提交 88822319 编写于 作者: P peterzhang2029

add diff of recurrent layer in faq

上级 c15ac202
...@@ -158,17 +158,23 @@ PaddlePaddle的参数使用名字 :code:`name` 作为参数的ID,相同名字 ...@@ -158,17 +158,23 @@ PaddlePaddle的参数使用名字 :code:`name` 作为参数的ID,相同名字
这里 :code:`hidden_a` 和 :code:`hidden_b` 使用了同样的parameter和bias。并且softmax层的两个输入也使用了同样的参数 :code:`softmax_param`。 这里 :code:`hidden_a` 和 :code:`hidden_b` 使用了同样的parameter和bias。并且softmax层的两个输入也使用了同样的参数 :code:`softmax_param`。
7. \*-cp27mu-linux_x86_64.whl is not a supported wheel on this platform. 7. paddlepaddle\*.whl is not a supported wheel on this platform.
------------------------------------------------------------------------ ------------------------------------------------------------------------
出现这个问题的主要原因是,系统编译wheel包的时候,使用的 :code:`wheel` 包是最新的, 出现这个问题的主要原因是,没有找到和当前系统匹配的paddlepaddle安装包。最新的paddlepaddle python安装包支持Linux x86_64和MacOS 10.12操作系统,并安装了python 2.7和pip 9.0.1。
而系统中的 :code:`pip` 包比较老。具体的解决方法是,更新 :code:`pip` 包并重新编译PaddlePaddle。
更新 :code:`pip` 包的方法是\: 更新 :code:`pip` 包的方法是\:
.. code-block:: bash .. code-block:: bash
pip install --upgrade pip pip install --upgrade pip
如果还不行,可以执行 :code:`python -c "import pip; print(pip.pep425tags.get_supported())"` 获取当前系统支持的python包的后缀,
并对比是否和正在安装的后缀一致。
如果系统支持的是 :code:`linux_x86_64` 而安装包是 :code:`manylinux1_x86_64` ,需要升级pip版本到最新;
如果系统支持 :code:`manylinux1_x86_64` 而安装包(本地)是 :code:`linux_x86_64` ,可以重命名这个whl包为 :code:`manylinux1_x86_64` 再安装。
8. python相关的单元测试都过不了 8. python相关的单元测试都过不了
-------------------------------- --------------------------------
...@@ -310,7 +316,13 @@ Paddle二进制在运行时捕获了浮点数异常,只要出现浮点数异 ...@@ -310,7 +316,13 @@ Paddle二进制在运行时捕获了浮点数异常,只要出现浮点数异
* 模型一直不收敛,发散到了一个数值特别大的地方。 * 模型一直不收敛,发散到了一个数值特别大的地方。
* 训练数据有问题,导致参数收敛到了一些奇异的情况。或者输入数据尺度过大,有些特征的取值达到数百万,这时进行矩阵乘法运算就可能导致浮点数溢出。 * 训练数据有问题,导致参数收敛到了一些奇异的情况。或者输入数据尺度过大,有些特征的取值达到数百万,这时进行矩阵乘法运算就可能导致浮点数溢出。
主要的解决办法是减小学习律或者对数据进行归一化处理。 这里有两种有效的解决方法:
* 对梯度的值进行限制,可以通过设置 :code:`optimizer` 中的 :code:`gradient_clipping_threshold` 来预防梯度爆炸,具体可以参考 `nmt_without_attention <https://github.com/PaddlePaddle/models/tree/develop/nmt_without_attention>`_ 示例。
* 由于最终的损失函数关于每一层输出对应的梯度都会遵循链式法则进行反向传播,因此,可以通过对每一层要传输的梯度大小进行限制来预防浮点数溢出。具体可以对特定的网络层的属性进行设置::code:`layer_attr=paddle.attr.ExtraAttr(error_clipping_threshold=10.0)` 。完整代码可以参考示例 `machine translation <https://github.com/PaddlePaddle/book/tree/develop/08.machine_translation>`_ 。
