset, BatchSampler, DataLoader
from
paddle.fluid.dygraph.nn
import
Linear
from
paddle.fluid.dygraph.base
import
to_variable
from
test_multiprocess_dataloader_static
import
RandomDataset
,
prepare_places
from
test_multiprocess_dataloader_static
import
RandomDataset
,
RandomBatchedDataset
,
prepare_places
from
test_multiprocess_dataloader_static
import
EPOCH_NUM
,
BATCH_SIZE
,
IMAGE_SIZE
,
SAMPLE_NUM
,
CLASS_NUM
...
...
@@ -122,5 +122,48 @@ class TestDygraphDataLoader(unittest.TestCase):
self
.
assertLess
(
diff
,
1e-2
)
class
TestDygraphDataLoaderWithBatchedDataset
(
TestDygraphDataLoader
):
def
run_main
(
self
,
num_workers
,
places
):
fluid
.
default_startup_program
().
random_seed
=
1
fluid
.
default_main_program
().
random_seed
=
1
with
fluid
.
dygraph
.
guard
(
places
[
0
]):
fc_net
=
SimpleFCNet
()
optimizer
=
fluid
.
optimizer
.
Adam
(
parameter_list
=
fc_net
.
parameters
())
dataset
=
RandomBatchedDataset
(
SAMPLE_NUM
,
CLASS_NUM
)
dataloader
=
DataLoader
(
dataset
,
num_workers
=
num_workers
,
batch_size
=
None
,
drop_last
=
True
)
assert
len
(
dataloader
)
==
int
(
SAMPLE_NUM
/
BATCH_SIZE
)
step_list
=
[]
loss_list
=
[]
start_t
=
time
.
time
()
for
_
in
six
.
moves
.
range
(
EPOCH_NUM
):
step
=
0
for
image
,
label
in
dataloader
():
out
=
fc_net
(
image
)
loss
=
fluid
.
layers
.
cross_entropy
(
out
,
label
)
avg_loss
=
fluid
.
layers
.
reduce_mean
(
loss
)
avg_loss
.
backward
()
optimizer
.
minimize
(
avg_loss
)
fc_net
.
clear_gradients
()
loss_list
.
append
(
np
.
mean
(
avg_loss
.
numpy
()))
step
+=
1
step_list
.
append
(
step
)
end_t
=
time
.
time
()
ret
=
{
"time"
:
end_t
-
start_t
,
"step"
:
step_list
,
"loss"
:
np
.
array
(
loss_list
)
}
print
(
"time cost"
,
ret
[
'time'
],
'step_list'
,
ret
[
'step'
])
return
ret
if
__name__
==
'__main__'
:
unittest
.
main
()
python/paddle/fluid/tests/unittests/test_multiprocess_dataloader_exception.py
浏览文件 @
89d27de9
...
...
@@ -188,7 +188,7 @@ class TestDataLoaderWorkerLoop(unittest.TestCase):
indices_queue
.
put
(
None
)
_worker_loop
(
loader
.
_dataset
,
0
,
indices_queue
,
loader
.
_data_queue
,
loader
.
_workers_done_event
,
_collate_fn
,
_init_fn
,
0
,
1
,
True
,
_collate_fn
,
_init_fn
,
0
,
1
,
loader
.
_use_shared_memory
)
self
.
assertTrue
(
False
)
except
AssertionError
:
...
...
@@ -232,7 +232,7 @@ class TestDataLoaderWorkerLoop(unittest.TestCase):
loader
.
_workers_done_event
.
set
()
_worker_loop
(
loader
.
_dataset
,
0
,
indices_queue
,
loader
.
_data_queue
,
loader
.
_workers_done_event
,
_collate_fn
,
_init_fn
,
0
,
1
,
True
,
_collate_fn
,
_init_fn
,
0
,
1
,
loader
.
_use_shared_memory
)
self
.
assertTrue
(
True
)
except
AssertionError
:
...
...
python/paddle/fluid/tests/unittests/test_multiprocess_dataloader_iterable_dataset_dynamic.py
浏览文件 @
89d27de9
...
...
@@ -27,7 +27,7 @@ from paddle.io import Dataset, BatchSampler, DataLoader
from
paddle.fluid.dygraph.nn
import
Linear
from
paddle.fluid.dygraph.base
import
to_variable
from
test_multiprocess_dataloader_iterable_dataset_static
import
RandomDataset
,
prepare_places
from
test_multiprocess_dataloader_iterable_dataset_static
import
RandomDataset
,
RandomBatchedDataset
,
prepare_places
from
test_multiprocess_dataloader_iterable_dataset_static
import
EPOCH_NUM
,
BATCH_SIZE
,
IMAGE_SIZE
,
SAMPLE_NUM
,
CLASS_NUM
...
