diff --git a/paddle/fluid/operators/reduce_ops/reduce_functor_op.h b/paddle/fluid/operators/reduce_ops/reduce_functor_op.h new file mode 100644 index 0000000000000000000000000000000000000000..f4ea18edb2a95033cf99849a8b9f84e98203266c --- /dev/null +++ b/paddle/fluid/operators/reduce_ops/reduce_functor_op.h @@ -0,0 +1,58 @@ +/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#pragma once +#include +#include + +#include "paddle/fluid/framework/eigen.h" +#include "paddle/fluid/framework/tensor.h" +#include "paddle/fluid/operators/amp/fp16_type_traits.h" +#include "paddle/fluid/platform/device_context.h" +#include "paddle/fluid/platform/hostdevice.h" +#include "paddle/fluid/platform/macros.h" + +namespace paddle { +namespace operators { + +template +struct CustomMin { + __device__ __forceinline__ T operator()(const T &a, const T &b) const { + return (b < a) ? b : a; + } +}; + +template +struct CustomMax { + __device__ __forceinline__ T operator()(const T &a, const T &b) const { + return (b > a) ? b : a; + } +}; + +template +struct CustomSum { + __device__ __forceinline__ T operator()(const T &a, const T &b) const { + return b + a; + } +}; + +template +struct CustomMul { + __device__ __forceinline__ T operator()(const T &a, const T &b) const { + return b * a; + } +}; + +} // namespace operators +} // namespace paddle diff --git a/paddle/fluid/operators/reduce_ops/reduce_op.cuh b/paddle/fluid/operators/reduce_ops/reduce_op.cuh new file mode 100644 index 0000000000000000000000000000000000000000..91d7fb7c8439a2e9f0e3bf5257347c7b928cd3e7 --- /dev/null +++ b/paddle/fluid/operators/reduce_ops/reduce_op.cuh @@ -0,0 +1,646 @@ +// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +#pragma once + +#include +#include +#include +#include +#include + +#ifdef __NVCC__ +#include "cub/cub.cuh" +#endif + +#ifdef __HIPCC__ +#include +namespace cub = hipcub; +#endif + +#include "paddle/fluid/framework/array.h" +#include "paddle/fluid/framework/tensor.h" +#include "paddle/fluid/framework/tensor_util.h" + +namespace paddle { +namespace operators { +namespace detail { + +// Post processing function for sum, max, min, prod, any +template +struct IdentityFunctor { + DEVICE explicit inline IdentityFunctor() {} + + DEVICE inline T operator()(const T& x) const { return x; } +}; + +// Post processing function for mean +template +struct DivideFunctor { + DEVICE explicit inline DivideFunctor(int n) : n_inv((T)(1.0 / n)) {} + + DEVICE inline T operator()(const T& x) const { return x * n_inv; } + + private: + T n_inv; +}; + +static inline int GetLastPow2(int n) { + n |= (n >> 1); + n |= (n >> 2); + n |= (n >> 4); + n |= (n >> 8); + n |= (n >> 16); + return std::max(1, n - (n >> 1)); +} + +static inline std::vector GetStrides(const std::vector& dims, + const std::vector& idx) { + int n = static_cast(idx.size()); + if (n == 0) return std::vector(); + std::vector strides(n); + strides.back() = 1; + for (int i = n - 2; i >= 0; --i) { + strides[i] = strides[i + 1] * dims[idx[i + 1]]; + } + return strides; +} + +#ifdef __HIPCC__ +constexpr int kMaxBlockDim = 256; +#else +constexpr int kMaxBlockDim = 512; +#endif + +static inline int GetDesiredBlockDim(int block_dim) { + return block_dim >= kMaxBlockDim + ? kMaxBlockDim + : (1 << static_cast(std::log2(block_dim))); +} + +static inline void CheckReduceRankIsValid(int reduce_rank, int rank) { + if (rank % 2 == 0) { + PADDLE_ENFORCE_EQ(reduce_rank, rank / 2, + platform::errors::InvalidArgument( + "ReduceOp: invalid reduce rank. When rank = %d, " + "reduce_rank must be %d, but got %d.", + rank, rank / 2, reduce_rank)); + } else { + auto lower_rank = (rank - 1) / 2; + auto upper_rank = (rank + 1) / 2; + PADDLE_ENFORCE_EQ( + reduce_rank == lower_rank || reduce_rank == upper_rank, true, + platform::errors::InvalidArgument( + "ReduceOp: invalid reduce rank. When rank = %d, reduce_rank " + "must be %d or %d, but got %d.", + rank, lower_rank, upper_rank, reduce_rank)); + } +} + +template +static inline paddle::framework::Array from( + const VectorLikeType& vec) { + PADDLE_ENFORCE_EQ(vec.size(), ElementCount, + platform::errors::InvalidArgument( + "Cub reduce Array: size not match. Received " + "vec.size() %d != ElementCount %d.", + vec.size(), ElementCount)); + size_t n = static_cast(vec.size()); + paddle::framework::Array ret; + for (size_t i = 0; i < n; ++i) ret[i] = vec[i]; + return ret; +} + +} // namespace detail + +enum ReduceType { + kReduceAll = 0x00, + kReduceLastDim = 0x01, + kReduceHigherDim = 0x02, // ReduceFirstDim or reduceSecondDim + kReduceAny = 0x03, +}; + +// reduce config +template +struct ReduceConfig { + ReduceConfig(std::vector origin_reduce_dims, std::vector x_dim) + : reduce_dims_origin(origin_reduce_dims), x_dim(x_dim) {} + + // get the parameters of reduceKernel + void Run() { + // step1: update the reduce_dim left_dim and x_dim + SetReduceDim(); + // step2: get the strides of dim for reduceAny and reduceLastDim + SetStrides(); + // step3: get the type of reduce + SetReduceType(); + // step4: set the block and grid for launch kernel + SetBlockDim(); + } + + // when should_reduce_again is true, we need malloc temp space for temp data + void SetOutputData(Ty* y_data, const platform::Place& place, + framework::Tensor& tmp) { + if (should_reduce_again) { + output_data = tmp.mutable_data( + framework::make_ddim( + {static_cast(left_num * grid.y * sizeof(Ty))}), + place); + } else { + output_data = y_data; + } + } + + private: + // set reduce_dim, left_dim and update x_dim + // eg: x_dim = [2, 4, 6] origin_reduce_dims = [0, 1] + // --SetReduceDim--> x_dim = [8,6], reduce_dim = [0], left_dim = [1] + void SetReduceDim() { + std::set reduce_set; + + for (auto e : reduce_dims_origin) { + auto pos = e >= 0 ? e : e + x_dim.size(); + reduce_set.insert(pos); + } + std::vector reduce_dim_temp(reduce_set.begin(), reduce_set.end()); + std::sort(reduce_dim_temp.begin(), reduce_dim_temp.end()); + // get reduce_dim + if (reduce_dim_temp.size() > 1) { + int num = 0; // for update axis + reduce_dim.push_back(reduce_dim_temp[0]); + for (int idx = 1; idx < reduce_dim_temp.size(); idx++) { + // update x_dim + if (reduce_dim_temp[idx] - reduce_dim_temp[idx - 1] == 1) { + x_dim[reduce_dim_temp[idx - 1]] *= x_dim[reduce_dim_temp[idx]]; + x_dim.erase(x_dim.begin() + reduce_dim_temp[idx]); + num++; + } else { + reduce_dim.push_back(reduce_dim_temp[idx] - num); + } + } + } else { + reduce_dim = reduce_dim_temp; + } + + // update new_x_dim and new_reduce_dim + std::vector