除此之外,还可以通过减小学习律或者对数据进行归一化处理来解决这类问题。
15. 编译安装后执行 import paddle.v2 as paddle 报ImportError: No module named v2 15. 编译安装后执行 import paddle.v2 as paddle 报ImportError: No module named v2
------------------------------------------------------------------------ ------------------------------------------------------------------------
...@@ -321,3 +333,254 @@ pip uninstall py_paddle paddle ...@@ -321,3 +333,254 @@ pip uninstall py_paddle paddle
然后安装paddle的python环境, 在build目录下执行 然后安装paddle的python环境, 在build目录下执行
pip install python/dist/paddle*.whl && pip install ../paddle/dist/py_paddle*.whl pip install python/dist/paddle*.whl && pip install ../paddle/dist/py_paddle*.whl
16. PaddlePaddle存储的参数格式是什么,如何和明文进行相互转化
---------------------------------------------------------
PaddlePaddle保存的模型参数文件内容由16字节头信息和网络参数两部分组成。头信息中,1~4字节表示PaddlePaddle版本信息,请直接填充0;5~8字节表示每个参数占用的字节数,当保存的网络参数为float类型时为4,double类型时为8;9~16字节表示保存的参数总个数。
将PaddlePaddle保存的模型参数还原回明文时,可以使用相应数据类型的 :code:`numpy.array` 加载具体网络参数,此时可以跳过PaddlePaddle模型参数文件的头信息。若在PaddlePaddle编译时,未指定按照double精度编译,默认情况下按照float精度计算,保存的参数也是float类型。这时在使用 :code:`numpy.array` 时,一般设置 :code:`dtype=float32` 。示例如下:
.. code-block:: python
def read_parameter(fname, width):
s = open(fname).read()
# skip header
vec = np.fromstring(s[16:], dtype=np.float32)
# width is the size of the corresponding layer
np.savetxt(fname + ".csv", vec.reshape(width, -1),
fmt="%.6f", delimiter=",")
将明文参数转化为PaddlePaddle可加载的模型参数时,首先构造头信息,再写入网络参数。下面的代码将随机生成的矩阵转化为可以被PaddlePaddle加载的模型参数。
.. code-block:: python
def gen_rand_param(param_file, width, height, need_trans):
np.random.seed()
header = struct.pack("iil", 0, 4, height * width)
param = np.float32(np.random.rand(height, width))
with open(param_file, "w") as fparam:
fparam.write(header + param.tostring())
17. 如何加载预训练参数
------------------------------
* 对加载预训练参数的层,设置其参数属性 :code:`is_static=True`,使该层的参数在训练过程中保持不变。以embedding层为例,代码如下:
.. code-block:: python
emb_para = paddle.attr.Param(name='emb', is_static=True)
paddle.layer.embedding(size=word_dim, input=x, param_attr=emb_para)
* 从模型文件将预训练参数载入 :code:`numpy.array`,在创建parameters后,使用 :code:`parameters.set()` 加载预训练参数。PaddlePaddle保存的模型参数文件前16字节为头信息,用户将参数载入 :code:`numpy.array` 时须从第17字节开始。以embedding层为例,代码如下:
.. code-block:: python
def load_parameter(file_name, h, w):
with open(file_name, 'rb') as f:
f.read(16) # skip header.
