From 89c0877ee502f0f59f1cb361cd3e0ad17b1eda23 Mon Sep 17 00:00:00 2001 From: baoachun <962571062@qq.com> Date: Thu, 6 Jan 2022 15:53:13 +0800 Subject: [PATCH] add mkldnn matmulv2 ut (#38749) --- .../ir/inference/test_mkldnn_matmulv2_op.py | 135 ++++++++++++++++++ 1 file changed, 135 insertions(+) create mode 100644 python/paddle/fluid/tests/unittests/ir/inference/test_mkldnn_matmulv2_op.py diff --git a/python/paddle/fluid/tests/unittests/ir/inference/test_mkldnn_matmulv2_op.py b/python/paddle/fluid/tests/unittests/ir/inference/test_mkldnn_matmulv2_op.py new file mode 100644 index 00000000000..9fa98045ef3 --- /dev/null +++ b/python/paddle/fluid/tests/unittests/ir/inference/test_mkldnn_matmulv2_op.py @@ -0,0 +1,135 @@ +# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +from auto_scan_test import MkldnnAutoScanTest, SkipReasons +from program_config import TensorConfig, ProgramConfig, OpConfig +import numpy as np +import paddle.inference as paddle_infer +from functools import partial +from typing import Optional, List, Callable, Dict, Any, Set +import unittest + +import hypothesis +from hypothesis import given, settings, seed, example, assume +import hypothesis.strategies as st + + +class TestMkldnnMatmulv2Op(MkldnnAutoScanTest): + def is_program_valid(self, program_config: ProgramConfig) -> bool: + if len(program_config.inputs["input_data2"].shape) == 4: + if program_config.inputs["input_data1"].shape[ + -4] != 1 and program_config.inputs["input_data2"].shape[ + -4] != 1: + if program_config.inputs["input_data1"].shape[ + -4] != program_config.inputs["input_data2"].shape[-4]: + return False + + if program_config.inputs["input_data1"].shape[ + -3] != 1 and program_config.inputs["input_data2"].shape[ + -3] != 1: + if program_config.inputs["input_data1"].shape[ + -3] != program_config.inputs["input_data2"].shape[-3]: + return False + return True + + def sample_program_configs(self, *args, **kwargs): + def generate_input(type, *args, **kwargs): + transpose_X = kwargs["transpose_X"] + transpose_Y = kwargs["transpose_Y"] + batch_size1 = kwargs["batch_size1"] + batch_size2 = kwargs["batch_size2"] + channel1 = kwargs["channel1"] + channel2 = kwargs["channel2"] + input_dim = kwargs["input_dim"] + y_dim_len = kwargs["y_dim_len"] + if transpose_X and transpose_Y: + shape_x = [batch_size1, channel1, input_dim, 32] + if y_dim_len == 4: + shape_y = [batch_size2, channel2, 64, input_dim] + elif y_dim_len == 3: + shape_y = [channel2, 64, input_dim] + elif transpose_X: + shape_x = [batch_size1, channel1, input_dim, 32] + if y_dim_len == 4: + shape_y = [batch_size2, channel2, input_dim, 64] + elif y_dim_len == 3: + shape_y = [channel2, input_dim, 64] + elif transpose_Y: + shape_x = [batch_size1, channel1, 32, input_dim] + if y_dim_len == 4: + shape_y = [batch_size2, channel2, 8, input_dim] + elif y_dim_len == 3: + shape_y = [channel2, 8, input_dim] + else: + shape_x = [batch_size1, channel1, 32, input_dim] + if y_dim_len == 4: + shape_y = [batch_size2, channel2, input_dim, 16] + elif y_dim_len == 3: + shape_y = [channel2, input_dim, 16] + + if type == "x": + return np.random.random(shape_x).astype(np.float32) + else: + return np.random.random(shape_y).astype(np.float32) + + matmul_op = OpConfig( + type="matmul_v2", + inputs={"X": ["input_data1"], + "Y": ["input_data2"]}, + outputs={"Out": ["matmul_output"]}, + attrs={ + "trans_x": kwargs["transpose_X"], + "trans_y": kwargs["transpose_Y"], + "fused_reshape_X": [], + "fused_reshape_Y": [], + "fused_transpose_X": [], + "fused_transpose_Y": [], + "fused_reshape_Out": [], + "fused_transpose_Out": [] + }) + + program_config = ProgramConfig( + ops=[matmul_op], + weights={}, + inputs={ + "input_data1": TensorConfig(data_gen=partial( + generate_input, "x", *args, **kwargs)), + "input_data2": TensorConfig(data_gen=partial( + generate_input, "y", *args, **kwargs)) + }, + outputs=["matmul_output"]) + + yield program_config + + def sample_predictor_configs(self, program_config): + config = self.create_inference_config(use_mkldnn=True) + yield config, (1e-5, 1e-5) + + @given( + transpose_X=st.booleans(), + transpose_Y=st.booleans(), + y_dim_len=st.sampled_from([3, 4]), + batch_size1=st.integers( + min_value=1, max_value=4), + batch_size2=st.integers( + min_value=1, max_value=4), + channel1=st.sampled_from([1, 16, 32, 64]), + channel2=st.sampled_from([1, 16, 32, 64]), + input_dim=st.sampled_from([16, 32, 64])) + def test(self, *args, **kwargs): + self.run_test(*args, **kwargs) + + +if __name__ == "__main__": + unittest.main() -- GitLab