new_x_dim, new_reduce_dim_temp; + int is_reduced = 0; + for (auto e : reduce_dim) { + is_reduced |= 1 << e; + } + + for (int i = 0; i < x_dim.size(); i++) { + if ((i == 0) || (((is_reduced >> i) ^ (is_reduced >> (i - 1))) & 1)) { + new_x_dim.push_back(x_dim[i]); + if ((is_reduced >> i) & 1) + new_reduce_dim_temp.push_back(new_x_dim.size() - 1); + } else { + new_x_dim[new_x_dim.size() - 1] *= x_dim[i]; + } + } + + x_dim = new_x_dim; + reduce_dim = new_reduce_dim_temp; + + int x_rank = static_cast(x_dim.size()); + std::set left_set; + + for (int i = 0; i < x_rank; ++i) { + left_set.insert(i); + } + + for (auto e : reduce_dim) { + left_set.erase(e); + } + + left_dim.assign(left_set.begin(), left_set.end()); + } + + // set x_strides, reduce_strides, left_strides for reduceLastDim and reduceAny + // eg: x_dim = [8, 6], reduce_dim = [0], left_dim = [1] + // --SetStrides--> x_strides= [6,1], reduce_strides = [1], + // left_strides = [1] + void SetStrides() { + std::vector idx_dim; + for (int i = 0; i < x_dim.size(); i++) { + idx_dim.push_back(i); + } + + x_strides = detail::GetStrides(x_dim, idx_dim); + reduce_strides = detail::GetStrides(x_dim, reduce_dim); + left_strides = detail::GetStrides(x_dim, left_dim); + reduce_num = reduce_strides[0] * x_dim[reduce_dim[0]]; + + left_num = 1; + if (left_dim.size()) { + left_num = left_strides[0] * x_dim[left_dim[0]]; + } + } + + // get the reduceType + // eg: x_dim = [8, 6] reduce_dim = [0] --> ReduceHigherDim -->reduceFirstDim + // x_dim = [8, 6] reduce_dim = [1] --> reduceLastDim + // x_dim = [8] reduce_dim = [0] --> reduceAll + // x_dim = [8, 6, 4, 2] reduce_dim = [0, 2] --> reduceAny + void SetReduceType() { + int rank = x_dim.size(); + int reduce_rank = reduce_dim.size(); + + if (rank == reduce_rank) { + reduce_type = static_cast(ReduceType::kReduceAll); + + } else if (rank == 2 && reduce_rank == 1 && reduce_dim[0] == 1) { + reduce_type = static_cast(ReduceType::kReduceLastDim); + } else if (reduce_rank == 1) { + // ReduceFirstDim and reduceSecondDim + reduce_type = static_cast(ReduceType::kReduceHigherDim); + + } else { + reduce_type = static_cast(ReduceType::kReduceAny); + } + } + + // set block and grid for launch kernel + // for ReduceHigherDim: if block is enough -> splite reduce_num + // else init block(32, 1) grid(block_num, 1) + // for others: block(block_num, 1) , grid(left_num, 1) + void SetBlockDim() { + // init + int block_num = detail::GetDesiredBlockDim(reduce_num); + should_reduce_again = false; + + dim3 block_dim(block_num, 1); + dim3 grid_dim(left_num, 1); + blocking_size = reduce_num; + + if (reduce_type == ReduceType::kReduceHigherDim) { + int last_dim_num = x_dim.back(); + // update left_num + int grid_z = left_num / last_dim_num; + left_num = last_dim_num; + + block_dim.z = 1; + grid_dim.z = grid_z; + + int device_id = platform::GetCurrentDeviceId(); + int max_mp = platform::GetCUDAMultiProcessors(device_id); + int max_threads_per_mp = + platform::GetCUDAMaxThreadsPerMultiProcessor(device_id); + int max_threads = max_threads_per_mp * max_mp; + + // init + int num_block = (max_threads / left_num); + + if (num_block > 1 && reduce_num >= 512) { + blocking_size = detail::GetLastPow2(reduce_num / num_block); + + if (blocking_size <= 1) { + blocking_size = detail::GetLastPow2(sqrt(reduce_num)); + } else if (blocking_size * 2 < reduce_num) { + blocking_size *= 2; + } + + should_reduce_again = true; + + block_dim.x = 32; + block_dim.y = 1; + grid_dim.x = (left_num + block_dim.x - 1) / block_dim.x; + grid_dim.y = (reduce_num + blocking_size - 1) / blocking_size; + + } else { + block_dim.x = 32; + block_dim.y = 1; + blocking_size = reduce_num; + grid_dim.x = (left_num + block_dim.x - 1) / block_dim.x; + grid_dim.y = 1; + } + } + + block = block_dim; + grid = grid_dim; + } + + public: + std::vector reduce_dims_origin; + std::vector reduce_dim; + std::vector x_dim; + std::vector left_dim; + std::vector x_strides; + std::vector left_strides; + std::vector reduce_strides; + + int reduce_type; + int reduce_num; + int left_num; + int blocking_size; + bool should_reduce_again; + + Ty* output_data; + + dim3 block; + dim3 grid; +}; + +template +__device__ __forceinline__ void ReduceLastDim(const Tx* x, Ty* y, + ReduceOp reducer, + TransformOp transformer, Ty init, + int reduce_num) { + __shared__ typename cub::BlockReduce::TempStorage temp_storage; + int idx_x = blockIdx.x * reduce_num; + int idx_y = threadIdx.x; + Ty reduce_var = init; + for (int idx_y = threadIdx.x; idx_y < reduce_num; idx_y += BlockDim) + reduce_var = reducer(reduce_var, static_cast(x[idx_x + idx_y])); + __syncthreads(); + + reduce_var = + cub::BlockReduce(temp_storage).Reduce(reduce_var, reducer); + + if (threadIdx.x == 0) { + y[blockIdx.x] = transformer(reduce_var); + } +} + +template +__device__ __forceinline__ void ReduceHigherDim(const Tx* x, Ty* y, + ReduceOp reducer, + TransformOp transformer, + Ty init, int reduce_num, + int left_num, int block_size) { + int idx = blockIdx.x * blockDim.x + threadIdx.x; + int idy = blockIdx.y * block_size; + + Ty temp = init; + Ty reduce_var = init; + + if (idx < left_num) { + int loop = reduce_num - idy; + loop = loop > block_size ? block_size : loop; + for (int iy = 0; iy < loop; iy++) { + int id = (idy + iy) * left_num + idx + blockIdx.z * reduce_num * left_num; + reduce_var = reducer(reduce_var, static_cast(x[id])); + } + y[idx + blockIdx.y * left_num + blockIdx.z * gridDim.y * left_num] = + static_cast(transformer(reduce_var)); + } +} + +template +__device__ __forceinline__ void ReduceAny( + const Tx* x, Ty* y, ReduceOp reducer, TransformOp transformer, Ty init, + int reduce_num, paddle::framework::Array x_strides, + paddle::framework::Array reduce_dim, + paddle::framework::Array reduce_strides, + paddle::framework::Array left_dim, + paddle::framework::Array left_strides) { + __shared__ typename cub::BlockReduce::TempStorage temp_storage; + + int sub_index[Rank]; + int left_idx = blockIdx.x; + for (int i = 0; i < Rank - ReduceRank; ++i) { + sub_index[left_dim[i]] = left_idx / left_strides[i]; + left_idx %= left_strides[i]; + } + + int reduce_idx = threadIdx.x; + for (int j = 0; j < ReduceRank; ++j) { + sub_index[reduce_dim[j]] = reduce_idx / reduce_strides[j]; + reduce_idx %= reduce_strides[j]; + } + + int idx_x = 0; + for (int k = 0; k < Rank; ++k) idx_x += (sub_index[k] * x_strides[k]); + Ty reduce_var = static_cast(x[idx_x]); + + for (int i = threadIdx.x + BlockDim; i < reduce_num; i += BlockDim) { + int reduce_idx = i; + for (int j = 