return np.fromfile(f, dtype=np.float32).reshape(h, w)
parameters = paddle.parameters.create(my_cost)
parameters.set('emb', load_parameter(emb_param_file, 30000, 256))
18. 集群多节点训练,日志中保存均为网络通信类错误
------------------------------
集群多节点训练,日志报错为网络通信类错误,比如 :code:`Connection reset by peer` 等。
此类报错通常是由于某一个节点的错误导致这个节点的训练进程退出,从而引发其他节点无法连接导致,可以参考下面的步骤排查:
* 从 :code:`train.log` , :code:`server.log` 找到最早报错的地方,查看是否是其他错误引发的报错(比如FPE,内存不足,磁盘空间不足等)。
* 如果发现最早的报错就是网络通信的问题,很有可能是非独占方式执行导致的端口冲突,可以联系OP,看当前MPI集群是否支持resource=full参数提交,如果支持增加此参数提交,并更换job 端口。
* 如果当前MPI集群并不支持任务独占模式,可以联系OP是否可以更换集群或升级当前集群。
19. PaddlePaddle如何输出多个层
------------------------------
* 将需要输出的层作为 :code:`paddle.inference.Inference()` 接口的 :code:`output_layer` 参数输入,代码如下:
.. code-block:: python
inferer = paddle.inference.Inference(output_layer=[layer1, layer2], parameters=parameters)
* 指定要输出的字段进行输出。以输出 :code:`value` 字段为例,代码如下:
.. code-block:: python
out = inferer.infer(input=data_batch, flatten_result=False, field=["value"])
这里设置 :code:`flatten_result=False`,得到的输出结果是元素个数等于输出字段数的 :code:`list`,该 :code:`list` 的每个元素是由所有输出层相应字段结果组成的 :code:`list`,每个字段结果的类型是 :code:`numpy.array`。:code:`flatten_result` 的默认值为 :code:`True`,该情况下,PaddlePaddle会分别对每个字段将所有输出层的结果按行进行拼接,如果各输出层该字段 :code:`numpy.array` 结果的相应维数不匹配,程序将不能正常运行。
20. :code:`paddle.layer.memory` 的参数 :code:`name` 如何使用
-------------------------------------------------------------
* :code:`paddle.layer.memory` 用于获取特定layer上一时间步的输出,该layer是通过参数 :code:`name` 指定,即,:code:`paddle.layer.memory` 会关联参数 :code:`name` 取值相同的layer,并将该layer上一时间步的输出作为自身当前时间步的输出。
* PaddlePaddle的所有layer都有唯一的name,用户通过参数 :code:`name` 设定,当用户没有显式设定时,PaddlePaddle会自动设定。而 :code:`paddle.layer.memory` 不是真正的layer,其name由参数 :code:`memory_name` 设定,当用户没有显式设定时,PaddlePaddle会自动设定。:code:`paddle.layer.memory` 的参数 :code:`name` 用于指定其要关联的layer,需要用户显式设定。
21. dropout 使用
-----------------
* 在PaddlePaddle中使用dropout有两种方式
* 在相应layer的 :code:`layer_atter` 设置 :code:`drop_rate`,以 :code:`paddle.layer.fc` 为例,代码如下:
.. code-block:: python
fc = paddle.layer.fc(input=input, layer_attr=paddle.attr.ExtraLayerAttribute(drop_rate=0.5))
* 使用 :code:`paddle.layer.dropout`,以 :code:`paddle.layer.fc` 为例,代码如下:
.. code-block:: python
fc = paddle.layer.fc(input=input)
drop_fc = paddle.layer.dropout(input=fc, dropout_rate=0.5)
* :code:`paddle.layer.dropout` 实际上使用了 :code:`paddle.layer.add_to`,并在该layer里采用第一种方式设置 :code:`drop_rate` 来使用dropout的。这种方式对内存消耗较大。
* PaddlePaddle在激活函数里实现dropout,而不是在layer里实现。
* :code:`paddle.layer.lstmemory`、:code:`paddle.layer.grumemory`、:code:`paddle.layer.recurrent` 不是通过一般的方式来实现对输出的激活,所以不能采用第一种方式在这几个layer里设置 :code:`drop_rate` 来使用dropout。若要对这几个layer使用dropout,可采用第二种方式,即使用 :code:`paddle.layer.dropout`。