...
@@ -119,5 +119,46 @@ class TestDygraphDataLoader(unittest.TestCase):
0
]
class
TestDygraphDataLoaderWithBatchedDataset
(
TestDygraphDataLoader
):
def
run_main
(
self
,
num_workers
,
places
):
fluid
.
default_startup_program
().
random_seed
=
1
fluid
.
default_main_program
().
random_seed
=
1
with
fluid
.
dygraph
.
guard
(
places
[
0
]):
fc_net
=
SimpleFCNet
()
optimizer
=
fluid
.
optimizer
.
Adam
(
parameter_list
=
fc_net
.
parameters
())
dataset
=
RandomBatchedDataset
(
SAMPLE_NUM
,
CLASS_NUM
)
dataloader
=
DataLoader
(
dataset
,
num_workers
=
num_workers
,
batch_size
=
None
,
drop_last
=
True
)
step_list
=
[]
loss_list
=
[]
start_t
=
time
.
time
()
for
_
in
six
.
moves
.
range
(
EPOCH_NUM
):
step
=
0
for
image
,
label
in
dataloader
():
out
=
fc_net
(
image
)
loss
=
fluid
.
layers
.
cross_entropy
(
out
,
label
)
avg_loss
=
fluid
.
layers
.
reduce_mean
(
loss
)
avg_loss
.
backward
()
optimizer
.
minimize
(
avg_loss
)
fc_net
.
clear_gradients
()
loss_list
.
append
(
np
.
mean
(
avg_loss
.
numpy
()))
step
+=
1
step_list
.
append
(
step
)
end_t
=
time
.
time
()
ret
=
{
"time"
:
end_t
-
start_t
,
"step"
:
step_list
,
"loss"
:
np
.
array
(
loss_list
)
}
print
(
"time cost"
,
ret
[
'time'
],
'step_list'
,
ret
[
'step'
])
return
ret
if
__name__
==
'__main__'
:
unittest
.
main
()
python/paddle/fluid/tests/unittests/test_multiprocess_dataloader_iterable_dataset_static.py
浏览文件 @
89d27de9
...
...
@@ -167,5 +167,80 @@ class TestStaticDataLoader(unittest.TestCase):
0
]
class
RandomBatchedDataset
(
IterableDataset
):
def
__init__
(
self
,
sample_num
,
class_num
):
self
.
sample_num
=
sample_num
//
BATCH_SIZE
self
.
class_num
=
class_num
def
__iter__
(
self
):
for
i
in
range
(
self
.
sample_num
):
np
.
random
.
seed
(
i
)
images
=
[]
labels
=
[]
for
_
in
range
(
BATCH_SIZE
):
image
=
np
.
random
.
random
([
IMAGE_SIZE
]).
astype
(
'float32'
)
label
=
np
.
random
.
randint
(
0
,
self
.
class_num
-
1
,
(
1
,
)).
astype
(
'int64'
)
images
.
append
(
image
)
labels
.
append
(
label
)
yield
np
.
stack
(
images
,
axis
=
0
),
np
.
stack
(
labels
,
axis
=
0
)
class
TestStaticDataLoaderWithBatchedDataset
(
TestStaticDataLoader
):
def
run_main
(
self
,
num_workers
,
places
):
scope
=
fluid
.
Scope
()
with
fluid
.
scope_guard
(
scope
):
startup_prog
,
main_prog
,
image
,
label
,
loss
=
simple_fc_net_static
()
dataset
=
RandomBatchedDataset
(
SAMPLE_NUM
,
CLASS_NUM
)
dataloader
=
DataLoader
(
dataset
,
feed_list
=
[
image
,
label
],
places
=
places
,
num_workers
=
num_workers
,
batch_size
=
None
,
drop_last
=
True
)
exe
=
fluid
.
Executor
(
place
=
places
[
0
])
exe
.
run
(
startup_prog
)
prog
=
fluid
.
CompiledProgram
(
main_prog
)
if
len
(
places
)
>
1
:
prog
=
prog
.
with_data_parallel
(
loss_name
=
loss
.
name
,
places
=
places
)
step_list
=
[]
loss_list
=
[]
start_t
=
time
.
time
()
for
i
in
six
.
moves
.
range
(
EPOCH_NUM
):
step
=
0
for
d
in
dataloader
:
assert
len
(
d
)
==
len
(
places
),
"{} != {}"
.
format
(
len
(
d
),
len
(
places
))
for
i
,
item
in
enumerate
(
d
):
image
=
item
[
'image'
]
label
=
item
[
'label'
]
assert
image
.
shape
()
==
[
BATCH_SIZE
,
IMAGE_SIZE
]
assert
label
.
shape
()
==
[
BATCH_SIZE
,
1
]
assert
image
.