0; j < ReduceRank; ++j) { + sub_index[reduce_dim[j]] = reduce_idx / reduce_strides[j]; + reduce_idx %= reduce_strides[j]; + } + + int idx_x = 0; + for (int k = 0; k < Rank; ++k) idx_x += (sub_index[k] * x_strides[k]); + reduce_var = + static_cast(reducer(reduce_var, static_cast(x[idx_x]))); + } + __syncthreads(); + + reduce_var = + cub::BlockReduce(temp_storage).Reduce(reduce_var, reducer); + + if (threadIdx.x == 0) { + y[blockIdx.x] = transformer(reduce_var); + } +} + +template +__device__ __forceinline__ void ReduceModule( + const Tx* x, Ty* y, ReduceOp reducer, TransformOp transformer, Ty init, + int reduce_num, int left_num, int blocking_size, + paddle::framework::Array x_strides, + paddle::framework::Array reduce_dim, + paddle::framework::Array reduce_strides, + paddle::framework::Array left_dim, + paddle::framework::Array left_strides) { + if (ReduceType == ReduceType::kReduceLastDim) { + ReduceLastDim( + x, y, reducer, transformer, init, reduce_num); + + } else if (ReduceType == ReduceType::kReduceHigherDim) { + ReduceHigherDim( + x, y, reducer, transformer, init, reduce_num, left_num, blocking_size); + + } else { + ReduceAny( + x, y, reducer, transformer, init, reduce_num, x_strides, reduce_dim, + reduce_strides, left_dim, left_strides); + } +} + +template +__global__ void ReduceKernelFunction( + const Tx* x, Ty* y, ReduceOp reducer, TransformOp transformer, Ty init, + int reduce_num, int left_num, int block_size, + paddle::framework::Array x_strides, + paddle::framework::Array reduce_dim, + paddle::framework::Array reduce_strides, + paddle::framework::Array left_dim, + paddle::framework::Array left_strides) { + ReduceModule(x, y, reducer, transformer, init, reduce_num, + left_num, block_size, x_strides, reduce_dim, + reduce_strides, left_dim, left_strides); +} + +template +static void launchKernel(const Tx* x_data, Ty* y_data, + const platform::Place& place, const ReduceOp& reducer, + const TransformOp& transformer, const Ty& init, + gpuStream_t stream, ReduceConfig config) { +#define CUB_REDUCE_TYPE_CASE(type) \ + case type: { \ + constexpr auto kReduceType = type; \ + ReduceKernelFunction< \ + Tx, Ty, ReduceOp, TransformOp, BlockDim, kRank, kReduceRank, \ + kReduceType><<>>( \ + x_data, config.output_data, reducer, transformer, init, \ + config.reduce_num, config.left_num, config.blocking_size, \ + detail::from(config.x_strides), \ + detail::from(config.reduce_dim), \ + detail::from(config.reduce_strides), \ + detail::from(config.left_dim), \ + detail::from(config.left_strides)); \ + } break + + switch (config.reduce_type) { + CUB_REDUCE_TYPE_CASE(1); // reduceLastDim + CUB_REDUCE_TYPE_CASE(2); // ReduceHigherDim + CUB_REDUCE_TYPE_CASE(3); // reduceAny + } + + if (config.should_reduce_again) { + dim3 block(config.block.x, 1, 1); + dim3 grid(config.grid.x, 1, config.grid.z); + + ReduceKernelFunction< + Ty, Ty, ReduceOp, detail::IdentityFunctor, 128, kRank, kReduceRank, + ReduceType::kReduceHigherDim><<>>( + config.output_data, y_data, reducer, detail::IdentityFunctor(), + init, config.grid.y, config.left_num, config.grid.y, + detail::from(config.x_strides), + detail::from(config.reduce_dim), + detail::from(config.reduce_strides), + detail::from(config.left_dim), + detail::from(config.left_strides)); + } +} + +template +static void launchReduceKernel(const Tx* x_data, Ty* y_data, + const platform::Place& place, + const ReduceOp& reducer, + const TransformOp& transformer, const Ty& init, + gpuStream_t stream, ReduceConfig config) { + int reduce_rank = config.reduce_strides.size(); + int rank = config.x_strides.size(); + +#define CUB_RANK_CASE(i, ...) \ + case i: { \ + constexpr auto kRank = i; \ + switch (reduce_rank) { __VA_ARGS__; } \ + } break + +#define CUB_REDUCE_RANK_CASE(i, ...) \ + case i: { \ + constexpr auto kReduceRank = i; \ + launchKernel( \ + x_data, y_data, place, reducer, transformer, init, stream, config); \ + } break + + // launch CUB::Reduce + if (config.reduce_type == static_cast(ReduceType::kReduceAll)) { + cub::TransformInputIterator trans_x( + x_data, transformer); + size_t temp_storage_bytes = 0; + cub::DeviceReduce::Reduce(nullptr, temp_storage_bytes, trans_x, y_data, + config.reduce_num, reducer, init, stream); + framework::Tensor tmp; + auto* temp_storage = tmp.mutable_data( + framework::make_ddim({static_cast(temp_storage_bytes)}), + place); + cub::DeviceReduce::Reduce(temp_storage, temp_storage_bytes, trans_x, y_data, + config.reduce_num, reducer, init, stream); + + return; + } + + detail::CheckReduceRankIsValid(reduce_rank, rank); + switch (rank) { + CUB_RANK_CASE(2, CUB_REDUCE_RANK_CASE(1);); + + CUB_RANK_CASE(3, CUB_REDUCE_RANK_CASE(1); CUB_REDUCE_RANK_CASE(2);); + + CUB_RANK_CASE(4, CUB_REDUCE_RANK_CASE(2);); + + CUB_RANK_CASE(5, CUB_REDUCE_RANK_CASE(2); CUB_REDUCE_RANK_CASE(3);); + + CUB_RANK_CASE(6, CUB_REDUCE_RANK_CASE(3);); + + CUB_RANK_CASE(7, CUB_REDUCE_RANK_CASE(3); CUB_REDUCE_RANK_CASE(4);); + + CUB_RANK_CASE(8, CUB_REDUCE_RANK_CASE(4);); + + CUB_RANK_CASE(9, CUB_REDUCE_RANK_CASE(4); CUB_REDUCE_RANK_CASE(5);); + } + +#undef CUB_REDUCE_RANK_CASE +#undef CUB_RANK_CASE +} +template +void TensorReduceFunc(const framework::Tensor& x, framework::Tensor* y, + std::vector origin_reduce_dims, const Ty& init, + const ReduceOp& reducer, const TransformOp& transformer, + gpuStream_t stream) { + auto x_dim = framework::vectorize(x.dims()); + auto config = ReduceConfig(origin_reduce_dims, x_dim); + config.Run(); + + auto x_data = x.data(); + auto y_data = y->mutable_data(x.place()); + + framework::Tensor tmp; + // SetOutputData for ReduceHigherDim when should_reduce_again is true, + // temp_output should be stored temp_data in output_data space or stored in + // y_data; + config.SetOutputData(y_data, x.place(), tmp); + + if (config.reduce_num == 1) { + auto out_dims = y->dims(); + framework::TensorCopy(x, y->place(), y); + y->Resize(out_dims); + return; + } + +#define CUB_BLOCK_DIM_CASE(block_dim) \ + case block_dim: { \ + constexpr auto kBlockDim = block_dim; \ + launchReduceKernel( \ + x_data, y_data, x.place(), reducer, transformer, init, stream, \ + config); \ + } break + + switch (detail::GetDesiredBlockDim(config.reduce_num)) { + CUB_BLOCK_DIM_CASE(512); + CUB_BLOCK_DIM_CASE(256); + CUB_BLOCK_DIM_CASE(128); + CUB_BLOCK_DIM_CASE(64); + CUB_BLOCK_DIM_CASE(32); + CUB_BLOCK_DIM_CASE(16); + CUB_BLOCK_DIM_CASE(8); + CUB_BLOCK_DIM_CASE(4); + CUB_BLOCK_DIM_CASE(2); + } +#undef CUB_BLOCK_DIM_CASE +} + +} // namespace operators +} // namespace paddle