22. 如何设置学习率退火(learning rate annealing)
------------------------------------------------
在相应的优化算法里设置learning_rate_schedule及相关参数,以使用Adam算法为例,代码如下:
.. code-block:: python
optimizer = paddle.optimizer.Adam(
learning_rate=1e-3,
learning_rate_decay_a=0.5,
learning_rate_decay_b=0.75,
learning_rate_schedule="poly",)
PaddlePaddle目前支持8种learning_rate_schedule,这8种learning_rate_schedule及其对应学习率计算方式如下:
* "constant"
lr = learning_rate
* "poly"
lr = learning_rate * pow(1 + learning_rate_decay_a * num_samples_processed, -learning_rate_decay_b)
其中,num_samples_processed为已训练样本数,下同。
* "caffe_poly"
lr = learning_rate * pow(1.0 - num_samples_processed / learning_rate_decay_a, learning_rate_decay_b)
* "exp"
lr = learning_rate * pow(learning_rate_decay_a, num_samples_processed / learning_rate_decay_b)
* "discexp"
lr = learning_rate * pow(learning_rate_decay_a, floor(num_samples_processed / learning_rate_decay_b))
* "linear"
lr = max(learning_rate - learning_rate_decay_a * num_samples_processed, learning_rate_decay_b)
* "manual"
这是一种按已训练样本数分段取值的学习率退火方法。使用该learning_rate_schedule时,用户通过参数 :code:`learning_rate_args` 设置学习率衰减因子分段函数,当前的学习率为所设置 :code:`learning_rate` 与当前的衰减因子的乘积。以使用Adam算法为例,代码如下:
.. code-block:: python
optimizer = paddle.optimizer.Adam(
learning_rate=1e-3,
learning_rate_schedule="manual",
learning_rate_args="1000:1.0,2000:0.9,3000:0.8",)
在该示例中,当已训练样本数小于等于1000时,学习率为 :code:`1e-3 * 1.0`;当已训练样本数大于1000小于等于2000时,学习率为 :code:`1e-3 * 0.9`;当已训练样本数大于2000时,学习率为 :code:`1e-3 * 0.8`。
* "pass_manual"
这是一种按已训练pass数分段取值的学习率退火方法。使用该learning_rate_schedule时,用户通过参数 :code:`learning_rate_args` 设置学习率衰减因子分段函数,当前的学习率为所设置 :code:`learning_rate` 与当前的衰减因子的乘积。以使用Adam算法为例,代码如下:
.. code-block:: python
optimizer = paddle.optimizer.Adam(
learning_rate=1e-3,
learning_rate_schedule="manual",
learning_rate_args="1:1.0,2:0.9,3:0.8",)
在该示例中,当已训练pass数小于等于1时,学习率为 :code:`1e-3 * 1.0`;当已训练pass数大于1小于等于2时,学习率为 :code:`1e-3 * 0.9`;当已训练pass数大于2时,学习率为 :code:`1e-3 * 0.8`。
23. 出现 :code:`Duplicated layer name` 错误怎么办
--------------------------------------------------
出现该错误的原因一般是用户对不同layer的参数 :code:`name` 设置了相同的取值。遇到该错误时,先找出参数 :code:`name` 取值相同的layer,然后将这些layer的参数 :code:`name` 设置为不同的值。
24. PaddlePaddle V2 API中,调用infer接口时输出多个层的计算结果
--------------------------------------------------
用户在使用多个中间网络层进行预测时,需要先将指定的网络层进行拼接,并作为 :code:`paddle.inference.Inference` 接口中 :code:`output_layer` 属性的输入, 然后调用infer接口来获取多个层对应的计算结果。 示例代码如下:
.. code-block:: bash
inferer = paddle.inference.Inference(output_layer=[layer1, layer2],
parameters=parameters)
probs = inferer.infer(input=test_batch, field=["value"])
这里需要注意的是:
* 如果指定了2个layer作为输出层,实际上需要的输出结果是两个矩阵;
