Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
89bbc4f6
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2312
Star
20933
Fork
5424
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
89bbc4f6
编写于
1月 03, 2018
作者:
Y
Yang yaming
提交者:
GitHub
1月 03, 2018
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #7157 from pkuyym/fix-7156
Doc fix and enhancement for lstm_unit python wrapper.
上级
19541468
60fecce4
变更
2
显示空白变更内容
内联
并排
Showing
2 changed file
with
74 addition
and
65 deletion
+74
-65
python/paddle/v2/fluid/layers/nn.py
python/paddle/v2/fluid/layers/nn.py
+72
-63
python/paddle/v2/fluid/tests/test_layers.py
python/paddle/v2/fluid/tests/test_layers.py
+2
-2
未找到文件。
python/paddle/v2/fluid/layers/nn.py
浏览文件 @
89bbc4f6
...
@@ -1168,25 +1168,26 @@ def lstm_unit(x_t,
...
@@ -1168,25 +1168,26 @@ def lstm_unit(x_t,
.. math::
.. math::
i_t & = \sigma(W_{x_i}x_{t} + W_{h_i}h_{t-1} +
W_{c_i}c_{t-1} +
b_i)
i_t & = \sigma(W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i)
f_t & = \sigma(W_{x_f}x_{t} + W_{h_f}h_{t-1} +
W_{c_f}c_{t-1} +
b_f)
f_t & = \sigma(W_{x_f}x_{t} + W_{h_f}h_{t-1} + b_f)
c_t & = f_tc_{t-1} + i_t tanh (W_{x_c}x_t
+
W_{h_c}h_{t-1} + b_c)
c_t & = f_tc_{t-1} + i_t tanh (W_{x_c}x_t
+
W_{h_c}h_{t-1} + b_c)
o_t & = \sigma(W_{x_o}x_{t} + W_{h_o}h_{t-1} +
W_{c_o}c_t +
b_o)
o_t & = \sigma(W_{x_o}x_{t} + W_{h_o}h_{t-1} + b_o)
h_t & = o_t tanh(c_t)
h_t & = o_t tanh(c_t)
The inputs of lstm unit includes :math:`x_t`, :math:`h_{t-1}` and
The inputs of lstm unit include :math:`x_t`, :math:`h_{t-1}` and
:math:`c_{t-1}`. The implementation separates the linear transformation
:math:`c_{t-1}`. The 2nd dimensions of :math:`h_{t-1}` and :math:`c_{t-1}`
and non-linear transformation apart. Here, we take :math:`i_t` as an
should be same. The implementation separates the linear transformation and
example. The linear transformation is applied by calling a `fc` layer and
non-linear transformation apart. Here, we take :math:`i_t` as an example.
the equation is:
The linear transformation is applied by calling a `fc` layer and the
equation is:
.. math::
.. math::
L_{i_t} = W_{x_i}x_{t} + W_{h_i}h_{t-1} +
W_{c_i}c_{t-1} +
b_i
L_{i_t} = W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i
The non-linear transformation is applied by calling `lstm_unit_op` and the
The non-linear transformation is applied by calling `lstm_unit_op` and the
equation is:
equation is:
...
@@ -1198,9 +1199,12 @@ def lstm_unit(x_t,
...
@@ -1198,9 +1199,12 @@ def lstm_unit(x_t,
This layer has two outputs including :math:`h_t` and :math:`o_t`.
This layer has two outputs including :math:`h_t` and :math:`o_t`.
Args:
Args:
x_t (Variable): The input value of current step.
x_t (Variable): The input value of current step, a 2-D tensor with shape
hidden_t_prev (Variable): The hidden value of lstm unit.
M x N, M for batch size and N for input size.
cell_t_prev (Variable): The cell value of lstm unit.
hidden_t_prev (Variable): The hidden value of lstm unit, a 2-D tensor
with shape M x S, M for batch size and S for size of lstm unit.
cell_t_prev (Variable): The cell value of lstm unit, a 2-D tensor with
shape M x S, M for batch size and S for size of lstm unit.
forget_bias (float): The forget bias of lstm unit.
forget_bias (float): The forget bias of lstm unit.
param_attr (ParamAttr): The attributes of parameter weights, used to set
param_attr (ParamAttr): The attributes of parameter weights, used to set
initializer, name etc.
initializer, name etc.
...
