提交 87cb840c 编写于 作者: P Peng Li

add coeff parameter to the helpers of mse_cost, crf_layer and smooth_l1_cost

上级 2e527ad3
......@@ -3765,7 +3765,7 @@ def __cost_input__(input, label, weight=None):
@wrap_name_default()
@layer_support()
def mse_cost(input, label, weight=None, name=None, layer_attr=None):
def mse_cost(input, label, weight=None, name=None, coeff=1.0, layer_attr=None):
"""
mean squared error cost:
......@@ -3782,6 +3782,8 @@ def mse_cost(input, label, weight=None, name=None, layer_attr=None):
:param weight: The weight affects the cost, namely the scale of cost.
It is an optional argument.
:type weight: LayerOutput
:param coeff: The coefficient affects the gradient in the backward.
:type coeff: float
:param layer_attr: layer's extra attribute.
:type layer_attr: ExtraLayerAttribute
:return: LayerOutput object.
......@@ -3793,6 +3795,7 @@ def mse_cost(input, label, weight=None, name=None, layer_attr=None):
inputs=ipts,
type="square_error",
name=name,
coeff=coeff,
**ExtraLayerAttribute.to_kwargs(layer_attr))
return LayerOutput(name, LayerType.COST, parents=parents, size=1)
......@@ -4798,6 +4801,7 @@ def crf_layer(input,
weight=None,
param_attr=None,
name=None,
coeff=1.0,
layer_attr=None):
"""
A layer for calculating the cost of sequential conditional random
......@@ -4824,6 +4828,8 @@ def crf_layer(input,
:type param_attr: ParameterAttribute
:param name: The name of this layers. It is not necessary.
:type name: None|basestring
:param coeff: The coefficient affects the gradient in the backward.
:type coeff: float
:param layer_attr: Extra Layer config.
:type layer_attr: ExtraLayerAttribute|None
:return: LayerOutput object.
......@@ -4848,6 +4854,7 @@ def crf_layer(input,
type=LayerType.CRF_LAYER,
size=size,
inputs=ipts,
coeff=coeff,
**ExtraLayerAttribute.to_kwargs(layer_attr))
parents = [input, label]
if weight is not None:
......@@ -5379,7 +5386,7 @@ def multi_binary_label_cross_entropy(input,
@wrap_name_default()
@layer_support()
def smooth_l1_cost(input, label, name=None, layer_attr=None):
def smooth_l1_cost(input, label, name=None, coeff=1.0, layer_attr=None):
"""
This is a L1 loss but more smooth. It requires that the
size of input and label are equal. The formula is as follows,
......@@ -5408,6 +5415,8 @@ def smooth_l1_cost(input, label, name=None, layer_attr=None):
:type input: LayerOutput
:param name: The name of this layers. It is not necessary.
:type name: None|basestring
:param coeff: The coefficient affects the gradient in the backward.
:type coeff: float
:param layer_attr: Extra Layer Attribute.
:type layer_attr: ExtraLayerAttribute
:return: LayerOutput object.
......@@ -5421,6 +5430,7 @@ def smooth_l1_cost(input, label, name=None, layer_attr=None):
name=name,
type=LayerType.SMOOTH_L1,
inputs=[input.name, label.name],
coeff=coeff,
**ExtraLayerAttribute.to_kwargs(layer_attr))
return LayerOutput(
name, LayerType.SMOOTH_L1, parents=[input, label], size=1)
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册