* 假设第一个layer的输出A是一个 N1 * M1 的矩阵,第二个 Layer 的输出B是一个 N2 * M2 的矩阵;
* paddle.v2 默认会将A和B 横向拼接,当N1 和 N2 大小不一样时,会报如下的错误:
.. code-block:: python
ValueError: all the input array dimensions except for the concatenation axis must match exactly
多个层的输出矩阵的高度不一致,这种情况常常发生在:
* 同时输出序列层和非序列层;
* 多个输出层处理多个不同长度的序列;
此时可以在调用infer接口时通过设置 :code:`flatten_result=False` , 跳过“拼接”步骤,来解决上面的问题。这时,infer接口的返回值是一个python list:
* list元素的个数等于网络中输出层的个数;
* list 中每个元素是一个layer的输出结果矩阵,类型是numpy的ndarray;
* 每一个layer输出矩阵的高度,在非序列输入时:等于样本数;序列输入时等于:输入序列中元素的总数;宽度等于配置中layer的size;
25. PaddlePaddle 中不同的 recurrent layer 之间的差异
--------------------------------------------------
以LSTM为例,在PaddlePaddle中包含以下 recurrent layer:
* :code:`paddle.layer.lstmemory`
* :code:`paddle.networks.simple_lstm`
* :code:`paddle.networks.lstmemory_group`
* :code:`paddle.networks.bidirectional_lstm`
上述不同的recurrent layer可以归纳为2类:
* 由recurrent_group实现的recurrent layer:
* 用户在使用这一类recurrent layer时,可以访问由recurrent unit在一个time step里计算得到的中间值(例如:hidden states, input-to-hidden mapping, memory cells等);
* 上述的 :code:`paddle.networks.lstmemory_group` 是这一类的recurrent layer;
* 将recurrent layer作为一个整体来实现:
* 用户在使用这一类recurrent layer,只能访问它们的输出值;
* 上述的 :code:`paddle.networks.lstmemory_group` , :code:`paddle.networks.simple_lstm` 和 :code:`paddle.networks.bidirectional_lstm` 是这一类的recurrent layer;
在第一类recurrent layer的实现中,recurrent_group中包含许多基础layer的计算(例如:add, element-wise multiplication和matrix multiplication等),计算较为繁琐,而第二类的实现将recurrent layer作为一个整体,针对CPU和GPU计算做了更多优化。 所以,在实际应用中,第二类recurrent layer计算效率更高。 如果用户不需要访问LSTM的中间变量(例如:hidden states, input-to-hidden mapping, memory cells等),而只需要recurrent layer计算的输出,我们建议使用第二类recurrent layer。
除此之外,关于LSTM, PaddlePaddle中还包含 :code:`paddle.networks.lstmemory_unit` 这一计算单元:
* 不同于上述介绍的recurrent layer , :code:`paddle.networks.lstmemory_unit` 定义了LSTM单元在一个time step里的计算过程,它并不是一个完整的recurrent layer,也不能接收序列数据作为输入;
* :code:`paddle.networks.lstmemory_unit` 只能在recurrent_group中作为step function使用;
在LSTM和GRU中,隐状态的计算需要将输入数据进行线性映射(input-to-hidden mapping)。 在PaddlePaddle中,并不是所有的recurrent layer都将 input-to-hidden mapping 操作放在recurrent layer外面来执行来提升LSTM和GRU单元的计算速度。以 :code:`paddle.layer.lstmemory` 和 :code:`paddle.networks.simple_lstm` 为例:
* :code:`paddle.layer.lstmemory` 内部不包含 input-to-hidden mapping 操作, 所以它并不是 `原有文献 <https://arxiv.org/abs/1308.0850>`_ 定义的LSTM完整形式;
* 而 :code:`paddle.networks.simple_lstm` 中包含input-to-hidden mapping 操作,并结合 :code:`paddle.layer.lstmemory` 定义了完整的LSTM形式;
需要注意的是, :code:`paddle.networks.simple_lstm` 和 :code:`paddle.layer.lstmemory` 中定义的LSTM形式都包含了peephole connections,这也使得它们比不包含peephole connections的LSTM实现拥有更多的参数。
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册