_place
().
_equals
(
places
[
i
])
assert
label
.
_place
().
_equals
(
places
[
i
])
L
,
=
exe
.
run
(
program
=
prog
,
feed
=
d
,
fetch_list
=
[
loss
],
use_program_cache
=
True
)
loss_list
.
append
(
np
.
mean
(
L
))
step
+=
1
step_list
.
append
(
step
)
end_t
=
time
.
time
()
ret
=
{
"time"
:
end_t
-
start_t
,
"step"
:
step_list
,
"loss"
:
np
.
array
(
loss_list
)
}
print
(
"time cost"
,
ret
[
'time'
],
'step_list'
,
ret
[
'step'
])
return
ret
if
__name__
==
'__main__'
:
unittest
.
main
()
python/paddle/fluid/tests/unittests/test_multiprocess_dataloader_static.py
浏览文件 @
89d27de9
...
...
@@ -215,5 +215,82 @@ class TestStaticDataLoaderReturnList(unittest.TestCase):
assert
isinstance
(
d
[
1
],
list
)
class
RandomBatchedDataset
(
Dataset
):
def
__init__
(
self
,
sample_num
,
class_num
):
self
.
sample_num
=
int
(
sample_num
/
BATCH_SIZE
)
self
.
class_num
=
class_num
def
__getitem__
(
self
,
idx
):
np
.
random
.
seed
(
idx
)
images
=
[]
labels
=
[]
for
_
in
range
(
BATCH_SIZE
):
image
=
np
.
random
.
random
([
IMAGE_SIZE
]).
astype
(
'float32'
)
label
=
np
.
random
.
randint
(
0
,
self
.
class_num
-
1
,
(
1
,
)).
astype
(
'int64'
)
images
.
append
(
image
)
labels
.
append
(
label
)
return
np
.
stack
(
images
,
axis
=
0
),
np
.
stack
(
labels
,
axis
=
0
)
def
__len__
(
self
):
return
self
.
sample_num
class
TestStaticDataLoaderWithBatchedDataset
(
TestStaticDataLoader
):
def
run_main
(
self
,
num_workers
,
places
):
scope
=
fluid
.
Scope
()
with
fluid
.
scope_guard
(
scope
):
startup_prog
,
main_prog
,
image
,
label
,
loss
=
simple_fc_net_static
()
dataset
=
RandomBatchedDataset
(
SAMPLE_NUM
,
CLASS_NUM
)
dataloader
=
DataLoader
(
dataset
,
feed_list
=
[
image
,
label
],
places
=
places
,
num_workers
=
num_workers
,
batch_size
=
None
,
drop_last
=
True
)
assert
len
(
dataloader
)
==
int
(
SAMPLE_NUM
/
BATCH_SIZE
)
exe
=
fluid
.
Executor
(
place
=
places
[
0
])
exe
.
run
(
startup_prog
)
prog
=
fluid
.
CompiledProgram
(
main_prog
)
if
len
(
places
)
>
1
:
prog
=
prog
.
with_data_parallel
(
loss_name
=
loss
.
name
,
places
=
places
)
step_list
=
[]
loss_list
=
[]
start_t
=
time
.
time
()
for
_
in
six
.
moves
.
range
(
EPOCH_NUM
):
step
=
0
for
d
in
dataloader
:
assert
len
(
d
)
==
len
(
places
),
"{} != {}"
.
format
(
len
(
d
),
len
(
places
))
for
i
,
item
in
enumerate
(
d
):
image
=
item
[
'image'
]
label
=
item
[
'label'
]
assert
image
.
shape
()
==
[
BATCH_SIZE
,
IMAGE_SIZE
]
assert
label
.
shape
()
==
[
BATCH_SIZE
,
1
]
assert
image
.
_place
().
_equals
(
places
[
i
])
assert
label
.
_place
().
_equals
(
places
[
i
])
L
,
=
exe
.
run
(
program
=
prog
,
feed
=
d
,
fetch_list
=
[
loss
],
use_program_cache
=
True
)
loss_list
.
append
(
np
.
mean
(
L
))
step
+=
1
step_list
.
append
(
step
)
end_t
=
time
.
time
()
ret
=
{
"time"
:
end_t
-
start_t
,
"step"
:
step_list
,
"loss"
:
np
.
array
(
loss_list
)
}
print
(
"time cost"
,
ret
[
'time'
],
'step_list'
,
ret
[
'step'
])
return
ret
if
__name__
==
'__main__'
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录