@@ -1213,14 +1217,15 @@ def lstm_unit(x_t,
...
@@ -1213,14 +1217,15 @@ def lstm_unit(x_t,
Raises:
Raises:
ValueError: The ranks of **x_t**, **hidden_t_prev** and **cell_t_prev**
\
ValueError: The ranks of **x_t**, **hidden_t_prev** and **cell_t_prev**
\
not be 2 or the 1st dimensions of **x_t**, **hidden_t_prev**
\
not be 2 or the 1st dimensions of **x_t**, **hidden_t_prev**
\
and **cell_t_prev** not be the same.
and **cell_t_prev** not be the same or the 2nd dimensions of
\
**hidden_t_prev** and **cell_t_prev** not be the same.
Examples:
Examples:
.. code-block:: python
.. code-block:: python
x_t = fluid.layers.fc(input=x_t_data, size=10)
x_t = fluid.layers.fc(input=x_t_data, size=10)
prev_hidden = fluid.layers.fc(input=prev_hidden_data, size=
2
0)
prev_hidden = fluid.layers.fc(input=prev_hidden_data, size=
3
0)
prev_cell = fluid.layers.fc(input=prev_cell_data, size=30)
prev_cell = fluid.layers.fc(input=prev_cell_data, size=30)
hidden_value, cell_value = fluid.layers.lstm_unit(x_t=x_t,
hidden_value, cell_value = fluid.layers.lstm_unit(x_t=x_t,
hidden_t_prev=prev_hidden,
hidden_t_prev=prev_hidden,
...
@@ -1239,7 +1244,11 @@ def lstm_unit(x_t,
...
@@ -1239,7 +1244,11 @@ def lstm_unit(x_t,
if
x_t
.
shape
[
0
]
!=
hidden_t_prev
.
shape
[
0
]
or
x_t
.
shape
[
if
x_t
.
shape
[
0
]
!=
hidden_t_prev
.
shape
[
0
]
or
x_t
.
shape
[
0
]
!=
cell_t_prev
.
shape
[
0
]:
0
]
!=
cell_t_prev
.
shape
[
0
]:
raise
ValueError
(
"The 1s dimension of x_t, hidden_t_prev and "
raise
ValueError
(
"The 1st dimensions of x_t, hidden_t_prev and "
"cell_t_prev must be the same."
)
if
hidden_t_prev
.
shape
[
1
]
!=
cell_t_prev
.
shape
[
1
]:
raise
ValueError
(
"The 2nd dimensions of hidden_t_prev and "
"cell_t_prev must be the same."
)
"cell_t_prev must be the same."
)
if
bias_attr
is
None
:
if
bias_attr
is
None
:
...
...
python/paddle/v2/fluid/tests/test_layers.py
浏览文件 @
89bbc4f6
...
@@ -177,8 +177,8 @@ class TestBook(unittest.TestCase):
...
@@ -177,8 +177,8 @@ class TestBook(unittest.TestCase):
name
=
'x_t_data'
,
shape
=
[
10
,
10
],
dtype
=
'float32'
)
name
=
'x_t_data'
,
shape
=
[
10
,
10
],
dtype
=
'float32'
)
x_t
=
layers
.
fc
(
input
=
x_t_data
,
size
=
10
)
x_t
=
layers
.
fc
(
input
=
x_t_data
,
size
=
10
)
prev_hidden_data
=
layers
.
data
(
prev_hidden_data
=
layers
.
data
(
name
=
'prev_hidden_data'
,
shape
=
[
10
,
2
0
],
dtype
=
'float32'
)
name
=
'prev_hidden_data'
,
shape
=
[
10
,
3
0
],
dtype
=
'float32'
)
prev_hidden
=
layers
.
fc
(
input
=
prev_hidden_data
,
size
=
2
0
)
prev_hidden
=
layers
.
fc
(
input
=
prev_hidden_data
,
size
=
3
0
)
prev_cell_data
=
layers
.
data
(
prev_cell_data
=
layers
.
data
(
name
=
'prev_cell'
,
shape
=
[
10
,
30
],
dtype
=
'float32'
)
name
=
'prev_cell'
,
shape
=
[
10
,
30
],
dtype
=
'float32'
)
prev_cell
=
layers
.
fc
(
input
=
prev_cell_data
,
size
=
30
)
prev_cell
=
layers
.
fc
(
input
=
prev_cell_data
,
size
=
30
)
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录